MAHARAM TRACES ON VON NEUMANN ALGEBRAS

V. I. CHILIN AND B. S. ZAKIROV

ABSTRACT. Traces Φ on von Neumann algebras with values in complex order complete vector lattices are considered. The full description of these traces is given for the case when Φ is the Maharam trace. The version of Radon-Nikodym-type theorem for Maharam traces is established.

1. INTRODUCTION

The theory of integration for measures μ with values in order complete vector lattices has inspired the study of (bo)-complete lattice-normed spaces $L^{p}(\mu)$ (see, for example, [1], 6.1.8). The spaces $L^{p}(\mu)$ are the Banach-Kantorovich spaces if the measure μ possesses the Maharam property. In the proof of this fact, description of Maharam operators acting in order complete vector lattices plays an important role ([1], 3.4.3).

The existence of the center-valued traces in finite von Neumann algebras makes it natural to construct the theory of integration for traces with values in the complex order complete vector lattice $F_{\mathbb{C}} = F \oplus iF$. If the von Neumann algebra is commutative, then construction of $F_{\mathbb{C}}$ -valued integration for it is the component part for the investigation of the properties of order continuous maps of vector lattices.

Let M be a non-commutative von Neumann algebra, let $F_{\mathbb{C}}$ be a von Neumann subalgebra in the center of M and let $\Phi : M \to F_{\mathbb{C}}$ be a trace with modularity property: $\Phi(zx) = z\Phi(x)$ for all $z \in F_{\mathbb{C}}$, $x \in M$. It is known that the non-commutative L^p -space $L^p(M, \Phi)$ is a Banach-Kantorovich space [2], [3]. In addition, Φ possesses the Maharam property: if $0 \le z \le \Phi(x)$, $z \in F_{\mathbb{C}}$, $0 \le x \in M$, then there exists $0 \le y \le x$ such that $\Phi(y) = z$ (compare with [1], 3.4.1).

In the present article, we will study the faithful normal traces Φ on a von Neumann algebra M with values in an arbitrary complex order complete vector lattice. We give the full description of such traces in the case when Φ is a Maharam trace. With the help of the locally measure topology in the algebra S(M) of all measurable operators we construct the Banach-Kantorovich space $L^1(M, \Phi) \subset S(M)$. We also state the version of Radon-Nikodym-type theorem for Maharam traces.

We use the terminology and results of the von Neumann algebras theory (see [4], [5]), measurable operators theory (see [6], [7]) and order complete vector lattices and Banach-Kantorovich spaces theory (see [1]).

2. Preliminaries

Let H be a Hilbert space, let B(H) be the *-algebra of all bounded linear operators on H, and **1** be the identity operator on H. Let M be a von Neumann algebra acting on H, let Z(M) be the center of M and P(M) be the lattice of all projectors in M. We denote by $P_{fin}(M)$ the set of all finite projectors in M.

²⁰⁰⁰ Mathematics Subject Classification. Primary 28B15, 46L50.

Key words and phrases. Von Neumann algebra, measurable operator, vector-valued trace, order complete vector lattice, Radon-Nikodym-type theorem.

A densely-defined closed linear operator x (possibly unbounded) affiliated with M is said to be *measurable* if there exists a sequence $\{p_n\}_{n=1}^{\infty} \subset P(M)$ such that $p_n \uparrow \mathbf{1}$, $p_n(H) \subset \mathfrak{D}(x)$ and $p_n^{\perp} = \mathbf{1} - p_n \in P_{fin}(M)$ for every $n = 1, 2, \ldots$ (here $\mathfrak{D}(x)$ is the domain of x). Let us denote by S(M) the set of all measurable operators.

Let x, y be measurable operators. Then x + y, xy and x^* are densely-defined and preclosed. Moreover, the closures $\overline{x + y}$ (strong sum), \overline{xy} (strong product) and x^* are again measurable, and S(M) is a *-algebra with respect to the strong sum, strong product, and the adjoint operation (see [6]). It is clear that M is a *-subalgebra in S(M). For any subset $A \subset S(M)$, let $A_h = \{x \in A : x = x^*\}, A_+ = \{x \in A : (x\xi, \xi) \ge 0 \text{ for all } \xi \in \mathfrak{D}(x)\}.$

Let $x \in S(M)$ and x = u|x| be the polar decomposition, where $|x| = (x^*x)^{\frac{1}{2}}$, u is a partial isometry in B(H). Then $u \in M$ and $|x| \in S(M)$. If $x \in S_h(M)$ and $\{E_\lambda(x)\}$ are the spectral projections of x, then $\{E_\lambda(x)\} \subset P(M)$.

Let M be a commutative von Neumann algebra. Then M admits a faithful semi-finite normal trace τ , and M is *-isomorphic to the *-algebra $L^{\infty}(\Omega, \Sigma, \mu)$ of all bounded complex measurable functions with the identification almost everywhere, where (Ω, Σ, μ) is a measurable space. In addition, $\mu(A) = \tau(\chi_A), A \in \Sigma$. Moreover, $S(M) \cong L^0(\Omega, \Sigma, \mu)$, where $L^0(\Omega, \Sigma, \mu)$ is the *-algebra of all complex measurable functions with the identification almost everywhere [6].

The locally measure topology t(M) on $L^0(\Omega, \Sigma, \mu)$ is by definition the linear (Hausdorff) topology whose fundamental system of neighborhoods around 0 is given by

 $W(B,\varepsilon,\delta) = \{f \in L^0(\Omega, \Sigma, \mu): \text{ there exists a set } E \in \Sigma, \text{ such that }$

 $E \subseteq B, \ \mu(B \setminus E) \leqslant \delta, \ f\chi_E \in L^{\infty}(\Omega, \Sigma, \mu), \ \|f\chi_E\|_{L_{\infty}(\Omega, \Sigma, \mu)} \leqslant \varepsilon \}.$

Here ε , δ run over all strictly positive numbers and $B \in \Sigma$, $\mu(B) < \infty$. It is known that (S(M), t(M)) is a complete topological *-algebra.

It is clear that zero neighborhoods $W(B, \varepsilon, \delta)$ are closed and have the following property: if $f \in W(B, \varepsilon, \delta)$, $g \in L^{\infty}(\Omega, \Sigma, \mu)$, $||g||_{L_{\infty}(\Omega, \Sigma, \mu)} \leq 1$, then $gf \in W(B, \varepsilon, \delta)$.

A net $\{f_{\alpha}\}$ converges to f locally in measure (notation: $f_{\alpha} \xrightarrow{t(M)} f$) if and only if $f_{\alpha}\chi_B$ converges to $f\chi_B$ in μ -measure for each $B \in \Sigma$ with $\mu(B) < \infty$. Thus $\{f_{\alpha}\}$ remains convergent to f if τ is replaced by another faithful semi-finite normal trace on M. If M is σ -finite, i.e. any family of nonzero mutually orthogonal projectors from P(M) is at most countable, then there exists a faithful finite normal trace τ on M. In this case, the topology t(M) is metrizable, and convergence of a sequence $f_n \xrightarrow{t(M)} f$ is equivalent to convergence of f_n to f in trace τ .

Let now M be an arbitrary finite von Neumann algebra, $\Phi_M : M \to Z(M)$ be a centervalued trace on M ([4], 7.11). Let $Z(M) \cong L^{\infty}(\Omega, \Sigma, \mu)$. The locally measure topology t(M) on S(M) is by definition the linear (Hausdorff) topology whose fundamental system of neighborhoods around 0 is given by

 $V(B,\varepsilon,\delta) = \{x \in S(M): \text{ there exists } p \in P(M), z \in P(Z(M))\}$

such that $xp \in M$, $||xp||_M \leq \varepsilon$, $z^{\perp} \in W(B, \varepsilon, \delta)$, $\Phi_M(zp^{\perp}) \leq \varepsilon z$ },

where $\|\cdot\|_M$ is the C^{*}-norm in M. It is known that, (S(M), t(M)) is a complete topological *-algebra [8].

The net $\{x_{\alpha}\} \subset S(M)$ converges to $x \in S(M)$ in trace Φ_M (notation: $x_{\alpha} \xrightarrow{\Phi_M} x$) if $\Phi_M(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) \xrightarrow{t(Z(M))} 0$ for all $\lambda > 0$.

Proposition 2.1. (see [7], § 3.5). Let M be a finite von Neumann algebra, x_{α} , $x \in S(M)$. The following conditions are equivalent:

 $\begin{array}{c} (i) \ x_{\alpha} \xrightarrow{t(M)} x;\\ (ii) \ x_{\alpha} \xrightarrow{\Phi_{M}} x; \end{array}$

(*iii*) $E_{\lambda}^{\perp}(|x_{\alpha} - x|) \xrightarrow{t(M)} 0$ for all $\lambda > 0$.

Let τ be a faithful semi-finite normal trace on M. An operator $x \in S(M)$ is said to be τ -measurable if $\tau(E_{\lambda}^{\perp}(|x|)) < \infty$ for some $\lambda > 0$. The set $S(M, \tau)$ of all τ -measurable operators is the *-subalgebra in S(M), in addition $M \subset S(M, \tau)$. If $\tau(\mathbf{1}) < \infty$, then $S(M, \tau) = S(M)$.

Denote by t_{τ} the locally measure topology in $S(M, \tau)$ generated by a trace τ (see, for example, [9]). If $x_{\alpha}, x \in S(M, \tau)$ and x_{α} converges to x in topology t_{τ} (notation: $x_{\alpha} \xrightarrow{\tau} x$), then $x_{\alpha} \xrightarrow{t(M)} x$ ([7], § 3.5). If τ is finite, then topologies t(M) and t_{τ} coincide ([7], § 3.5). It is known that $x_{\alpha} \xrightarrow{\tau} x$ if and only if $\tau(E_{\lambda}^{\perp}(|x_{\alpha}-x|)) \to 0$ for all $\lambda > 0$ [10].

Denote by T(M) the set of all nonzero finite normal traces on the finite von Neumann algebra M.

Proposition 2.2. Let M be a finite von Neumann algebra, $x_{\alpha}, x \in S(M)$. Then

(i) if $x_{\alpha} \xrightarrow{t(M)} x$, then $|x_{\alpha}| \xrightarrow{t(M)} |x|$ and $\tau(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) \to 0$ for all $\lambda > 0$ and $\tau \in T(M)$;

(ii) if $T_1(M)$ is a separating subset of T(M) and $\tau(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) \to 0$ for all $\lambda > 0$, $\tau \in T_1(M)$, then $x_{\alpha} \stackrel{t(M)}{\longrightarrow} x$.

Proof. (i) Let $\tau \in T(M)$ and $s(\tau)$ be the support of a trace τ . Then $s(\tau) \in P(Z(M))$ and $\tau(x) = \tau(xs(\tau))$ for all $x \in M$ ([4], 5.15, 7.13). Since $x_{\alpha} \stackrel{t(M)}{\longrightarrow} x, x_{\alpha}s(\tau) \stackrel{t(M)}{\longrightarrow} xs(\tau)$. The restriction of τ on $Ms(\tau)$ is a faithful finite normal trace. Therefore $\tau(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) = \tau(E_{\lambda}^{\perp}(|x_{\alpha}s(\tau) - xs(\tau)|)) \to 0$ for all $\lambda > 0$.

If $|x_{\alpha}| \xrightarrow{t(M)} |x|$, then there are $\lambda_0 > 0, \tau \in T(M)$ such that $\tau(E_{\lambda_0}^{\perp}(||x_{\alpha}| - |x||)) \to 0$. The restriction τ_0 of the trace τ on $Ms(\tau)$ is a faithful finite normal trace. Therefore convergence $x_{\alpha}s(\tau) \xrightarrow{t(M)} xs(\tau)$ implies $x_{\alpha}s(\tau) \xrightarrow{\tau_0} xs(\tau)$. Using continuity of the operator function $\sqrt{y}, y \in S_+(Ms(\tau))$ [11], we obtain

$$|x_{\alpha}|s(\tau) = \sqrt{(x_{\alpha}s(\tau))^*(x_{\alpha}s(\tau))} \xrightarrow{\tau_0} \sqrt{(x^*s(\tau))(xs(\tau))} = |x|s(\tau).$$

Hence $\tau(E_{\lambda_0}^{\perp}(||x_{\alpha}| - |x||)) = \tau(E_{\lambda_0}^{\perp}(||x_{\alpha}|s(\tau) - |x|s(\tau)|)) \to 0$, which is not the case. (*ii*) Since $T_1(M)$ is the separating family traces on M, $\sup_{\tau \in U(0)} s(\tau) = \mathbf{1}$. Hence there is

a family $\{z_i\}_{i\in I}$ of nonzero mutually orthogonal central projectors such that $\sup_{i\in I} z_i = 1$, and for any $i \in I$, there exists $\tau_i \in T_1(M)$ with $z_i \leq s(\tau_i)$ ([12], chapter III, § 2). We defined the faithful semi-finite normal trace on M as $\tau(x) = \sum_{i\in I} \tau_i(xz_i), x \in M$. It is clear that restrictions τ and τ_i coincide on Mz_i . In addition, $\tau_i(E_{\lambda}^{\perp}(|x_{\alpha}z_i - xz_i|)) =$ $\tau_i(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) \to 0$ for all $\lambda > 0, i \in I$. Hence, $E_{\lambda}^{\perp}(|x_{\alpha} - x|)z_i \xrightarrow{\tau} 0$, and therefore $E_{\lambda}^{\perp}(|x_{\alpha} - x|)z_i \xrightarrow{t(M)} 0$.

 $E_{\lambda}^{\perp}(|x_{\alpha} - x|)z_{i} \xrightarrow{t(M)} 0.$ For any finite subset $\gamma \subset I$, let $u_{\gamma} = \sum_{i \in \gamma} z_{i}$. It is clear that $u_{\gamma} \uparrow \mathbf{1}$ and $\Phi_{M}(u_{\gamma}) \uparrow \Phi_{M}(\mathbf{1})$.

Hence, $\Phi_M(u_{\gamma}^{\perp}) \xrightarrow{t(Z(M))} 0$, i.e. $u_{\gamma}^{\perp} \xrightarrow{t(M)} 0$. Let U be an arbitrary neighborhood of 0.

Let U be an arbitrary neighborhood of 0 in (S(M), t(M)). We choose $V(B, \varepsilon, \delta)$ such that $V(B, \varepsilon, \delta) + V(B, \varepsilon, \delta) \subset U$. Fix γ_0 with $(\mathbf{1} - u_{\gamma_0}) \in V(B, \frac{\varepsilon}{4}, \delta)$. Since $E_{\lambda}^{\perp}(|x_{\alpha} - x|)u_{\gamma_0} \xrightarrow{t(M)} 0$, there is an α_0 such that $E_{\lambda}^{\perp}(|x_{\alpha} - x|)u_{\gamma_0} \in V(B, \varepsilon, \delta)$ as $\alpha \geq \alpha_0$. We have $aV(B, \frac{\varepsilon}{4}, \delta)b \subset V(B, \varepsilon, \delta)$, where $a, b \in M$, $||a||_M \leq 1$, $||b||_M \leq 1$ (see, for example, [7], § 3.5). Hence

$$E_{\lambda}^{\perp}(|x_{\alpha} - x|) = E_{\lambda}^{\perp}(|x_{\alpha} - x|)u_{\gamma_{0}} + E_{\lambda}^{\perp}(|x_{\alpha} - x|)(1 - u_{\gamma_{0}})$$

$$\in V(B, \varepsilon, \delta) + V(B, \varepsilon, \delta) \subset U$$

for all $\alpha \geq \alpha_0$. Therefore $E_{\lambda}^{\perp}(|x_{\alpha} - x|) \xrightarrow{t(M)} 0$ for all $\lambda > 0$. Proposition 2.1 implies that $x_{\alpha} \xrightarrow{t(M)} x$.

3. Vector lattice-valued traces

Throughout the section, let M be an von Neumann algebra, let F be an order complete vector lattice, and let $F_{\mathbb{C}} = F \oplus iF$ be a complexification of F. If $z = \alpha + i\beta \in F_{\mathbb{C}}$, $\alpha, \beta \in F$, then $\overline{z} := \alpha - i\beta$, and $|z| := \sup \{\operatorname{Re}(e^{i\theta}z) : 0 \le \theta < 2\pi\}$ (see [1], 1.3.13).

An $F_{\mathbb{C}}$ -valued trace on the von Neumann algebra M is a linear mapping $\Phi : M \to F_{\mathbb{C}}$ given $\Phi(x^*x) = \Phi(xx^*) \ge 0$ for all $x \in M$. It is clear that $\Phi(M_h) \subset F$, $\Phi(M_+) \subset F_+ = \{a \in F : a \ge 0\}$. A trace Φ is said to be *faithful* if the equality $\Phi(x^*x) = 0$ implies x = 0, normal if $\Phi(x_\alpha) \uparrow \Phi(x)$ for every $x_\alpha, x \in M_h, x_\alpha \uparrow x$.

If M is a finite von Neumann algebra, then its center-valued trace $\Phi_M : M \to Z(M)$ is an example of a Z(M)-valued faithful normal trace.

Let Δ be a separating family of finite normal numerical traces on the von Neumann algebra M, $\mathbb{C}^{\Delta} = \prod_{\tau \in \Delta} \mathbb{C}_{\tau}$, where $\mathbb{C}_{\tau} = \mathbb{C}$ for all $\tau \in \Delta$. Then $\Phi(x) = {\tau(x)}_{\tau \in \Delta}$ is also

an example of an faithful normal \mathbb{C}^{Δ} -valued trace on M. Let us list some properties of the trace $\Phi: M \to F_{\mathbb{C}}$.

Proposition 3.1. (i) Let $x, y, a, b \in M$. Then

 $\begin{array}{l} \Phi(x^*) = \overline{\Phi(x)}, \ \Phi(xy) = \Phi(yx), \ \Phi(|x^*|) = \Phi(|x|), \\ |\Phi(axb)| \leq \|a\|_M \|b\|_M \Phi(|x|); \end{array}$

(ii) If Φ is a faithful trace, then M is finite;

(iii) If $x_n, x \in M$ and $||x_n - x||_M \to 0$, then $|\Phi(x_n) - \Phi(x)|$ relative uniform converges to zero;

(iv) If M is a finite von Neumann algebra, then $\Phi(\Phi_M(x)) = \Phi(x)$ for all $x \in M$;

(v) $\Phi(|x+y|) \le \Phi(|x|) + \Phi(|y|)$ for all $x, y \in M$.

Proof. The proof of (i) and (ii) is the same as for numerical traces (see, for example, [5], chapter V, § 2).

The proof of *(iii)* follows from the inequality $|\Phi(x_n) - \Phi(x)| \le ||x_n - x||_M \Phi(\mathbf{1})$.

(*iv*) Let U(M) be the set of all unitary operators in M. Then $\Phi_M(x)$ belongs to the closure of the convex hull $co\{uxu^* : u \in U(M)\}$ ([4], 7.11). Since $\Phi(uxu^*) = \Phi(u^*ux) = \Phi(x)$, we get $\Phi(y) = \Phi(x)$ for any $y \in co\{uxu^* : u \in U(M)\}$. Therefore, because of (*iii*), we have $\Phi(x) = \Phi(\Phi_M(x))$.

(v) Since $|x+y| \le u|x|u^* + v|y|v^*$ for some partial isometries u, v in M (see [13]), we have, by virtue of (i)

$$\begin{split} \Phi(|x+y|) &\leq \Phi(u|x|u^*) + \Phi(v|y|v^*) = \Phi(u^*u|x|) + \Phi(v^*v|y|) \\ &\leq \Phi(|x|) + \Phi(|y|). \quad \Box \end{split}$$

The trace $\Phi: M \to F_{\mathbb{C}}$ possesses the Maharam property if for any $x \in M_+$, $0 \leq f \leq \Phi(x)$, $f \in F$, there exists a positive $y \leq x$ such that $\Phi(y) = f$. A faithful normal $F_{\mathbb{C}}$ -valued trace Φ with the Maharam property is called a Maharam trace (compare with [1], III, 3.4.1). Obviously, any faithful finite numerical trace on M is a \mathbb{C} -valued Maharam trace.

Let us give another examples of Maharam traces. Let M be a finite von Neumann algebra, let \mathcal{A} be a von Neumann subalgebra in Z(M), and let $T : Z(M) \to \mathcal{A}$ be an injective linear positive normal operator. If $f \in S(\mathcal{A})$ is a reversible positive element, then $\Phi(T, f)(x) = fT(\Phi_M(x))$ is an $S(\mathcal{A})$ -valued faithful normal trace on M. In addition, if T(ab) = aT(b) for all $a \in \mathcal{A}, b \in Z(M)$, then $\Phi(T, f)$ is a Maharam trace on M.

Note that if τ is a faithful normal finite numerical trace on M and $\dim(Z(M)) > 1$, then $\Phi(x) = \tau(x)\mathbf{1}$ is a Z(M)-valued faithful normal trace. In addition, Φ does not possess the Maharam property. In fact, if $p \in Z(M)$, $0 \neq p \neq \mathbf{1}$, then for all $y \in M_+$, $y \leq \mathbf{1}$ the relation $\Phi(y) = \tau(y)\mathbf{1} \neq \tau(y)p \leq \Phi(\mathbf{1})$ is valid.

Let *F* have an order unit $\mathbf{1}_F$. Denote by B(F) the complete Boolean algebra of unitary elements with respect to $\mathbf{1}_F$, and by $s(a) := \sup_{n \ge 1} \{\mathbf{1}_F \land n|a|\} \in B(F)$ the support of an element $a \in F$. Since $|\Phi(x)| \le ||x||_M \Phi(\mathbf{1})$ (Proposition 3.1(*i*)), the inequality $s(|\Phi(x)|) \le s(\Phi(\mathbf{1}))$ holds for all $x \in M$. Let therefore $s(\Phi(\mathbf{1})) = \mathbf{1}_F$.

Let Q be the Stone representation space of the Boolean algebra B(F). Let $C_{\infty}(Q)$ be the order complete vector lattice of all continuous functions $a: Q \to [-\infty, +\infty]$ such that $a^{-1}(\{\pm\infty\})$ is a nowhere dense subset of Q. We identify F with the order-dense ideal in $C_{\infty}(Q)$ containing algebra C(Q) of all continuous real functions on Q. In addition, $\mathbf{1}_{F}$ is identified with the function equal to 1 identically on Q ([1], 1.4.4).

The next theorem gives the description of Maharam traces on von Neumann algebras.

Theorem 3.2. Let Φ be an $F_{\mathbb{C}}$ -valued Maharam trace on a von Neumann algebra M. Then there exists a von Neumann subalgebra \mathcal{A} in Z(M), a *-isomorphism ψ from \mathcal{A} onto the *-algebra $C(Q)_{\mathbb{C}}$, an injective positive linear normal operator \mathcal{E} from Z(M) onto \mathcal{A} with $\mathcal{E}(\mathbf{1}) = \mathbf{1}, \ \mathcal{E}^2 = \mathcal{E}$, such that

1) $\Phi(x) = \Phi(\mathbf{1})\psi(\mathcal{E}(\Phi_M(x)))$ for all $x \in M$;

- 2) $\Phi(zy) = \Phi(z\mathcal{E}(y))$ for all $z, y \in Z(M)$;
- 3) $\Phi(zy) = \psi(z)\Phi(y)$ for all $z \in \mathcal{A}, y \in M$.

Proof. Since $s(\Phi(\mathbf{1})) = \mathbf{1}_F$, we get that $\Phi_1(x) = \Phi(\mathbf{1})^{-1}\Phi(x)$ is a $(C(Q))_{\mathbb{C}}$ -valued Maharam trace on M. In addition, $\Phi_1(\mathbf{1}) = \mathbf{1}_F$.

The set $Z_h(M)$ is an order complete vector lattice with a strong unit 1 with respect to algebraic operations, and the partial order induced from M_h . Moreover, the Boolean algebra of all unitary elements in $Z_h(M)$ with respect to 1 coincides with P(Z(M)). Let T be a restriction of Φ_1 on $Z_h(M)$. Since $|\Phi_1(x)| \leq ||x||_M$, $T(Z_h(M)) \subset C(Q)$. It is clear that T is an injective positive order continuous linear operator. If $x \in Z_+(M)$, $0 \le a \le Tx = \Phi_1(x), a \in C(Q)$, then there exists $y \in M_+$ such that $y \le x$ and $\Phi_1(y) = a$. By Proposition 3.1 (iv), we have $a = \Phi_1(y) = \Phi_1(\Phi_M(y)) = T(\Phi_M(y))$, moreover, $0 \leq \Phi_M(y) \leq \Phi_M(x) = x$. Hence, $T: Z_h(M) \to C(Q)$ is a Maharam operator ([1], 3.4.1). Theorem 3.4.3 from [1] guarantees the existence of a Boolean isomorphism φ from B(F)onto a regular Boolean subalgebra B in P(Z(M)) such that $gT(x) = T(\varphi(g)x)$ for all $g \in B(F)$ and $x \in Z_h(M)$. We denote by \mathcal{A} a commutative von Neumann subalgebra in Z(M) generated by B, i.e. A coincides with the bicommutant of B. It is known that $\mathcal{A}_h = \{x \in Z_h(M) : E_\lambda(x) \in B \text{ for all } \lambda\}$ where $\{E_\lambda(x)\}$ are the spectral projections of x. The Boolean isomorphism φ is extended to the *-isomorphism $\tilde{\varphi}$ from the *-algebra $C(Q)_{\mathbb{C}}$ onto the von Neumann algebra \mathcal{A} . If $a = \sum_{i=1}^{n} \lambda_i e_i$ is a simple element, $\lambda_i \in \mathbb{R}$, $e_i \in B(F), i = 1, \ldots, n$, then

$$T(\widetilde{\varphi}(a)x) = \sum_{i=1}^{n} \lambda_i T(\varphi(e_i)x) = aT(x)$$

for all $x \in \mathcal{A}_h$. Furthermore, we note $T(\tilde{\varphi}(a)x) = aT(x)$ for any $a \in C(Q)$, $x \in \mathcal{A}_h$. This is obtained by approximating the elements from C(Q) by simple elements. Therefore, $\Phi_1(\tilde{\varphi}(a)x) = a\Phi_1(x)$ for all $a \in C(Q)_{\mathbb{C}}$, $x \in \mathcal{A}$, in particular,

(1)
$$\Phi_1(\widetilde{\varphi}(a)) = a.$$

Hence the restriction T_0 of the operator T on \mathcal{A}_h is a lattice isomorphism from \mathcal{A}_h onto C(Q). Therefore T_0 is a Maharam operator. By Theorem 4.2.9 from [14], there exists an operator of conditionally mathematical expectation $\mathcal{E}: Z_h(M) \to \mathcal{A}_h$ satisfying the following conditions: (E1) \mathcal{E} is an injective positive order continuous linear operator, $\mathcal{E}^2 = \mathcal{E}$ and $\mathcal{E}(1) = 1$;

(E2) $T(xy) = T(x\mathcal{E}(y))$ for all $x, y \in Z_h(M)$;

(E3) $\mathcal{E}(zy) = z\mathcal{E}(y)$ for all $z \in \mathcal{A}_h, y \in Z_h(M)$.

The operator \mathcal{E} is extended to the operator $\widetilde{\mathcal{E}} : Z(M) \to \mathcal{A}$. It is clear that the condition (E1) is satisfied for $\widetilde{\mathcal{E}}$, the condition (E2) has the form $\Phi_1(xy) = \Phi_1(x\widetilde{\mathcal{E}}(y))$ for all $x, y \in Z(M)$, and the condition (E3) is valid for all $z \in \mathcal{A}, y \in Z(M)$. The condition (E2) implies that

(2)
$$\Phi_1(y) = \Phi_1(\widetilde{\mathcal{E}}(y)) \text{ for all } y \in Z(M).$$

Using equalities (1), (2) and Proposition 3.1 (iv), we get

(3)
$$\Phi_1(x) = \Phi_1(\Phi_M(x)) = \Phi_1(\widetilde{\mathcal{E}}(\Phi_M(x))) = \widetilde{\varphi}^{-1}(\widetilde{\mathcal{E}}(\Phi_M(x)))$$

for any $x \in M$.

Taking in (3) $\psi = \tilde{\varphi}^{-1}$ and letting $\tilde{\mathcal{E}}$ as \mathcal{E} , we obtain the statement of Theorem 3.2. \Box

Due to Theorem 3.2, the *-algebra $\mathcal{B} = C(Q)_{\mathbb{C}}$ is *-isomorphic to a von Neumann subalgebra in Z(M). Therefore \mathcal{B} is a commutative von Neumann algebra, and *-algebra $C_{\infty}(Q)_{\mathbb{C}}$ is identified with *-algebra $S(\mathcal{B})$. In particular, there exists a separating family of completely additive scalar-valued measures on B(F), and therefore F is a Kantorovich-Pinsker space ([1], 1.4.10).

We claim that a version of Radon-Nikodym-type theorem is valid for a Maharam trace Φ . For this, we need the space $L^1(M, \Phi)$ of operators from S(M) to be integrable with respect to Φ .

Let F be a Kantorovich-Pinsker space and let Φ be an $F_{\mathbb{C}}$ -valued Maharam trace on the von Neumann algebra M. The net $\{x_{\alpha}\} \subset S(M)$ converges to $x \in S(M)$ with respect to the trace Φ (notation: $x_{\alpha} \xrightarrow{\Phi} x$) if $\Phi(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) \xrightarrow{t(\mathcal{B})} 0$ for all $\lambda > 0$.

Proposition 3.3. $x_{\alpha} \xrightarrow{\Phi} x \text{ iff } x_{\alpha} \xrightarrow{t(M)} x.$

Proof. Let ν be a faithful normal semi-finite numerical trace on \mathcal{B} . Choose $\{e_i\}_{i \in I}$ to be a set of nonzero mutually orthogonal projections from $P(\mathcal{B})$ with $\sup_{i \in I} e_i = \mathbf{1}_F$ and $\nu(e_i) < \infty, i \in I$. Set $\tau_i(x) = \nu(\Phi(x)\Phi(\mathbf{1})^{-1}e_i), x \in M, i \in I$. It is clear that $\{\tau_i\}_{i \in I}$ is a separating family of finite traces on M. Due to Proposition 2.2, $x_\alpha \xrightarrow{t(M)} x$ if and only if $\tau_i(E_\lambda^{\perp}(|x_\alpha - x|)) \to 0$ for all $\lambda > 0, i \in I$. The last convergence is equivalent to convergence $\Phi(E_\lambda^{\perp}(|x_\alpha - x|)) \xrightarrow{t(\mathcal{B})} 0$.

For each $x \in M$, let $||x||_{\Phi} = \Phi(|x|)$. Proposition 3.1 implies that $|| \cdot ||_{\Phi}$ is an *F*-valued norm on *M*. In addition, $||x||_{\Phi} = ||x^*||_{\Phi} = ||x|||_{\Phi}$ and $||axb||_{\Phi} \le ||a||_M ||b||_M ||x||_{\Phi}$ for all $x, a, b \in M$.

We have $\Phi(E_{\lambda}^{\perp}(|x_{\alpha} - x|)) \leq \frac{1}{\lambda} \Phi(|x_{\alpha} - x|), \lambda > 0, x_{\alpha}, x \in M$. Hence $||x_{\alpha} - x||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$ implies $x_{\alpha} \xrightarrow{\Phi} x$, and therefore $x_{\alpha} \xrightarrow{t(M)} x$ (Proposition 3.3). An operator $x \in S(M)$ is said to be Φ -integrable if there exists a sequence $\{x_n\} \subset M$

An operator $x \in S(M)$ is said to be Φ -integrable if there exists a sequence $\{x_n\} \subset M$ such that $x_n \xrightarrow{\Phi} x$ and $||x_n - x_m||_{\Phi} \xrightarrow{t_l(\mathcal{B})} 0$ as $n, m \to \infty$. Denote by $L^1(M, \Phi)$ the set of all Φ -integrable operators from S(M). It is clear that $M \subset L^1(M, \Phi)$ and $L^1(M, \Phi)$ is a linear subset of S(M). It follows from Proposition 3.1 and 3.3 that $ML^1(M, \Phi)M \subset L^1(M, \Phi)$ and $x^* \in L^1(M, \Phi)$ for all $x \in L^1(M, \Phi)$.

We now define an $S_h(\mathcal{B})$ -valued L^1 -norm on $L^1(M, \Phi)$.

Proposition 3.4. If $x_n \in M$, $x_n \xrightarrow{\Phi} 0$, $||x_n - x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$, then $\Phi(|x_n|) \xrightarrow{t(\mathcal{B})} 0$.

106

Proof. Since $|||x_n||_{\Phi} - ||x_m||_{\Phi}| \leq ||x_n - x_m||_{\Phi}$, $\Phi(|x_n|) = ||x_n||_{\Phi}$ is a Cauchy sequence in $(S(\mathcal{B}), t(\mathcal{B}))$. Because of the completeness of *-algebra $(S(\mathcal{B}), t(\mathcal{B}))$, there exists $f \in S_+(\mathcal{B})$ such that $\Phi(|x_n|) \xrightarrow{t(\mathcal{B})} f$. We claim that f = 0. First, we assume that algebra \mathcal{B} is σ -finite. Then there exists a faithful normal finite numerical trace ν on \mathcal{B} . We have $\Phi(|x_n|) \xrightarrow{\nu} f$ and the sequence $\{\Phi(|x_n|)\}$ has an (o)-convergent subsequence. Therefore, as usual, we may and do assume that the sequence $\{\Phi(|x_n|)\}$ (o)-converges to f in $S_h(\mathcal{B})$ (notation: $\Phi(|x_n|) \xrightarrow{(o)} f$). Hence, there exists $g = \sup_{n \geq 1} \Phi(|x_n|)$ in $S_h(\mathcal{B})$. It is clear that

(4)
$$\tau(x) = \nu(\Phi(x)(\mathbf{1}_F + g + \Phi(\mathbf{1}))^{-1})$$

is a faithful normal finite numerical trace on M. Since topologies t_{ν} and $t(\mathcal{B})$ coincide, $\Phi(|x_n-x_m|) \xrightarrow{\nu} 0$. Therefore inequalities $0 \leq \Phi(|x_n-x_m|) \leq 2g$, imply $\tau(|x_n-x_m|) \to 0$. It is known that $(L^1(M,\tau), || \, ||_{1,\tau})$ is complete, where $||x||_{1,\tau} = \tau(|x|)$ [6]. Hence there exists $x \in L^1(M,\tau) \subset S(M)$ such that $||x-x_n||_{1,\tau} \to 0$ and therefore, $x_n \xrightarrow{\tau} x$ [10]. Because of the equality of topologies t_{τ} and t(M), we have x = 0. This means that $\tau(|x_n|) \to 0$, i.e. $\Phi(|x_n|) \xrightarrow{\nu} 0$.

Now let \mathcal{B} be a general (not necessarily σ -finite) von Neumann algebra. For each $0 \neq e \in P(\mathcal{B})$, we set $\Phi_e(x) = \Phi(x)e$, $x \in M$. It is clear that Φ_e is a normal $S_h(\mathcal{B}e)$ -valued trace on M, which does not have, generally speaking, the faithfulness property. A projection $s(\Phi_e) = \mathbf{1} - \sup\{p \in P(M) : \Phi_e(p) = 0\}$ is called *the support* trace of Φ_e . As well as in the case of numerical traces (see, for example, [4], 5.15, 7.13), one can establish that $s(\Phi_e) \in P(Z(M))$ and $\Phi_e(x) = \Phi_e(xs(\Phi_e))$ is a faithful normal $S_h(e\mathcal{B})$ -valued trace on $Ms(\Phi_e)$.

If $\Phi(|x_n|) \xrightarrow{t(\mathcal{B})} 0$, then there is a nonzero σ -finite projection $e \in P(\mathcal{B})$ such that $\Phi(|x_n|)e \xrightarrow{\nu} 0$ where ν is a faithful normal finite numerical trace on $\mathcal{B}e$. The last contradicts to what we proved above.

Let $x \in L^1(M, \Phi)$, $x_n \in M$, $x_n \xrightarrow{\Phi} x$ and $||x_n - x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$. The inequality $|\Phi(x_n) - \Phi(x_m)| \leq \Phi(|x_n - x_m|)$ and completeness of the *-algebra $(S(\mathcal{B}), t(\mathcal{B}))$ guarantees the existence of $\widehat{\Phi}(x) \in S(\mathcal{B})$ such that $\Phi(x_n) \xrightarrow{t(\mathcal{B})} \widehat{\Phi}(x)$. Due to Proposition 3.4, $\widehat{\Phi}(x)$ does not depend on the choice of a sequence $\{x_n\} \subset M$, for which $x_n \xrightarrow{\Phi} x$ and $||x_n - x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$, in particular, $\widehat{\Phi}(x) = \Phi(x)$ for all $x \in M$. The element $\widehat{\Phi}(x)$ is called an $S(\mathcal{B})$ -valued integral of $x \in L^1(M, \Phi)$ by a trace Φ .

It follows immediately from the definition of $\widehat{\Phi}$ and Proposition 3.1 that $\widehat{\Phi}$ is a linear mapping from $L^1(M, \Phi)$ into $S(\mathcal{B})$ and $\widehat{\Phi}(xy) = \widehat{\Phi}(yx)$ for any $x \in M, y \in L^1(M, \Phi)$. For each $x \in L^1(M, \Phi)$, we set $||x||_{\Phi} = \widehat{\Phi}(|x|)$.

Theorem 3.5. (i) The mapping $\|\cdot\|_{\Phi}$ is an $S_h(\mathcal{B})$ -valued norm on $L^1(M, \Phi)$. (ii) $(L^1(M, \Phi), \|\cdot\|_{\Phi})$ is a Banach-Kantorovich space.

Proof. (i) Let $x \in L^1(M, \Phi)$, $x_n \in M$, $x_n \xrightarrow{\Phi} x$ and $||x_n - x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$. It follows from Propositions 2.2(i) and 3.3 that $|x_n| \xrightarrow{\Phi} |x|$. We claim that $|||x_n| - |x_m|||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$.

First, we assume that algebra \mathcal{B} is σ -finite. Using the same trick as in the proof of Proposition 3.4, we can show that $\Phi(x_n) \xrightarrow{(o)} \widehat{\Phi}(x)$ in $S_h(\mathcal{B})$. Therefore there exists $g = \sup_{n \ge 1} |\Phi(x_n)| \text{ in } S_h(\mathcal{B})$. Consider a faithful normal finite numerical trace τ on M defined by (4). Since $\tau(|x_n - x_m|) \to 0$ as $n, m \to \infty$ (see the proof of Proposition 3.4), there exists $y \in L^1(M, \tau)$ such that $||y - x_n||_{1,\tau} \to 0$. Then $x_n \xrightarrow{\tau} y$, and therefore x = y. Moreover, $|x_n| \xrightarrow{\tau} |x|$ (Proposition 2.2(i)) and $||x_n||_{1,\tau} = ||x_n||_{1,\tau} \to ||x||_{1,\tau}$. It follows from ([10],

Theorem 3.7) that $||x| - |x_n||_{1,\tau} \to 0$, in particular, $\tau(|x_n| - |x_m||) \to 0$ as $n, m \to \infty$. Convergence $\Phi(||x_n| - |x_m||)(\mathbf{1}_F + g + \Phi(\mathbf{1}))^{-1} \xrightarrow{\nu} 0$ implies $|||x_n| - |x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$.

Hence, $|x| \in L^1(M, \Phi)$ and $\Phi(|x_n|) \xrightarrow{t(\mathcal{B})} \widehat{\Phi}(|x|)$. In particular, $||x||_{\Phi} = \widehat{\Phi}(|x|) \ge 0$ for all $x \in L^1(M, \Phi)$. If $\widehat{\Phi}(|x|) = 0$, then $0 \leq ||x_n||_{\Phi} = \Phi(|x_n|) \xrightarrow{t(\mathcal{B})} 0$. Hence, $x_n \xrightarrow{\Phi} 0$, and therefore x = 0.

Let now \mathcal{B} be not a σ -finite algebra. Let $\{e_i\}_{i \in I}$ be a family of nonzero mutually orthogonal σ -finite projections in \mathcal{B} with $\sup_{i \in I} e_i = \mathbf{1}_F$. Since $\sup_{i \in I} s(\Phi_{e_i}) = \mathbf{1}$ and $\widehat{\Phi}(|x|)e_i = \mathbf{1}_F$. $i \in I$ $\widehat{\Phi}_{e_i}(|x|s(\Phi_{e_i})) \ge 0$ for all $i \in I$, we get $\widehat{\Phi}(|x|) \ge 0$. Similarly, the equality $\Phi(|x|) = 0$ implies $\widehat{\Phi}_{e_i}(|x|s(\Phi_{e_i})) = 0$, and therefore $|x|s(\Phi_{e_i}) = 0$ for all $i \in I$. Hence, x = 0.

Finally, we have

$$||x+y||_{\Phi} \le ||x||_{\Phi} + ||y||_{\Phi}, \ x, y \in L^{1}(M, \Phi)$$

due to the inequality $|x+y| \le u|x|u^* + v|y|v^*$, $x, y \in S(M)$ (see [7], § 2.4) and the trick in Proposition 3.1 (v).

(*ii*) Let $x \in L^1(M, \Phi)$, $x_n \in M$, $x_n \xrightarrow{\Phi} x$ and $||x_n - x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$. Fix m and set $y_{nm} = x_n - x_m$ for $n \ge m$. We have $y_{nm} \xrightarrow{\Phi} x - x_m$ and $\|y_{nm} - y_{km}\|_{\Phi} \xrightarrow{t(\mathcal{B})} 0$ as $n, k \to \infty$. It follows from the proof of (i) that $\Phi(|y_{nm}|) \xrightarrow{t(\mathcal{B})} \widehat{\Phi}(|x - x_m|) = ||x - x_m||_{\Phi}$. Since $\Phi(|y_{nm}|) \xrightarrow{t(\mathcal{B})} 0$ as $n, m \to \infty$, $||x - x_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$.

Let us now show that any (bo)-Cauchy sequence in $(L^1(M, \Phi), \|\cdot\|_{\Phi})$ (bo)-converges. First, we assume that \mathcal{B} is a σ -finite von Neumann algebra. Let $\{x_n\} \subset L^1(M, \Phi)$ and $||x_n - x_m||_{\Phi} \xrightarrow{(o)} 0$. Since $\widehat{\Phi}$ is a positive mapping (see the proof of item (i)), the inequality $\widehat{\Phi}(E_{\lambda}^{\perp}(|x_n-x_m|)) \leq \frac{1}{\lambda}\widehat{\Phi}(|x_n-x_m|), \lambda > 0$ is valid. Hence, $\{x_n\}$ is a Cauchy sequence in (S(M), t(M)) and therefore there exists $x \in S(M)$ such that $x_n \xrightarrow{t(M)} x$. Choose a system $\{U_n\}$ of closed neighborhoods of 0 in $(S(\mathcal{B}), t(\mathcal{B}))$ with $U_{n+1} + U_{n+1} \subset U_n, n = 1, 2, \ldots$. Due to what we proved above, for any $x_n \in L^1(M, \Phi)$, there exists $y_n \in M$ such that $||x_n - y_n||_{\Phi} \in U_n$. Since $\sum_{n=k+1}^m ||x_n - y_n||_{\Phi} \in U_k$ for all $m \ge k+1$, the series $\sum_{n=k+1}^\infty ||x_n - y_n||_{\Phi} \in U_k$ $y_n \|_{\Phi}$ converges in $(S(\mathcal{B}), t(M))$. Hence, $\|x_n - y_n\|_{\Phi} \xrightarrow{(o)} 0$, and therefore $\|y_n - y_m\|_{\Phi} \xrightarrow{(o)} 0$. Also, by Proposition 3.3, we get $x_n - y_n \xrightarrow{\Phi} 0$, and consequently $y_n \xrightarrow{\Phi} x$. This means that $x \in L^1(M, \Phi)$, in addition, $\|x - y_n\|_{\Phi} \xrightarrow{t(\mathcal{B})} 0$ and $\|y_n - y_m\|_{\Phi} \xrightarrow{t(\mathcal{B})} \|x - y_m\|_{\Phi}$ as $n \to \infty$. Since $||x - y_m||_{\Phi} \leq \sup_{n \geq m} ||y_n - y_m||_{\Phi} \downarrow 0$, we get $||x - y_m||_{\Phi} \xrightarrow{(o)} 0$ and therefore

 $||x - x_n||_{\Phi} \xrightarrow{(o)} 0.$

Now let $\{x_{\alpha}\}_{\alpha \in A}$ be an arbitrary (bo)-Cauchy net in $L^{1}(M, \Phi)$, i.e. sup $||x_{\alpha}| = ||x_{\alpha}||^{2}$ $x_{\beta}\|_{\Phi} \downarrow 0$. We choose a sequence of indices $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n \leq \cdots$ in A such that $\sup_{\beta \geq \alpha_n} \|x_{\beta} - x_{\alpha_n}\|_{\Phi} \in U_n$. Then $\sup_{n,m \geq k} \|x_{\alpha_n} - x_{\alpha_m}\|_{\Phi} \in U_k$, and therefore $\{x_{\alpha_n}\}$ is a (bo)-Cauchy sequence in $L^1(M, \Phi)$. It follows from what we proved above that there exists $x \in L^1(M, \Phi)$ such that $||x - x_{\alpha_n}||_{\Phi} \xrightarrow{(o)} 0$. Let us claim that $||x - x_{\alpha}||_{\Phi} \xrightarrow{(o)} 0$, i.e. $(\sup_{\alpha \in A} ||_{\Phi}) \downarrow 0$. Fix $\beta \in A$ and consider the net $\{x_{\alpha}\}_{\alpha \geq \beta}$. We construct a sequence of indices $\beta \leq \beta_1 \leq \beta_2 \leq \cdots$ such that $\alpha_n \leq \beta_n$. Then $\|x_{\beta_n} - x_{\alpha_n}\|_{\Phi} \in U_n$, and therefore

108

 $\begin{aligned} \|x_{\beta_n} - x_{\alpha_n}\|_{\Phi} &\xrightarrow{(o)} 0. \text{ Hence, } \|x - x_{\beta_n}\|_{\Phi} \xrightarrow{(o)} 0 \text{ and } \|x_{\beta_n} - x_{\beta}\|_{\Phi} &\xrightarrow{(o)} \|x - x_{\beta}\|_{\Phi} \text{ as } n \to \infty. \end{aligned}$ Thus, $\|x - x_{\beta}\|_{\Phi} \leq \sup_{n \geq 1} \|x_{\beta_n} - x_{\beta}\|_{\Phi} \leq \sup_{\alpha \geq \beta} \|x_{\alpha} - x_{\beta}\|_{\Phi} \text{ and } \|x - x_{\beta}\|_{\Phi} \xrightarrow{(o)} 0. \end{aligned}$

Let now \mathcal{B} be not a σ -finite algebra and let $\{x_{\alpha}\}$ be a (bo)-Cauchy net in $L^{1}(M, \Phi)$. Due to the completeness of (S(M), t(M)), there is $x \in S(M)$ such that $x_{\alpha} \xrightarrow{\Phi} x$. Let $\{e_{i}\}_{i \in I}$ be the same family of projections in \mathcal{B} , as in the proof of (i). It is clear that $\{x_{\alpha}s(\Phi_{e_{i}})\}$ is a (bo)-Cauchy net in $L^{1}(Ms(\Phi_{e_{i}}), \Phi_{e_{i}})$, and therefore, by virtue of what we proved above, there exists $x_{i} \in L^{1}(Ms(\Phi_{e_{i}}), \Phi_{e_{i}})$ such that $\|x_{i} - x_{\alpha}s(\Phi_{e_{i}})\|_{\Phi_{e_{i}}} \xrightarrow{(o)} 0$. Convergence $x_{\alpha}s(\Phi_{e_{i}}) \xrightarrow{\Phi} xs(\Phi_{e_{i}})$ implies $x_{i} = xs(\Phi_{e_{i}})$ for all $i \in I$. Thus, $\widehat{\Phi}(|x - x_{\alpha}|)e_{i} = \widehat{\Phi}_{e_{i}}(|x_{i} - x_{\alpha}|s(\Phi_{e_{i}}))e_{i} \xrightarrow{(f_{i})} 0$ and $\|x - x_{\alpha}\|_{\Phi} \xrightarrow{(o)} 0$.

Hence, $(L^1(M, \Phi), \|\cdot\|_{\Phi})$ is a (bo)-complete lattice-normed space.

Now let us show that $(L^1(M, \Phi), \|\cdot\|_{\Phi})$ is a Banach-Kantorovich space, i.e. for any element $x \in L^1(M, \Phi)$ and any decomposition $\|x\|_{\Phi} = f_1 + f_2, f_1, f_2 \in S_+(\mathcal{B}), f_1 \wedge f_2 = 0$, there exist $x_1, x_2 \in L^1(M, \Phi)$ such that $x = x_1 + x_2$ and $\|x_i\|_{\Phi} = f_i, i = 1, 2$.

Set $e_i = s(f_i)$. It is clear that $e_i \in P(\mathcal{B})$, $e_1e_2 = 0$, $e_1 + e_2 = s(||x||_{\Phi})$. Since Φ is a Maharam trace, we have $\Phi(y) = \Phi(\mathbf{1})\psi(\mathcal{E}(\Phi_M(y)))$, $y \in M$ (see Theorem 3.2). Let $p_i = \psi^{-1}(e_i)$, $x_i = xp_i$. Since $p_i \in P(\mathcal{A}) \subset P(Z(M))$, $|x_i| = |x|p_i \in L^1(M, \Phi)$. We choose $y_n \in M$ such that $y_n \xrightarrow{\Phi} x$ and $||y_n - y_m||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$. Then $|y_n| \xrightarrow{\Phi} |x|$, $||y_n| - |y_m|||_{\Phi} \xrightarrow{t(\mathcal{B})} 0$ and $\Phi(|y_n|) \xrightarrow{t(\mathcal{B})} \widehat{\Phi}(|x|)$ (see the proof of (i)). Set $y_n^{(i)} = y_np_i$, i = 1, 2. We have $|y_n^{(i)}| \xrightarrow{\Phi} |x_i|$ and $||y_n^{(i)}| - |y_m^{(i)}||_{\Phi} \le ||y_n| - |y_m|||_{\Phi}$. Hence, $\Phi(|y_n^{(i)}|) \xrightarrow{t(\mathcal{B})} \widehat{\Phi}(|x_i|)$. Due to the property 3) from Theorem 3.2, we have $\Phi(|y_n^{(i)}|) = \psi(p_i)\Phi(|y_n|) = e_i\Phi(|y_n|)$.

Thus, $||x_i||_{\Phi} = \widehat{\Phi}(|x_i|) = e_i \Phi(|x|) = f_i$, in addition $x_1 + x_2 = x(p_1 + p_2)$ = $x\psi^{-1}(s(||x||_{\Phi}))$. As well as above, one can establish that $q\widehat{\Phi}(|x|) = \widehat{\Phi}(|x|\psi^{-1}(q))$ for all $q \in P(\mathcal{B})$. Taking $q = \mathbf{1}_F - s(||x||_{\Phi})$, we get $\widehat{\Phi}(|x|)(\mathbf{1} - \psi^{-1}(s(||x||_{\Phi}))) = 0$. Hence, $|x| = |x|\psi^{-1}(s(||x||_{\Phi}))$. Using the polar decomposition x = u|x|, we obtain $x = x\psi^{-1}(s(||x||_{\Phi})) = x_1 + x_2$.

Note another useful properties of mapping $\widehat{\Phi}$.

Let Φ , M, Q, Φ_M , \mathcal{A} , ψ be the same as in Theorem 3.2, $\mathcal{B} = C(Q)_{\mathbb{C}}$. It is clear that the *-isomorphism ψ from \mathcal{A} onto \mathcal{B} can be extended to the *-isomorphism from $S(\mathcal{A})$ onto $S(\mathcal{B})$. We denote this mapping also by ψ .

Proposition 3.6. $S(\mathcal{A})L^1(M, \Phi) \subset L^1(M, \Phi)$, in particular, $S(\mathcal{A}) \subset L^1(M, \Phi)$, in addition, $\widehat{\Phi}(zx) = \psi(z)\widehat{\Phi}(x)$ and $\widehat{\Phi}(\widehat{\Phi}_M(zx)) = \widehat{\Phi}(zx)$ for all $z \in S(\mathcal{A})$, $x \in L^1(M, \Phi)$.

Proof. It is sufficient to show that $x \in L^1_+(M, \Phi)$, $z \in S_+(\mathcal{A})$ implies $zx \in L^1(M, \Phi)$ and $\widehat{\Phi}(zx) = \psi(z)\widehat{\Phi}(x)$, $\widehat{\Phi}(\widehat{\Phi}_M(zx)) = \widehat{\Phi}(zx)$.

Let $z_n = E_n(z)z$. It is clear that $z_n \in \mathcal{A}_+$, $z_n \uparrow z$, $z_n x \in L^1_+(M, \Phi)$. Since $z_n x = \sqrt{x} z_n \sqrt{x} \uparrow \sqrt{x} z \sqrt{x} = zx$, we get

$$\psi(z_n)\widehat{\Phi}(x) = \widehat{\Phi}(z_n x) \le \widehat{\Phi}(z_{n+1}x) = \psi(z_{n+1})\widehat{\Phi}(x) \uparrow \psi(z)\widehat{\Phi}(x).$$

Hence,

$$\sup_{n \ge m} \|z_n x - z_m x\|_{\Phi} = \sup_{n \ge m} |\widehat{\Phi}(z_n x) - \widehat{\Phi}(z_m x)| \downarrow 0,$$

i.e. $\{z_nx\}$ is a (bo)-Cauchy sequence. By Theorem 3.5, there exists $y \in L^1(M, \Phi)$ such that $||z_nx-y||_{\Phi} \xrightarrow{(o)} 0$. The inequality $\Phi(E_{\lambda}^{\perp}(|z_nx-y|) \leq \frac{1}{\lambda}\Phi(|z_nx-y|)$ implies $z_nx \xrightarrow{\Phi} y$. Therefore y = zx, i.e. $zx \in L^1(M, \Phi)$. In addition, $\psi(z_n)\widehat{\Phi}(x) = \widehat{\Phi}(z_nx) = ||z_nx||_{\Phi} \xrightarrow{t(\mathcal{B})} ||zx|| = \widehat{\Phi}(zx)$. Hence, $\widehat{\Phi}(zx) = \psi(z)\widehat{\Phi}(x)$.

Set $x_k = E_k(x)x$. Then $0 \le x_k \uparrow x$, $x_k \in M$. By virtue of Proposition 3.1(*iv*), $\Phi(z_n x_k) = \Phi(\Phi_M(z_n x_k)) = \Phi(z_n \Phi_M(x_k))$. Since $(z_n x_k) \uparrow (z_n x)$ as $k \to \infty$, we have $\Phi(z_n x_k) \uparrow \widehat{\Phi}(z_n x)$ and $\Phi(\Phi_M(z_n x_k)) \uparrow \widehat{\Phi}(\widehat{\Phi}_M(z_n x))$. Therefore $\widehat{\Phi}(z_n x) = \widehat{\Phi}(\widehat{\Phi}_M(z_n x))$ for all $n = 1, 2, \ldots$. After switching to the limit as $n \to \infty$, we obtain $\widehat{\Phi}(zx) = \widehat{\Phi}(\widehat{\Phi}_M(zx))$.

Let Φ be an $F_{\mathbb{C}}$ -valued Maharam trace on M and let Ψ be a normal $F_{\mathbb{C}}$ -valued trace on M. A trace Ψ is called *absolutely continuous with respect to* Φ (notation $\Psi \ll \Phi$) if $s(\Psi(p)) \leq s(\Phi(p))$ for all $p \in P(M)$. The last condition is equivalent to inclusion $\Psi(p) \in$ $\{\Phi(p)\}^{\perp\perp} = s(\Phi(p))S_h(\mathcal{B}), p \in P(M)$ where $B^{\perp} := \{x \in S_h(\mathcal{B}) : (\forall y \in B) | x | \land | y | = 0\}$ for a nonempty subset $B \subset S_h(\mathcal{B})$ (compare with [1], 6.1.11).

The next theorem is a non-commutative version of the Radon-Nikodym-type theorem for Maharam traces.

Theorem 3.7. Let Φ be an $F_{\mathbb{C}}$ -valued Maharam trace on the von Neumann algebra M. If Ψ is a normal $F_{\mathbb{C}}$ -valued trace on M absolutely continuous with respect to Φ , then there exists an operator $y \in L^1_+(M, \Phi) \cap S(Z(M))$ such that

$$\Psi(x) = \widehat{\Phi}(yx)$$

for all $x \in M$.

Proof. Let l be the restriction of Ψ on the complete Boolean algebra P(Z(M)), and let m be the restriction of Φ on P(Z(M)). Obviously, l and m are $S_h(\mathcal{B})$ -valued completely additive measures on P(Z(M)). In addition, $m(ze) = \psi(z)m(e)$ for all $z \in P(\mathcal{A}), e \in P(Z(M))$ (see Theorem 3.2). Hence, m is a ψ -modular measure on P(Z(M)) (see [1], 6.1.9). Since the measure l is absolutely continuous with respect to m, by the Radon-Nikodym-type theorem from ([1], 6.1.11), there exists $y \in L^1_+(Z(M), m) = L^1_+(Z(M), \Phi)$ such that $l(e) = \widehat{\Phi}(ye)$ for all $e \in P(Z(M))$.

If
$$a = \sum_{i=1}^{n} \lambda_i e_i$$
 is a simple element from $Z(M)$, where $\lambda_i \in \mathbb{C}, e_i \in P(Z(M)), i = \sum_{i=1}^{n} \lambda_i e_i$

1,...,n, then $\Psi(a) = \sum_{i=1}^{n} \lambda_i \Psi(e_i) = \sum_{i=1}^{n} \lambda_i \widehat{\Phi}(ye_i) = \widehat{\Phi}(ya)$. Let $a \in Z_+(M)$ and $\{a_n\}$ be a sequence of simple elements from $Z_+(M)$ with $a_n \uparrow a$. Then $\Psi(a_n) \uparrow \Psi(a)$, $ya_n \uparrow ya$, and $\widehat{\Phi}(ya_n) \uparrow \widehat{\Phi}(ya)$ (see the proof of Proposition 3.6). Hence, $\Psi(a) = \widehat{\Phi}(ya)$ for all $a \in Z_+(M)$. Now using the linearity of traces Ψ and Φ , we obtain $\Psi(a) = \widehat{\Phi}(ya)$ for all $a \in M$.

Furthermore, due to Propositions 3.1(iv) and 3.6 we get

$$\Psi(x) = \Psi(\Phi_M(x)) = \widehat{\Phi}(y\Phi_M(x)) = \widehat{\Phi}(\widehat{\Phi}_M(yx)) = \widehat{\Phi}(yx)$$

for all $x \in M$.

Remark 3.8. If Ψ is a normal $F_{\mathbb{C}}$ -valued trace on M and $\Psi \ll \Phi$, then Ψ possesses the Maharam property.

In fact, by Theorem 3.7, $\Psi(x) = \widehat{\Phi}(yx)$ for all $x \in M$ where $y \in L^1_+(M, \Phi) \cap S(Z(M))$. Let $0 \neq x \in M_+$, $f \leq \Psi(x)$, $f \in S_+(\mathcal{B})$, $g \in S_+(\mathcal{B})$, $g\Psi(x) = s(\Psi(x))$. Set h = gf, $z = \psi^{-1}(h)$, a = zx. Then $0 \leq h \leq g\Psi(x) = s(\Psi(x)) \leq \mathbf{1}_F$, $0 \leq z \leq \mathbf{1}$, $0 \leq a \leq x$ and

$$\Psi(a) = \widehat{\Phi}(ya) = \widehat{\Phi}(zyx) = \psi(z)\widehat{\Phi}(yx) = h\Psi(x) = fs(\Psi(x)) =$$

References

 A. G. Kusraev, *Dominanted Operators*, Mathematics and its Applications, vol. 519, Kluwer Academic Publishers, Dordrecht, 2000.

- I. G. Ganiev, V. I. Chilin, Measurable bundles of non-commutative L^p-spaces associated with center-valued trace, Mat. Trudy 4 (2001), no. 2, 27–41. (Russian)
- V. I. Chilin, A. A. Katz, On abstract characterization of non-commutative L^p-spaces associated with center-valued trace, Methods Funct. Anal. Topology 11 (2005), no. 4, 346–355.
- 4. S. Stratila, L. Zsido, Lectures on von Neumann Algebras, England Abacus Press, 1975.
- 5. M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
- I. E. Segal, A non-commutative extension of abstract integration, Ann. Math. (1953), no. 57, 401–457.
- M. A. Muratov, V. I. Chilin, Algebras of Measurable and Locally Measurable Operators, Pratsi In-ty matematiki NAN Ukraini, vol. 69, Kyiv, 2007. (Russian)
- 8. F. J. Yeadon, Convergence of measurable operators, Proc. Camb. Phil. Soc. 74 (1974), 257–268.
- 9. E. Nelson, Notes on non commutative integration, J. Funct. Anal. 15 (1974), 103–116.
- T. Fack, H. Kosaki, Generalised s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986), 269–300.
- O.Y. Tikhonov, Continuity of operator functions on a von Neumann algebra with respect to topology of convergence in measure, Izv. Vyssh. Uchebn. Zaved., Mat. (1987), no. 1, 77–79. (Russian)
- 12. D. A. Vladimirov, Boolean Algebras, Nauka, Moscow, 1969. (Russian)
- C. A. Akemann, T. Andersen, G. K. Pedersen, *Triangle inequalities in operator algebras*, Linear Multilinear Algebra 11 (1982), 167–178.
- 14. A. G. Kusraev, Vector Duality and its Applications, Nauka, Novosibirsk, 1985. (Russian)

Department of Mathematics, National University of Uzbekistan, Vuzgorodok, Tashkent, 100174, Uzbekistan

E-mail address: chilin@ucd.uz

Tashkent Railway Engineering Institute, 1 Odilhodjaev str., Tashkent, 100167, Uzbekistan E-mail address: botirzakirov@list.ru

Received 21/05/2009