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MAHARAM TRACES ON VON NEUMANN ALGEBRAS

V. I. CHILIN AND B. S. ZAKIROV

Abstract. Traces Φ on von Neumann algebras with values in complex order com-
plete vector lattices are considered. The full description of these traces is given for

the case when Φ is the Maharam trace. The version of Radon-Nikodym-type theorem
for Maharam traces is established.

1. Introduction

The theory of integration for measures µ with values in order complete vector lattices
has inspired the study of (bo)-complete lattice-normed spaces Lp(µ) (see, for example, [1],
6.1.8). The spaces Lp(µ) are the Banach-Kantorovich spaces if the measure µ possesses
the Maharam property. In the proof of this fact, description of Maharam operators acting
in order complete vector lattices plays an important role ([1], 3.4.3).

The existence of the center-valued traces in finite von Neumann algebras makes it
natural to construct the theory of integration for traces with values in the complex order
complete vector lattice FC = F ⊕ iF. If the von Neumann algebra is commutative, then
construction of FC-valued integration for it is the component part for the investigation
of the properties of order continuous maps of vector lattices.

Let M be a non-commutative von Neumann algebra, let FC be a von Neumann sub-
algebra in the center of M and let Φ : M → FC be a trace with modularity property:
Φ(zx) = zΦ(x) for all z ∈ FC, x ∈ M. It is known that the non-commutative Lp-space
Lp(M,Φ) is a Banach-Kantorovich space [2], [3]. In addition, Φ possesses the Maharam
property: if 0 ≤ z ≤ Φ(x), z ∈ FC, 0 ≤ x ∈ M, then there exists 0 ≤ y ≤ x such that
Φ(y) = z (compare with [1], 3.4.1).

In the present article, we will study the faithful normal traces Φ on a von Neumann
algebra M with values in an arbitrary complex order complete vector lattice. We give
the full description of such traces in the case when Φ is a Maharam trace. With the
help of the locally measure topology in the algebra S(M) of all measurable operators we
construct the Banach-Kantorovich space L1(M,Φ) ⊂ S(M). We also state the version of
Radon-Nikodym-type theorem for Maharam traces.

We use the terminology and results of the von Neumann algebras theory (see [4],
[5]), measurable operators theory (see [6], [7]) and order complete vector lattices and
Banach-Kantorovich spaces theory (see [1]).

2. Preliminaries

Let H be a Hilbert space, let B(H) be the ∗-algebra of all bounded linear operators
on H, and 1 be the identity operator on H. Let M be a von Neumann algebra acting
on H, let Z(M) be the center of M and P (M) be the lattice of all projectors in M . We
denote by Pfin(M) the set of all finite projectors in M.
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A densely-defined closed linear operator x (possibly unbounded) affiliated with M is
said to be measurable if there exists a sequence {pn}∞n=1 ⊂ P (M) such that pn ↑ 1,
pn(H) ⊂ D(x) and p⊥n = 1 − pn ∈ Pfin(M) for every n = 1, 2, . . . (here D(x) is the
domain of x). Let us denote by S(M) the set of all measurable operators.

Let x, y be measurable operators. Then x+y, xy and x∗ are densely-defined and pre-
closed. Moreover, the closures x+ y (strong sum), xy (strong product) and x∗ are again
measurable, and S(M) is a ∗-algebra with respect to the strong sum, strong product, and
the adjoint operation (see [6]). It is clear that M is a ∗-subalgebra in S(M). For any sub-
set A ⊂ S(M), let Ah = {x ∈ A : x = x∗}, A+ = {x ∈ A : (xξ, ξ) ≥ 0 for all ξ ∈ D(x)}.

Let x ∈ S(M) and x = u|x| be the polar decomposition, where |x| = (x∗x)
1
2 , u is a

partial isometry in B(H). Then u ∈ M and |x| ∈ S(M). If x ∈ Sh(M) and {Eλ(x)} are
the spectral projections of x, then {Eλ(x)} ⊂ P (M).

Let M be a commutative von Neumann algebra. Then M admits a faithful semi-finite
normal trace τ, and M is ∗-isomorphic to the ∗-algebra L∞(Ω,Σ, µ) of all bounded com-
plex measurable functions with the identification almost everywhere, where (Ω,Σ, µ) is
a measurable space. In addition, µ(A) = τ(χA), A ∈ Σ. Moreover, S(M) ∼= L0(Ω,Σ, µ),
where L0(Ω,Σ, µ) is the ∗-algebra of all complex measurable functions with the identifi-
cation almost everywhere [6].

The locally measure topology t(M) on L0(Ω,Σ, µ) is by definition the linear (Haus-
dorff) topology whose fundamental system of neighborhoods around 0 is given by

W (B, ε, δ) = {f ∈ L0(Ω, Σ, µ) : there exists a set E ∈ Σ, such that

E ⊆ B, µ(B \ E) 6 δ, fχE ∈ L∞(Ω,Σ, µ), ‖fχE‖L∞(Ω,Σ,µ) 6 ε}.
Here ε, δ run over all strictly positive numbers and B ∈ Σ, µ(B) < ∞. It is known
that (S(M), t(M)) is a complete topological ∗-algebra.

It is clear that zero neighborhoods W (B, ε, δ) are closed and have the following pro-
perty: if f ∈W (B, ε, δ), g ∈ L∞(Ω,Σ, µ), ‖g‖L∞(Ω,Σ,µ) ≤ 1, then gf ∈W (B, ε, δ).

A net {fα} converges to f locally in measure (notation: fα
t(M)−→ f) if and only if fαχB

converges to fχB in µ-measure for each B ∈ Σ with µ(B) < ∞. Thus {fα} remains
convergent to f if τ is replaced by another faithful semi-finite normal trace on M. If M
is σ-finite, i.e. any family of nonzero mutually orthogonal projectors from P (M) is at
most countable, then there exists a faithful finite normal trace τ on M. In this case, the

topology t(M) is metrizable, and convergence of a sequence fn
t(M)−→ f is equivalent to

convergence of fn to f in trace τ.
Let now M be an arbitrary finite von Neumann algebra, ΦM : M → Z(M) be a center-

valued trace on M ([4], 7.11). Let Z(M) ∼= L∞(Ω,Σ, µ). The locally measure topology
t(M) on S(M) is by definition the linear (Hausdorff) topology whose fundamental system
of neighborhoods around 0 is given by

V (B, ε, δ) = {x ∈ S(M) : there exists p ∈ P (M), z ∈ P (Z(M))

such that xp ∈M, ‖xp‖M 6 ε, z⊥ ∈W (B, ε, δ), ΦM (zp⊥) 6 εz},
where ‖·‖M is the C∗-norm inM. It is known that, (S(M), t(M)) is a complete topological
∗-algebra [8].

The net {xα} ⊂ S(M) converges to x ∈ S(M) in trace ΦM (notation: xα
ΦM−→ x ) if

ΦM (E⊥λ (|xα − x|))
t(Z(M))−→ 0 for all λ > 0.

Proposition 2.1. (see [7], § 3.5). Let M be a finite von Neumann algebra, xα, x ∈
S(M). The following conditions are equivalent:

(i) xα
t(M)−→ x;

(ii) xα
ΦM−→ x;
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(iii) E⊥λ (|xα − x|)
t(M)−→ 0 for all λ > 0.

Let τ be a faithful semi-finite normal trace on M. An operator x ∈ S(M) is said to
be τ -measurable if τ(E⊥λ (|x|)) <∞ for some λ > 0. The set S(M, τ) of all τ -measurable
operators is the ∗-subalgebra in S(M), in addition M ⊂ S(M, τ). If τ(1) < ∞, then
S(M, τ) = S(M).

Denote by tτ the locally measure topology in S(M, τ) generated by a trace τ (see,
for example, [9]). If xα, x ∈ S(M, τ) and xα converges to x in topology tτ (notation:

xα
τ−→ x ), then xα

t(M)−→ x ([7], § 3.5). If τ is finite, then topologies t(M) and tτ coincide
([7], § 3.5). It is known that xα

τ−→ x if and only if τ(E⊥λ (|xα−x|))→ 0 for all λ > 0 [10].
Denote by T (M) the set of all nonzero finite normal traces on the finite von Neumann

algebra M.

Proposition 2.2. Let M be a finite von Neumann algebra, xα, x ∈ S(M). Then

(i) if xα
t(M)−→ x, then |xα|

t(M)−→ |x| and τ(E⊥λ (|xα − x|)) → 0 for all λ > 0 and
τ ∈ T (M);

(ii) if T1(M) is a separating subset of T (M) and τ(E⊥λ (|xα − x|))→ 0 for all λ > 0,

τ ∈ T1(M), then xα
t(M)−→ x.

Proof. (i) Let τ ∈ T (M) and s(τ) be the support of a trace τ. Then s(τ) ∈ P (Z(M)) and

τ(x) = τ(xs(τ)) for all x ∈ M ([4], 5.15, 7.13). Since xα
t(M)−→ x, xαs(τ)

t(M)−→ xs(τ). The
restriction of τ on Ms(τ) is a faithful finite normal trace. Therefore τ(E⊥λ (|xα − x|)) =
τ(E⊥λ (|xαs(τ)− xs(τ)|))→ 0 for all λ > 0.

If |xα|
t(M)9 |x|, then there are λ0 > 0, τ ∈ T (M) such that τ(E⊥λ0

(| |xα| − |x| |)) 9 0.
The restriction τ0 of the trace τ on Ms(τ) is a faithful finite normal trace. Therefore

convergence xαs(τ)
t(M)−→ xs(τ) implies xαs(τ) τ0−→ xs(τ). Using continuity of the operator

function
√
y, y ∈ S+(Ms(τ)) [11], we obtain

|xα|s(τ) =
√

(xαs(τ))∗(xαs(τ)) τ0−→
√

(x∗s(τ))(xs(τ)) = |x|s(τ).

Hence τ(E⊥λ0
(| |xα| − |x| |)) = τ(E⊥λ0

(| |xα|s(τ)− |x|s(τ) |))→ 0, which is not the case.
(ii) Since T1(M) is the separating family traces on M, sup

τ∈T1(M)

s(τ) = 1. Hence there is

a family {zi}i∈I of nonzero mutually orthogonal central projectors such that sup
i∈I

zi = 1,

and for any i ∈ I, there exists τi ∈ T1(M) with zi ≤ s(τi) ([12], chapter III, § 2). We
defined the faithful semi-finite normal trace on M as τ(x) =

∑
i∈I

τi(xzi), x ∈ M. It is

clear that restrictions τ and τi coincide on Mzi. In addition, τi(E⊥λ (|xαzi − xzi|)) =
τi(E⊥λ (|xα − x|)) → 0 for all λ > 0, i ∈ I. Hence, E⊥λ (|xα − x|)zi

τ−→ 0, and therefore

E⊥λ (|xα − x|)zi
t(M)−→ 0.

For any finite subset γ ⊂ I, let uγ =
∑
i∈γ

zi. It is clear that uγ ↑ 1 and ΦM (uγ) ↑ ΦM (1).

Hence, ΦM (u⊥γ )
t(Z(M))−→ 0, i.e. u⊥γ

t(M)−→ 0.
Let U be an arbitrary neighborhood of 0 in (S(M), t(M)). We choose V (B, ε, δ) such

that V (B, ε, δ) + V (B, ε, δ) ⊂ U. Fix γ0 with (1 − uγ0) ∈ V (B, ε4 , δ). Since E⊥λ (|xα −

x|)uγ0
t(M)−→ 0, there is an α0 such that E⊥λ (|xα − x|)uγ0 ∈ V (B, ε, δ) as α ≥ α0. We have

aV (B, ε4 , δ)b ⊂ V (B, ε, δ), where a, b ∈ M, ‖a‖M 6 1, ‖b‖M 6 1 (see, for example, [7],
§ 3.5). Hence

E⊥λ (|xα − x|) = E⊥λ (|xα − x|)uγ0 + E⊥λ (|xα − x|)(1− uγ0)

∈ V (B, ε, δ) + V (B, ε, δ) ⊂ U
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for all α ≥ α0. Therefore E⊥λ (|xα − x|)
t(M)−→ 0 for all λ > 0. Proposition 2.1 implies that

xα
t(M)−→ x. �

3. Vector lattice-valued traces

Throughout the section, let M be an von Neumann algebra, let F be an order complete
vector lattice, and let FC = F⊕iF be a complexification of F. If z = α+iβ ∈ FC, α, β ∈ F,
then z := α− iβ, and |z| := sup{Re(eiθz) : 0 ≤ θ < 2π} (see [1], 1.3.13).

An FC-valued trace on the von Neumann algebra M is a linear mapping Φ : M → FC
given Φ(x∗x) = Φ(xx∗) ≥ 0 for all x ∈ M. It is clear that Φ(Mh) ⊂ F, Φ(M+) ⊂ F+ =
{a ∈ F : a ≥ 0}. A trace Φ is said to be faithful if the equality Φ(x∗x) = 0 implies x = 0,
normal if Φ(xα) ↑ Φ(x) for every xα, x ∈Mh, xα ↑ x.

If M is a finite von Neumann algebra, then its center-valued trace ΦM : M → Z(M)
is an example of a Z(M)-valued faithful normal trace.

Let ∆ be a separating family of finite normal numerical traces on the von Neumann
algebra M, C∆ =

∏
τ∈∆

Cτ , where Cτ = C for all τ ∈ ∆. Then Φ(x) = {τ(x)}τ∈∆ is also

an example of an faithful normal C∆-valued trace on M.
Let us list some properties of the trace Φ : M → FC.

Proposition 3.1. (i) Let x, y, a, b ∈M. Then
Φ(x∗) = Φ(x), Φ(xy) = Φ(yx), Φ(|x∗|) = Φ(|x|),
|Φ(axb)| ≤ ‖a‖M‖b‖MΦ(|x|);
(ii) If Φ is a faithful trace, then M is finite;
(iii) If xn, x ∈M and ‖xn−x‖M → 0, then |Φ(xn)−Φ(x)| relative uniform converges

to zero;
(iv) If M is a finite von Neumann algebra, then Φ(ΦM (x)) = Φ(x) for all x ∈M ;
(v) Φ(|x+ y|) ≤ Φ(|x|) + Φ(|y|) for all x, y ∈M.

Proof. The proof of (i) and (ii) is the same as for numerical traces (see, for example, [5],
chapter V, § 2).

The proof of (iii) follows from the inequality |Φ(xn)− Φ(x)| ≤ ‖xn − x‖MΦ(1).
(iv) Let U(M) be the set of all unitary operators in M. Then ΦM (x) belongs to the

closure of the convex hull co{uxu∗ : u ∈ U(M)} ([4], 7.11). Since Φ(uxu∗) = Φ(u∗ux) =
Φ(x), we get Φ(y) = Φ(x) for any y ∈ co{uxu∗ : u ∈ U(M)}. Therefore, because of (iii),
we have Φ(x) = Φ(ΦM (x)).

(v) Since |x+ y| ≤ u|x|u∗ + v|y|v∗ for some partial isometries u, v in M (see [13]), we
have, by virtue of (i)

Φ(|x+ y|) ≤ Φ(u|x|u∗) + Φ(v|y|v∗) = Φ(u∗u|x|) + Φ(v∗v|y|)
≤ Φ(|x|) + Φ(|y|). �

The trace Φ : M → FC possesses the Maharam property if for any x ∈ M+, 0 ≤ f ≤
Φ(x), f ∈ F, there exists a positive y ≤ x such that Φ(y) = f. A faithful normal FC-
valued trace Φ with the Maharam property is called a Maharam trace (compare with [1],
III, 3.4.1). Obviously, any faithful finite numerical trace on M is a C-valued Maharam
trace.

Let us give another examples of Maharam traces. Let M be a finite von Neumann
algebra, let A be a von Neumann subalgebra in Z(M), and let T : Z(M) → A be an
injective linear positive normal operator. If f ∈ S(A) is a reversible positive element,
then Φ(T, f)(x) = fT (ΦM (x)) is an S(A)-valued faithful normal trace on M. In addition,
if T (ab) = aT (b) for all a ∈ A, b ∈ Z(M), then Φ(T, f) is a Maharam trace on M.

Note that if τ is a faithful normal finite numerical trace on M and dim(Z(M)) > 1,
then Φ(x) = τ(x)1 is a Z(M)-valued faithful normal trace. In addition, Φ does not
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possess the Maharam property. In fact, if p ∈ Z(M), 0 6= p 6= 1, then for all y ∈
M+, y ≤ 1 the relation Φ(y) = τ(y)1 6= τ(y)p ≤ Φ(1) is valid.

Let F have an order unit 1F . Denote by B(F ) the complete Boolean algebra of unitary
elements with respect to 1F , and by s(a) := sup

n≥1
{1F ∧ n|a|} ∈ B(F ) the support of an

element a ∈ F. Since |Φ(x)| ≤ ‖x‖MΦ(1) (Proposition 3.1(i)), the inequality s(|Φ(x)|) ≤
s(Φ(1)) holds for all x ∈M. Let therefore s(Φ(1)) = 1F .

Let Q be the Stone representation space of the Boolean algebra B(F ). Let C∞(Q) be
the order complete vector lattice of all continuous functions a : Q→ [−∞,+∞] such that
a−1({±∞}) is a nowhere dense subset of Q. We identify F with the order-dense ideal in
C∞(Q) containing algebra C(Q) of all continuous real functions on Q. In addition, 1F is
identified with the function equal to 1 identically on Q ([1], 1.4.4).

The next theorem gives the description of Maharam traces on von Neumann algebras.

Theorem 3.2. Let Φ be an FC-valued Maharam trace on a von Neumann algebra M.
Then there exists a von Neumann subalgebra A in Z(M), a ∗-isomorphism ψ from A
onto the ∗-algebra C(Q)C, an injective positive linear normal operator E from Z(M) onto
A with E(1) = 1, E2 = E , such that

1) Φ(x) = Φ(1)ψ(E(ΦM (x))) for all x ∈M ;
2) Φ(zy) = Φ(zE(y)) for all z, y ∈ Z(M);
3) Φ(zy) = ψ(z)Φ(y) for all z ∈ A, y ∈M.

Proof. Since s(Φ(1)) = 1F , we get that Φ1(x) = Φ(1)−1Φ(x) is a (C(Q))C-valued Ma-
haram trace on M. In addition, Φ1(1) = 1F .

The set Zh(M) is an order complete vector lattice with a strong unit 1 with respect
to algebraic operations, and the partial order induced from Mh. Moreover, the Boolean
algebra of all unitary elements in Zh(M) with respect to 1 coincides with P (Z(M)).
Let T be a restriction of Φ1 on Zh(M). Since |Φ1(x)| ≤ ‖x‖M , T (Zh(M)) ⊂ C(Q). It
is clear that T is an injective positive order continuous linear operator. If x ∈ Z+(M),
0 ≤ a ≤ Tx = Φ1(x), a ∈ C(Q), then there exists y ∈M+ such that y ≤ x and Φ1(y) = a.
By Proposition 3.1 (iv), we have a = Φ1(y) = Φ1(ΦM (y)) = T (ΦM (y)), moreover,
0 ≤ ΦM (y) ≤ ΦM (x) = x. Hence, T : Zh(M)→ C(Q) is a Maharam operator ([1], 3.4.1).
Theorem 3.4.3 from [1] guarantees the existence of a Boolean isomorphism ϕ from B(F )
onto a regular Boolean subalgebra B in P (Z(M)) such that gT (x) = T (ϕ(g)x) for all
g ∈ B(F ) and x ∈ Zh(M). We denote by A a commutative von Neumann subalgebra
in Z(M) generated by B, i.e. A coincides with the bicommutant of B. It is known that
Ah = {x ∈ Zh(M) : Eλ(x) ∈ B for all λ} where {Eλ(x)} are the spectral projections of
x. The Boolean isomorphism ϕ is extended to the ∗-isomorphism ϕ̃ from the ∗-algebra

C(Q)C onto the von Neumann algebra A. If a =
n∑
i=1

λiei is a simple element, λi ∈ R,

ei ∈ B(F ), i = 1, . . . , n, then

T (ϕ̃(a)x) =
n∑
i=1

λiT (ϕ(ei)x) = aT (x)

for all x ∈ Ah. Furthermore, we note T (ϕ̃(a)x) = aT (x) for any a ∈ C(Q), x ∈ Ah. This
is obtained by approximating the elements from C(Q) by simple elements. Therefore,
Φ1(ϕ̃(a)x) = aΦ1(x) for all a ∈ C(Q)C, x ∈ A, in particular,

(1) Φ1(ϕ̃(a)) = a.

Hence the restriction T0 of the operator T on Ah is a lattice isomorphism from Ah
onto C(Q). Therefore T0 is a Maharam operator. By Theorem 4.2.9 from [14], there
exists an operator of conditionally mathematical expectation E : Zh(M)→ Ah satisfying
the following conditions:
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(E1) E is an injective positive order continuous linear operator, E2 = E and E(1) = 1;
(E2) T (xy) = T (xE(y)) for all x, y ∈ Zh(M);
(E3) E(zy) = zE(y) for all z ∈ Ah, y ∈ Zh(M).
The operator E is extended to the operator Ẽ : Z(M) → A. It is clear that the

condition (E1) is satisfied for Ẽ , the condition (E2) has the form Φ1(xy) = Φ1(xẼ(y))
for all x, y ∈ Z(M), and the condition (E3) is valid for all z ∈ A, y ∈ Z(M). The
condition (E2) implies that

(2) Φ1(y) = Φ1(Ẽ(y)) for all y ∈ Z(M).

Using equalities (1), (2) and Proposition 3.1 (iv), we get

(3) Φ1(x) = Φ1(ΦM (x)) = Φ1(Ẽ(ΦM (x)) = ϕ̃−1(Ẽ(ΦM (x)))

for any x ∈M.

Taking in (3) ψ = ϕ̃−1 and letting Ẽ as E , we obtain the statement of Theorem 3.2. �

Due to Theorem 3.2, the ∗-algebra B = C(Q)C is ∗-isomorphic to a von Neumann
subalgebra in Z(M). Therefore B is a commutative von Neumann algebra, and ∗-algebra
C∞(Q)C is identified with ∗-algebra S(B). In particular, there exists a separating family
of completely additive scalar-valued measures on B(F ), and therefore F is a Kantorovich-
Pinsker space ([1], 1.4.10).

We claim that a version of Radon-Nikodym-type theorem is valid for a Maharam trace
Φ. For this, we need the space L1(M,Φ) of operators from S(M) to be integrable with
respect to Φ.

Let F be a Kantorovich-Pinsker space and let Φ be an FC-valued Maharam trace on
the von Neumann algebra M. The net {xα} ⊂ S(M) converges to x ∈ S(M) with respect

to the trace Φ (notation: xα
Φ−→ x) if Φ(E⊥λ (|xα − x|))

t(B)−→ 0 for all λ > 0.

Proposition 3.3. xα
Φ−→ x iff xα

t(M)−→ x.

Proof. Let ν be a faithful normal semi-finite numerical trace on B. Choose {ei}i∈I to
be a set of nonzero mutually orthogonal projections from P (B) with sup

i∈I
ei = 1F and

ν(ei) < ∞, i ∈ I. Set τi(x) = ν(Φ(x)Φ(1)−1ei), x ∈ M, i ∈ I. It is clear that {τi}i∈I
is a separating family of finite traces on M. Due to Proposition 2.2, xα

t(M)−→ x if and
only if τi(E⊥λ (|xα − x|)) → 0 for all λ > 0, i ∈ I. The last convergence is equivalent to

convergence Φ(E⊥λ (|xα − x|))
t(B)−→ 0. �

For each x ∈M, let ‖x‖Φ = Φ(|x|). Proposition 3.1 implies that ‖ · ‖Φ is an F -valued
norm on M. In addition, ‖x‖Φ = ‖x∗‖Φ = ‖ |x| ‖Φ and ‖axb‖Φ ≤ ‖a‖M‖b‖M‖x‖Φ for all
x, a, b ∈M.

We have Φ(E⊥λ (|xα − x|)) ≤ 1
λΦ(|xα − x|), λ > 0, xα, x ∈M. Hence ‖xα − x‖Φ

t(B)−→ 0

implies xα
Φ→ x, and therefore xα

t(M)→ x (Proposition 3.3).
An operator x ∈ S(M) is said to be Φ-integrable if there exists a sequence {xn} ⊂M

such that xn
Φ→ x and ‖xn−xm‖Φ

tl(B)−→ 0 as n,m→∞. Denote by L1(M,Φ) the set of all
Φ-integrable operators from S(M). It is clear thatM ⊂ L1(M,Φ) and L1(M,Φ) is a linear
subset of S(M). It follows from Proposition 3.1 and 3.3 that ML1(M,Φ)M ⊂ L1(M,Φ)
and x∗ ∈ L1(M,Φ) for all x ∈ L1(M,Φ).

We now define an Sh(B)-valued L1-norm on L1(M,Φ).

Proposition 3.4. If xn ∈M, xn
Φ→ 0, ‖xn − xm‖Φ

t(B)−→ 0, then Φ(|xn|)
t(B)−→ 0.
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Proof. Since | ‖xn‖Φ − ‖xm‖Φ | ≤ ‖xn − xm‖Φ, Φ(|xn|) = ‖xn‖Φ is a Cauchy sequence
in (S(B), t(B)). Because of the completeness of ∗-algebra (S(B), t(B)), there exists f ∈
S+(B) such that Φ(|xn|)

t(B)−→ f. We claim that f = 0. First, we assume that algebra B
is σ-finite. Then there exists a faithful normal finite numerical trace ν on B. We have
Φ(|xn|)

ν−→ f and the sequence {Φ(|xn|)} has an (o)-convergent subsequence. Therefore,
as usual, we may and do assume that the sequence {Φ(|xn|)} (o)-converges to f in Sh(B)

(notation: Φ(|xn|)
(o)−→ f). Hence, there exists g = sup

n≥1
Φ(|xn|) in Sh(B). It is clear that

(4) τ(x) = ν(Φ(x)(1F + g + Φ(1))−1)

is a faithful normal finite numerical trace on M. Since topologies tν and t(B) coincide,
Φ(|xn−xm|)

ν−→ 0. Therefore inequalities 0 ≤ Φ(|xn−xm|) ≤ 2g, imply τ(|xn−xm|)→ 0.
It is known that (L1(M, τ), ‖ ‖1,τ ) is complete, where ‖x‖1,τ = τ(|x|) [6]. Hence there
exists x ∈ L1(M, τ) ⊂ S(M) such that ‖x − xn‖1,τ → 0 and therefore, xn

τ−→ x [10].
Because of the equality of topologies tτ and t(M), we have x = 0. This means that
τ(|xn|)→ 0, i.e. Φ(|xn|)

ν−→ 0.
Now let B be a general (not necessarily σ-finite) von Neumann algebra. For each

0 6= e ∈ P (B), we set Φe(x) = Φ(x)e, x ∈ M. It is clear that Φe is a normal Sh(Be)-
valued trace on M, which does not have, generally speaking, the faithfulness property. A
projection s(Φe) = 1− sup{p ∈ P (M) : Φe(p) = 0} is called the support trace of Φe. As
well as in the case of numerical traces ( see, for example, [4], 5.15, 7.13), one can establish
that s(Φe) ∈ P (Z(M)) and Φe(x) = Φe(xs(Φe)) is a faithful normal Sh(eB)-valued trace
on Ms(Φe).

If Φ(|xn|)
t(B)9 0, then there is a nonzero σ-finite projection e ∈ P (B) such that

Φ(|xn|)e
ν9 0 where ν is a faithful normal finite numerical trace on Be. The last contra-

dicts to what we proved above. �

Let x ∈ L1(M,Φ), xn ∈M, xn
Φ−→ x and ‖xn− xm‖Φ

t(B)−→ 0. The inequality |Φ(xn)−
Φ(xm)| ≤ Φ(|xn − xm|) and completeness of the ∗-algebra (S(B), t(B)) guarantees the

existence of Φ̂(x) ∈ S(B) such that Φ(xn)
t(B)−→ Φ̂(x). Due to Proposition 3.4, Φ̂(x) does

not depend on the choice of a sequence {xn} ⊂M, for which xn
Φ−→ x and ‖xn−xm‖Φ

t(B)−→
0, in particular, Φ̂(x) = Φ(x) for all x ∈ M. The element Φ̂(x) is called an S(B)-valued
integral of x ∈ L1(M,Φ) by a trace Φ.

It follows immediately from the definition of Φ̂ and Proposition 3.1 that Φ̂ is a linear
mapping from L1(M,Φ) into S(B) and Φ̂(xy) = Φ̂(yx) for any x ∈M,y ∈ L1(M,Φ). For
each x ∈ L1(M,Φ), we set ‖x‖Φ = Φ̂(|x|).

Theorem 3.5. (i) The mapping ‖ · ‖Φ is an Sh(B)-valued norm on L1(M,Φ).
(ii) (L1(M,Φ), ‖ · ‖Φ) is a Banach-Kantorovich space.

Proof. (i) Let x ∈ L1(M,Φ), xn ∈M, xn
Φ−→ x and ‖xn − xm‖Φ

t(B)−→ 0. It follows from

Propositions 2.2(i) and 3.3 that |xn|
Φ−→ |x|. We claim that ‖ |xn| − |xm| ‖Φ

t(B)−→ 0.
First, we assume that algebra B is σ-finite. Using the same trick as in the proof

of Proposition 3.4, we can show that Φ(xn)
(o)−→ Φ̂(x) in Sh(B). Therefore there exists

g = sup
n≥1
|Φ(xn)| in Sh(B). Consider a faithful normal finite numerical trace τ onM defined

by (4). Since τ(|xn−xm|)→ 0 as n,m→∞ (see the proof of Proposition 3.4), there exists
y ∈ L1(M, τ) such that ‖y− xn‖1,τ → 0. Then xn

τ−→ y, and therefore x = y. Moreover,
|xn|

τ−→ |x| (Proposition 2.2(i)) and ‖ |xn| ‖1,τ = ‖xn‖1,τ → ‖x‖1,τ . It follows from ([10],
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Theorem 3.7) that ‖ |x|− |xn| ‖1,τ → 0, in particular, τ(| |xn| − |xm| |)→ 0 as n,m→∞.
Convergence Φ(| |xn| − |xm| |)(1F + g + Φ(1))−1 ν−→ 0 implies ‖ |xn| − |xm| ‖Φ

t(B)−→ 0.

Hence, |x| ∈ L1(M,Φ) and Φ(|xn|)
t(B)−→ Φ̂(|x|). In particular, ‖x‖Φ = Φ̂(|x|) ≥ 0 for

all x ∈ L1(M,Φ). If Φ̂(|x|) = 0, then 0 ≤ ‖xn‖Φ = Φ(|xn|)
t(B)−→ 0. Hence, xn

Φ−→ 0, and
therefore x = 0.

Let now B be not a σ-finite algebra. Let {ei}i∈I be a family of nonzero mutually
orthogonal σ-finite projections in B with sup

i∈I
ei = 1F . Since sup

i∈I
s(Φei) = 1 and Φ̂(|x|)ei =

Φ̂ei(|x|s(Φei)) ≥ 0 for all i ∈ I, we get Φ̂(|x|) ≥ 0. Similarly, the equality Φ(|x|) = 0
implies Φ̂ei

(|x|s(Φei
)) = 0, and therefore |x|s(Φei

) = 0 for all i ∈ I. Hence, x = 0.
Finally, we have

‖x+ y‖Φ ≤ ‖x‖Φ + ‖y‖Φ, x, y ∈ L1(M,Φ),

due to the inequality |x+ y| ≤ u|x|u∗ + v|y|v∗, x, y ∈ S(M) (see [7], § 2.4) and the trick
in Proposition 3.1 (v).

(ii) Let x ∈ L1(M,Φ), xn ∈ M, xn
Φ−→ x and ‖xn − xm‖Φ

t(B)−→ 0. Fix m and set

ynm = xn − xm for n ≥ m. We have ynm
Φ−→ x − xm and ‖ynm − ykm‖Φ

t(B)−→ 0 as

n, k → ∞. It follows from the proof of (i) that Φ(|ynm|)
t(B)−→ Φ̂(|x− xm|) = ‖x− xm‖Φ.

Since Φ(|ynm|)
t(B)−→ 0 as n,m→∞, ‖x− xm‖Φ

t(B)−→ 0.
Let us now show that any (bo)-Cauchy sequence in (L1(M,Φ), ‖ · ‖Φ) (bo)-converges.
First, we assume that B is a σ-finite von Neumann algebra. Let {xn} ⊂ L1(M,Φ) and

‖xn−xm‖Φ
(o)−→ 0. Since Φ̂ is a positive mapping (see the proof of item (i)), the inequality

Φ̂(E⊥λ (|xn−xm|)) ≤ 1
λ Φ̂(|xn−xm|), λ > 0 is valid. Hence, {xn} is a Cauchy sequence in

(S(M), t(M)) and therefore there exists x ∈ S(M) such that xn
t(M)−→ x. Choose a system

{Un} of closed neighborhoods of 0 in (S(B), t(B)) with Un+1 +Un+1 ⊂ Un, n = 1, 2, . . . .
Due to what we proved above, for any xn ∈ L1(M,Φ), there exists yn ∈ M such that

‖xn− yn‖Φ ∈ Un. Since
m∑

n=k+1

‖xn− yn‖Φ ∈ Uk for all m ≥ k+ 1, the series
∞∑

n=k+1

‖xn−

yn‖Φ converges in (S(B), t(M)). Hence, ‖xn−yn‖Φ
(o)−→ 0, and therefore ‖yn−ym‖Φ

(o)−→ 0.
Also, by Proposition 3.3, we get xn − yn

Φ−→ 0, and consequently yn
Φ−→ x. This means

that x ∈ L1(M,Φ), in addition, ‖x − yn‖Φ
t(B)−→ 0 and ‖yn − ym‖Φ

t(B)−→ ‖x − ym‖Φ as
n→∞.

Since ‖x − ym‖Φ ≤ sup
n≥m
‖yn − ym‖Φ ↓ 0, we get ‖x − ym‖Φ

(o)−→ 0 and therefore

‖x− xn‖Φ
(o)−→ 0.

Now let {xα}α∈A be an arbitrary (bo)-Cauchy net in L1(M,Φ), i.e. sup
α,β≥γ

‖xα −

xβ‖Φ ↓ 0. We choose a sequence of indices α1 ≤ α2 ≤ · · · ≤ αn ≤ · · · in A such that
sup
β≥αn

‖xβ − xαn
‖Φ ∈ Un. Then sup

n,m≥k
‖xαn

− xαm
‖Φ ∈ Uk, and therefore {xαn

} is a (bo)-

Cauchy sequence in L1(M,Φ). It follows from what we proved above that there exists

x ∈ L1(M,Φ) such that ‖x − xαn
‖Φ

(o)−→ 0. Let us claim that ‖x − xα‖Φ
(o)−→ 0, i.e.

(sup
α≥β
‖x− xα‖Φ) ↓ 0. Fix β ∈ A and consider the net {xα}α≥β . We construct a sequence

of indices β ≤ β1 ≤ β2 ≤ · · · such that αn ≤ βn. Then ‖xβn
−xαn

‖Φ ∈ Un, and therefore
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‖xβn
−xαn

‖Φ
(o)−→ 0. Hence, ‖x−xβn

‖Φ
(o)−→ 0 and ‖xβn

−xβ‖Φ
(o)−→ ‖x−xβ‖Φ as n→∞.

Thus, ‖x− xβ‖Φ ≤ sup
n≥1
‖xβn

− xβ‖Φ ≤ sup
α≥β
‖xα − xβ‖Φ and ‖x− xβ‖Φ

(o)−→ 0.

Let now B be not a σ-finite algebra and let {xα} be a (bo)-Cauchy net in L1(M,Φ).
Due to the completeness of (S(M), t(M)), there is x ∈ S(M) such that xα

Φ−→ x. Let
{ei}i∈I be the same family of projections in B, as in the proof of (i). It is clear that
{xαs(Φei)} is a (bo)-Cauchy net in L1(Ms(Φei),Φei), and therefore, by virtue of what

we proved above, there exists xi ∈ L1(Ms(Φei),Φei) such that ‖xi−xαs(Φei)‖Φei

(o)−→ 0.

Convergence xαs(Φei
) Φ−→ xs(Φei

) implies xi = xs(Φei
) for all i ∈ I. Thus, Φ̂(|x −

xα|)ei = Φ̂ei
(|xi − xα|s(Φei

))ei
(o)−→ 0 and ‖x− xα‖Φ

(o)−→ 0.
Hence, (L1(M,Φ), ‖ · ‖Φ) is a (bo)-complete lattice-normed space.
Now let us show that (L1(M,Φ), ‖ · ‖Φ) is a Banach-Kantorovich space, i.e. for any

element x ∈ L1(M,Φ) and any decomposition ‖x‖Φ = f1+f2, f1, f2 ∈ S+(B), f1∧f2 = 0,
there exist x1, x2 ∈ L1(M,Φ) such that x = x1 + x2 and ‖xi‖Φ = fi, i = 1, 2.

Set ei = s(fi). It is clear that ei ∈ P (B), e1e2 = 0, e1 + e2 = s(‖x‖Φ). Since Φ is
a Maharam trace, we have Φ(y) = Φ(1)ψ(E(ΦM (y))), y ∈ M (see Theorem 3.2). Let
pi = ψ−1(ei), xi = xpi. Since pi ∈ P (A) ⊂ P (Z(M)), |xi| = |x|pi ∈ L1(M,Φ). We choose

yn ∈M such that yn
Φ−→ x and ‖yn−ym‖Φ

t(B)−→ 0. Then |yn|
Φ−→ |x|, ‖ |yn|− |ym| ‖Φ

t(B)−→
0 and Φ(|yn|)

t(B)−→ Φ̂(|x|) (see the proof of (i)). Set y(i)
n = ynpi, i = 1, 2. We have

|y(i)
n |

Φ−→ |xi| and ‖ |y(i)
n | − |y(i)

m | ‖Φ ≤ ‖ |yn| − |ym| ‖Φ. Hence, Φ(|y(i)
n |)

t(B)−→ Φ̂(|xi|). Due
to the property 3) from Theorem 3.2, we have Φ(|y(i)

n |) = ψ(pi)Φ(|yn|) = eiΦ(|yn|).
Thus, ‖xi‖Φ = Φ̂(|xi|) = eiΦ(|x|) = fi, in addition x1 + x2 = x(p1 + p2)

= xψ−1(s(‖x‖Φ)). As well as above, one can establish that qΦ̂(|x|) = Φ̂(|x|ψ−1(q))
for all q ∈ P (B). Taking q = 1F − s(‖x‖Φ), we get Φ̂(|x|)(1 − ψ−1(s(‖x‖Φ))) = 0.
Hence, |x| = |x|ψ−1(s(‖x‖Φ)). Using the polar decomposition x = u|x|, we obtain
x = xψ−1(s(‖x‖Φ)) = x1 + x2. �

Note another useful properties of mapping Φ̂.
Let Φ, M, Q, ΦM , A, ψ be the same as in Theorem 3.2, B = C(Q)C. It is clear that

the ∗-isomorphism ψ from A onto B can be extended to the ∗-isomorphism from S(A)
onto S(B). We denote this mapping also by ψ.

Proposition 3.6. S(A)L1(M,Φ) ⊂ L1(M,Φ), in particular, S(A) ⊂ L1(M,Φ), in ad-
dition, Φ̂(zx) = ψ(z)Φ̂(x) and Φ̂(Φ̂M (zx)) = Φ̂(zx) for all z ∈ S(A), x ∈ L1(M,Φ).

Proof. It is sufficient to show that x ∈ L1
+(M,Φ), z ∈ S+(A) implies zx ∈ L1(M,Φ) and

Φ̂(zx) = ψ(z)Φ̂(x), Φ̂(Φ̂M (zx)) = Φ̂(zx).
Let zn = En(z)z. It is clear that zn ∈ A+, zn ↑ z, znx ∈ L1

+(M,Φ). Since znx =√
xzn
√
x ↑
√
xz
√
x = zx, we get

ψ(zn)Φ̂(x) = Φ̂(znx) ≤ Φ̂(zn+1x) = ψ(zn+1)Φ̂(x) ↑ ψ(z)Φ̂(x).

Hence,
sup
n≥m
‖znx− zmx‖Φ = sup

n≥m
|Φ̂(znx)− Φ̂(zmx)| ↓ 0,

i.e. {znx} is a (bo)-Cauchy sequence. By Theorem 3.5, there exists y ∈ L1(M,Φ) such

that ‖znx−y‖Φ
(o)−→ 0. The inequality Φ(E⊥λ (|znx−y|) ≤ 1

λΦ(|znx−y|) implies znx
Φ−→ y.

Therefore y = zx, i.e. zx ∈ L1(M,Φ). In addition, ψ(zn)Φ̂(x) = Φ̂(znx) = ‖znx‖Φ
t(B)−→

‖zx‖ = Φ̂(zx). Hence, Φ̂(zx) = ψ(z)Φ̂(x).
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Set xk = Ek(x)x. Then 0 ≤ xk ↑ x, xk ∈ M. By virtue of Proposition 3.1(iv),
Φ(znxk) = Φ(ΦM (znxk)) = Φ(znΦM (xk)). Since (znxk) ↑ (znx) as k → ∞, we have
Φ(znxk) ↑ Φ̂(znx) and Φ(ΦM (znxk)) ↑ Φ̂(Φ̂M (znx)). Therefore Φ̂(znx) = Φ̂(Φ̂M (znx))
for all n = 1, 2, . . . . After switching to the limit as n → ∞, we obtain Φ̂(zx) =
Φ̂(Φ̂M (zx)). �

Let Φ be an FC-valued Maharam trace on M and let Ψ be a normal FC-valued trace
on M. A trace Ψ is called absolutely continuous with respect to Φ (notation Ψ � Φ) if
s(Ψ(p)) ≤ s(Φ(p)) for all p ∈ P (M). The last condition is equivalent to inclusion Ψ(p) ∈
{Φ(p)}⊥⊥ = s(Φ(p))Sh(B), p ∈ P (M) where B⊥ := {x ∈ Sh(B) : (∀y ∈ B)|x| ∧ |y| = 0}
for a nonempty subset B ⊂ Sh(B) (compare with [1], 6.1.11).

The next theorem is a non-commutative version of the Radon-Nikodym-type theorem
for Maharam traces.

Theorem 3.7. Let Φ be an FC-valued Maharam trace on the von Neumann algebra M.
If Ψ is a normal FC-valued trace on M absolutely continuous with respect to Φ, then there
exists an operator y ∈ L1

+(M,Φ) ∩ S(Z(M)) such that

Ψ(x) = Φ̂(yx)

for all x ∈M.

Proof. Let l be the restriction of Ψ on the complete Boolean algebra P (Z(M)), and let
m be the restriction of Φ on P (Z(M)). Obviously, l and m are Sh(B)-valued completely
additive measures on P (Z(M)). In addition, m(ze) = ψ(z)m(e) for all z ∈ P (A), e ∈
P (Z(M)) (see Theorem 3.2). Hence, m is a ψ-modular measure on P (Z(M)) (see [1],
6.1.9). Since the measure l is absolutely continuous with respect to m, by the Radon-
Nikodym-type theorem from ([1], 6.1.11), there exists y ∈ L1

+(Z(M),m) = L1
+(Z(M),Φ)

such that l(e) = Φ̂(ye) for all e ∈ P (Z(M)).

If a =
n∑
i=1

λiei is a simple element from Z(M), where λi ∈ C, ei ∈ P (Z(M)), i =

1, . . . , n, then Ψ(a) =
n∑
i=1

λiΨ(ei) =
n∑
i=1

λiΦ̂(yei) = Φ̂(ya). Let a ∈ Z+(M) and {an} be

a sequence of simple elements from Z+(M) with an ↑ a. Then Ψ(an) ↑ Ψ(a), yan ↑ ya,
and Φ̂(yan) ↑ Φ̂(ya) (see the proof of Proposition 3.6). Hence, Ψ(a) = Φ̂(ya) for all
a ∈ Z+(M). Now using the linearity of traces Ψ and Φ, we obtain Ψ(a) = Φ̂(ya) for all
a ∈M.

Furthermore, due to Propositions 3.1(iv) and 3.6 we get

Ψ(x) = Ψ(ΦM (x)) = Φ̂(yΦM (x)) = Φ̂(Φ̂M (yx)) = Φ̂(yx)

for all x ∈M. �

Remark 3.8. If Ψ is a normal FC-valued trace on M and Ψ� Φ, then Ψ possesses the
Maharam property.

In fact, by Theorem 3.7, Ψ(x) = Φ̂(yx) for all x ∈M where y ∈ L1
+(M,Φ)∩S(Z(M)).

Let 0 6= x ∈ M+, f ≤ Ψ(x), f ∈ S+(B), g ∈ S+(B), gΨ(x) = s(Ψ(x). Set h = gf, z =
ψ−1(h), a = zx. Then 0 ≤ h ≤ gΨ(x) = s(Ψ(x)) ≤ 1F , 0 ≤ z ≤ 1, 0 ≤ a ≤ x and

Ψ(a) = Φ̂(ya) = Φ̂(zyx) = ψ(z)Φ̂(yx) = hΨ(x) = fs(Ψ(x)) = f.
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