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GC-FUSION FRAMES

M. H. FAROUGHI, A. RAHIMI, AND R. AHMADI

Abstract. In this paper we introduce the generalized continuous version of fusion
frame, namely gc-fusion frame. Also we get some new results about Bessel mappings

and perturbation in this case.

1. Introduction and preliminaries

Throughout this paper H will be a Hilbert space and H will be the collection of all
closed subspace of H, respectively. Also, (X,µ) will be a measure space, and v : X →
[0,+∞) a measurable mapping such that v 6= 0 a.e. We shall denote the unit closed ball
of H by H1.

Frames was first introduced in the context of non-harmonic Fourier series [9]. Outside
of signal processing, frames did not seem to generate much interest until the ground
breaking work of [8]. Since then the theory of frames began to be more widely studied.
During the last 20 years the theory of frames has been growing rapidly, several new
applications have been developed. For example, besides traditional application as signal
processing, image processing, data compression, and sampling theory, frames are now
used to mitigate the effect of losses in pocket-based communication systems and hence to
improve the robustness of data transmission on [6], and to design high-rate constellation
with full diversity in multiple-antenna code design [10]. The intrusted reader can find
the details of frames in the introductory book [7]. In [1, 2, 3] some applications have
been developed.

The fusion frames were considered by Casazza, Kutyniok and Li in connection with
distributed processing and are related to the construction of global frames [4, 5]. The
fusion frame theory is in fact more delicate due to complicated relations between the
structure of the sequence of weighted subspaces and the local frames in the subspaces
and due to the extreme sensitivity with respect to changes of the weights.

Definition 1.1. Let {fi}i∈I be a sequence of members of H. We say that {fi}i∈I is a
frame for H if there exist 0 < A ≤ B <∞ such that

(1.1) A‖h‖2 ≤
∑
i∈I

|
〈
fi, h

〉
|2 ≤ B‖h‖2

for all h ∈ H.
The constants A and B are called frame bounds. If A,B can be chosen so that A = B,

we call this frame an A-tight frame and if A = B = 1 it is called a Parseval frame. If we
only have the upper bound, we call {fi}i∈I a Bessel sequence.

If {fi}i∈I is a Bessel sequence then the following operators are bounded,

(1.2) T : l2(I)→ H,T ({ci}) =
∑
i∈I

cifi,
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(1.3) T ∗ : H → l2(I), T ∗(f) = {
〈
f, fi

〉
}i∈I ,

(1.4) Sf = TT ∗f =
∑
i∈I

〈
f, fi

〉
fi.

This operators are called synthesis operator, analysis operator and frame operator,
respectively.

Definition 1.2. For a countable index set I, let {Wi}i∈I be a family of closed subspaces
in H, and let {vi}i∈I be a family of weights, i.e., vi > 0 for all i ∈ I. Then {(Wi, vi)}i∈I

is a fusion frame for H if there exist 0 < C ≤ D <∞ such that for all h ∈ H

(1.5) C‖h‖2 ≤
∑
i∈I

vi
2‖πWi(f)‖2 ≤ D‖h‖2,

where πWi
is the orthogonal projection onto the subspace Wi.

We call C and D the fusion frame bounds. The family {(Wi, vi)}i∈I is called a C-tight
fusion frame, if in (1.5) the constants C and D can be chosen so that C = D, a Parseval
fusion frame provided C = D = 1 and an orthogonal fusion basis if H =

⊕
i∈I Wi. If

{(Wi, vi)}i∈I possesses an upper fusion frame bound, but not necessarily a lower bound,
we call it is a Bessel fusion sequence with Bessel fusion bound D. The representation
space employed in this setting is(∑

i∈I

⊕Wi

)
l2

= {{fi}i∈I |fi ∈Wi and {||fi||}i∈I ∈ l2(I)}.

Let {(Wi, vi)}i∈I be a fusion frame for H. The synthesis operator, analysis operator
and frame operator are defined by

TW :
(∑

i∈I

⊕Wi

)
l2
→ H with TW ({fi}) =

∑
i∈I

vifi,

T ∗W : H →
(∑

i∈I

⊕Wi

)
l2

with T ∗W (f) = {viπWi
(f)}i∈I ,

SW (f) = TWT ∗W =
∑
i∈I

v2
i πWi

(f).

By proposition 3.7 in [5], if {(Wi, vi)}i∈I is a fusion frame for H with fusion frame bounds
C and D then SW is a positive and invertible operator on H with CId ≤ SW ≤ DId.

The theory of frames has a continuous version as follows:

Definition 1.3. Let (X,µ) be a measure space. Let f : X → H be weakly measurable
(i.e., for all h ∈ H, the mapping x →

〈
f(x), h

〉
is measurable). Then f is called a

continuous frame or c-frame for H if there exist 0 < A ≤ B <∞ such that

(1.6) A‖h‖2 ≤
∫

X

|
〈
f(x), h

〉
|2dµ ≤ B‖h‖2.

for all h ∈ H.

The representation space employed in this setting is

L2(X,µ) =
{
ϕ : X → H| ϕ is measurable and

∫
X

||ϕ(x)||2dµ <∞
}
.

The synthesis, analysis and frame operators are defined by

Tf : L2(X,µ)→ H

(1.7)
〈
Tfϕ, h

〉
=
∫

X

ϕ(x)
〈
f(x), h

〉
dµ(x),
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T ∗f : H → L2(X,µ)

(1.8) (T ∗f h)(x) =
〈
h, f(x)

〉
, x ∈ X,

(1.9) Sf = TfT
∗
f .

Also by Theorem 2.5. in [12] Sf is positive, self-adjoint and invertible.

Theorem 1.4. Let f be a continuous frame for H with a frame operator Sf and let
V : H → K be a bounded and invertible operator. Then V ◦ f is a continuous frame for
K with the frame operator V SfV

∗.

Proof. See [12]. �

Now we introduce the generalized continuous version of fusion frames and we show
some of its properties.

Definition 1.5. Let F : X → H be such that for each h ∈ H, the mapping x 7→ πF (x)(h)
is measurable (i.e. is weakly measurable ) and let {Kx}x∈X be a collection of Hilbert
spaces. For each x ∈ X, suppose that Λx ∈ B(F (x),Kx) and put

Λ = {Λx ∈ B(F (x),Kx) : x ∈ X}.

Then (Λ, F, v) is a gc-fusion frame for H if there exist 0 < A ≤ B <∞ such that

(1.10) A‖h‖2 ≤
∫

X

v2(x)‖Λx(πF (x)(h))‖2dµ ≤ B‖h‖2

for all h ∈ H, where πF (x) is the orthogonal projection onto the subspace F (x).

(Λ, F, v) is called a tight gc-fusion frame for H if A = B, and Parseval if A = B = 1.
If we only have the upper bound, we call (Λ, F, v) is a Bessel gc-fusion mapping for H.

Let K = ⊕x∈XKx and L2(X,K) be a collection of all measurable functions ϕ : X −→
K such that for each x ∈ X, ϕ(x) ∈ Kx and∫

X

||ϕ(x)||2dµ <∞.

It can be verified that L2(X,K) is a Hilbert space with inner product defined by〈
ϕ, γ

〉
=
∫

X

〈
ϕ(x), γ(x)

〉
dµ

for ϕ, γ ∈ L2(X,K) and the representation space in this setting is L2(X,K).

Remark 1.6. Let (Λ, F, v) be a Bessel gc-fusion mapping with Bessel bound B, ϕ ∈
L2(X,K) and h ∈ H. Then∣∣∣ ∫

X

v(x)
〈
Λ∗x(ϕ(x)), h

〉
dµ
∣∣∣ =

∣∣∣ ∫
X

v(x)
〈
Λ∗x(ϕ(x)), πF (x)(h)

〉
dµ
∣∣∣

=
∣∣∣ ∫

X

v(x)
〈
ϕ(x),Λx(πF (x)(h))

〉
dµ
∣∣∣

≤
∫

X

v(x)‖ϕ(x)‖.‖Λx(πF (x)(h))‖dµ

≤
(∫

X

‖ϕ(x)‖2dµ
)1/2(∫

X

v2(x)‖Λx(πF (x)(h))‖2dµ
)1/2

≤ B1/2‖h‖(
∫

X

‖ϕ(x)‖2dµ)1/2.

So we may define:
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Definition 1.7. Let (Λ, F, v) be a Bessel gc-fusion mapping for H. We define the gc-
fusion pre-frame operator (synthesis operator) Tgf : L2(X,K)→ H, by

(1.11)
〈
Tgf (ϕ), h

〉
=
∫

X

v(x)
〈
Λ∗x(ϕ(x)), h

〉
dµ,

where ϕ ∈ L2(X,K) and h ∈ H. It is obvious that Tgf is linear and by Remark 1.6, Tgf

is a bounded linear mapping. Its adjoint

T ∗gf : H → L2(X,K)

will be called gc-fusion analysis operator, and Sgf = Tgf ◦ T ∗gf will be called gc-fusion
frame operator. For each h ∈ H and ϕ ∈ L2(X,K), we have〈

T ∗gf (h), ϕ
〉

=
〈
h, Tgf (f)

〉
=

∫
X

v(x)
〈
h,Λ∗x(ϕ(x))

〉
dµ

=
∫

X

v(x)
〈
πF (x)(h),Λ∗x(ϕ(x))

〉
dµ

=
∫

X

v(x)
〈
Λx(πF (x)(h)), ϕ(x)

〉
dµ

=
〈
vΛ(.)πF(.)(h), ϕ

〉
.

Hence for each h ∈ H,

(1.12) T ∗gf = vΛ(.)πF(.) .

2. Main Result

Definition 2.1. For each Bessel c-fusion mapping (F, v) for H, we shall denote

(2.1) AΛ,v = inf
h∈H1

‖vΛ(.)πF(.)(h)‖2,

(2.2) BΛ,v = sup
h∈H1

‖vΛ(.)πF(.)(h)‖2 = ‖vΛ(.)πF(.)‖
2.

Remark 2.2. Let (Λ, F, v) be a Bessel gc-fusion mapping for H. Since, for each h ∈ H〈
TgfT

∗
gf (h), h

〉
= ‖vΛ(.)πF(.)(h)‖2,

AΛ,v and BΛ,v are optimal scalars which satisfy

AΛ,v ≤ TgfT
∗
gf ≤ BΛ,v.

So (Λ, F, v) is a gc-fusion frame for H if and only if AΛ,v > 0.

Proposition 2.3. Let (Λ, F, v) be a Bessel gc-fusion mapping for H with bound D. The
following conditions are equivalent.
(i) (Λ, F, v) is a gc-fusion frame H with bounds C and D;
(ii) CId ≤ Sgf ≤ DId.
Moreover the optimal bounds are ‖Sgf‖ and ‖S−1

gf ‖−1.

Proof. (i) ⇒ (ii) is obvious. For (ii) ⇒ (i), let T ∗gf denote the analysis operator of
(Λ, F, v). Since Sgf = TgfT

∗
gf , for each h ∈ H, we have∫

X

v2‖Λx(πF (x)(h))‖2 dµ = ‖T ∗gf (h)‖2 ≤ ‖T ∗gf‖2‖h‖2 = ‖Sgf‖‖h‖2 ≤ D‖h‖2.

Also for all h ∈ H,

‖T ∗gf (h)‖2 =
〈
TgfT

∗
gf (h), h

〉
=
〈
Sgfh, h

〉
=
〈
S

1
2
gfh, S

1
2
gfh
〉

= ‖S
1
2
gfh‖

2 ≥ C‖h‖2.



116 M. H. FAROUGHI, A. RAHIMI, AND R. AHMADI

Also

‖Sgf‖ = sup
h∈H1

〈
Sgf (h), h

〉
= sup

h∈H1

‖vΛ(.)πF(.)(h)‖2 = BΛ,v.

So the optimal upper bound is ‖Sgf‖. For the optimal lower bound, if C be the lower
bound we have

C‖h‖2 ≤
〈
S

1/2
gf (h), S1/2

gf (h)
〉
≤ D‖h‖2.

By putting h = S
−1/2
gf (h), we have

C‖S−1/2
gf (h)‖2 ≤

〈
h, h

〉
≤ D‖S−1/2

gf (h)‖2,

thus

‖S−1
gf ‖ = sup

h∈H1

‖S−1/2
gf (h)‖2 ≤ C−1.

We conclude that AΛ,v ≤ ‖S−1
gf ‖−1. For other implication we have

‖h‖ ≤ ‖S−1/2
gf ‖‖S1/2

gf (h)‖.

Hence

inf
h∈H1

‖S1/2
gf (h)‖2 ≥ inf

h∈H1
‖h‖2‖S−1/2

gf ‖−2 = ‖S−1
gf ‖

−1,

we conclude that AΛ,v ≥ ‖S−1
gf ‖−1. Finally AΛ,v = ‖S−1

gf ‖−1. �

Corollary 2.4. Sgf is a positive and invertible operator from H into H.

Proof. It is results from the Proposition 2.3 . �

Like the perturbation of g-frames in [11], we can present the perturbation of gc-fusion
frames.

Definition 2.5. Let F : X → H, F̃ : X → H , Λ = {Λx ∈ B(F (x),Kx) : x ∈ X} and
Λ̃ = {Λ̃x ∈ B(F̃ (x),Kx) : x ∈ X}. Let 0 ≤ λ1, λ2 < 1 and ε > 0. We say that (Λ̃, F̃ , v)
is a (λ1, λ2, ε)-perturbation of (Λ, F, v) if for each h ∈ H and x ∈ X

‖Λx(πF (x)(h))− Λ̃x(πF̃ (x)(h))‖ ≤ λ1‖Λx(πF (x)(h))‖+ λ2‖Λ̃x(πF̃ (x)(h))‖+ ε‖h‖.

Theorem 2.6. Let (Λ, F, v) be a gc-fusion frame for H with bounds C and D, and let
v ∈ L2(X). Choose 0 ≤ λ1 < 1 and ε > 0 such that

(1− λ1)
√
C − ε

(∫
X

v2(x)dµ
)1/2

> 0.

Let F̃ : X → H be weakly measurable. Further, if (Λ̃, F̃ , v) be a (λ1, λ2, ε)-perturbation
of (Λ, F, v) for some 0 ≤ λ2 < 1, then (Λ̃, F̃ , v) is a gc-fusion frame for H with bounds

[
(1− λ1)

√
C − ε(

∫
X
v2(x)dµ)1/2

1 + λ2

]2

and [
(1 + λ2)

√
D − ε(

∫
X
v2(x)dµ)1/2

1− λ2

]2

.
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Proof. We first prove the Upper bound. For any h ∈ H, we get[ ∫
X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ
]1/2

≤
[ ∫

X

v2(x)(‖Λx(πF (x)(h))− Λ̃x(πF̃ (x)(h))‖+ ‖Λx(πF (x)(h))‖)2dµ
]1/2

≤
[ ∫

X

v2(x)(‖Λx(πF (x)(h))‖+ λ1‖Λx(πF (x)(h))‖

+ λ2‖Λ̃x(πF̃ (x)(h))‖+ ε‖h‖)2dµ
]1/2

=
[ ∫

X

((1 + λ1)v(x)‖Λx(πF (x)(h))‖+ λ2v(x)‖Λ̃x(πF̃ (x)(h))‖

+ εv(x)‖h‖)2dµ
]1/2

≤
[
(1 + λ1)2

∫
X

v2(x)‖Λx(πF (x)(h))‖2dµ
]1/2

+
[
λ2

2

∫
X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ
]1/2

+
[
ε2

∫
X

v2(x)‖h‖2dµ
]1/2

.

Thus

(1− λ2)
[ ∫

X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ
]1/2

≤ (1 + λ1)
[ ∫

X

v2(x)‖Λx(πF (x)(h))‖2dµ
]1/2

+ ε‖h‖
[ ∫

X

v2(x)dµ
]1/2

≤
[
(1 + λ1)

√
D + ε

(∫
X

v2(x)dµ
)1/2]

‖h‖.

Hence∫
X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ ≤
[

(1 + λ1)
√
D + ε(

∫
X
v2(x)dµ)1/2

1− λ2

]2

‖h‖2.

To prove the lower bound, for all h ∈ H we have[ ∫
X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ
]2

≥
[ ∫

X

v2(x)(‖Λx(πF (x)(h))‖ − ‖Λx(πF (x)(h))− Λ̃x(πF̃ (x)(h))‖)2dµ
]1/2

≥
[ ∫

X

v2(x)(‖Λx(πF (x)(h))‖ − λ1‖Λx(πF (x)(h))‖

− λ2‖Λ̃x(πF̃ (x)(h))‖ − ε‖h‖)2dµ
]1/2

=
[ ∫

X

((1− λ1)v(x)‖Λx(πF (x)(h))‖ − λ2v(x)‖Λ̃x(πF̃ (x)(h))‖

− εv(x)‖h‖)2dµ
]1/2

≥
[ ∫

X

(1− λ1)2v2(x)‖Λx(πF (x)(h))‖2dµ
]1/2

−
[ ∫

X

λ2
2v

2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ
]1/2

−
[ ∫

X

ε2v2(x)‖h‖2dµ
]1/2

.
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Thus

(1 + λ2)
[ ∫

X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ
]1/2

≥ (1− λ1)
[ ∫

X

v2(x)‖Λx(πF (x)(h))‖2dµ
]1/2

− ε
[ ∫

X

v2(x)dµ
]1/2

‖h‖

=
[
(1− λ1)

√
C − ε

[ ∫
X

v2(x)dµ
]1/2]

‖h‖.

Hence ∫
X

v2(x)‖Λ̃x(πF̃ (x)(h))‖2dµ ≥
[

(1− λ1)
√
C + ε(

∫
X
v2(x)dµ)1/2

1 + λ2

]2

‖h‖2.

This completes the proof. �

Theorem 2.7. Let (Λ, F, v) and (Λ̃, F̃ , v) be two Bessel gc-fusion mappings for H and
consider the operator SF,F̃ : H → H by

SF,F̃ (h) = TgfT
∗
gf̃

(h).

Then
(i) SF,F̃ is bounded and S∗

F,F̃
= SF̃ ,F .

(ii) Let there exists λ1 < 1 and λ2 > −1 such that

‖h− SF,F̃ (h)‖ ≤ λ1||h||+ λ2||SF,F̃ (h)||,

for each h ∈ H. Then (Λ̃, F̃ , v) is a gc-fusion frame for H and for each h ∈ H we have(
1− λ1

1 + λ2

)2 1
BF,v

‖h‖2 ≤
∫

X

v2(x)||Λ̃x(πF̃ (x)(h))||2dµ.

Proof. (i) For any h, k ∈ H we have〈
SF,F̃ (h), k

〉
=
〈
TgfT

∗
gf̃

(h), k
〉

=
∫

X

v(x)
〈
Λ∗x(T ∗

gf̃
(h)(x)), k

〉
dµ

=
∫

X

v(x)
〈
v(x)Λ̃x(πF̃ (x)(h)),Λx(πF (x)(k))

〉
dµ

=
∫

X

v2(x)
〈
Λ̃x(πF̃ (x)(h)),Λx(πF (x)(k))

〉
dµ.

Thus

|〈SF,F̃ (h), k〉|2 ≤
(∫

X

v2(x)||Λx(πF (x)(k))||2dµ
)(∫

X

v2(x)||Λ̃x(πF̃ (x)(h))||2dµ
)

≤ BΛ,vBΛ̃,v||h||
2||k||2.

Hence SF,F̃ is a bounded operator with

||SF,F̃ || ≤ B
1/2
Λ,vB

1/2

Λ̃,v
.

Also S∗
F,F̃

is bounded and we have

S∗
F,F̃

= (TgfT
∗
gf̃

)∗ = Tgf̃T
∗
gf = SF̃ ,F .

(ii) Since

||h− SF,F̃ (h)|| ≤ λ1||h||+ λ2||SF,F̃ (h)||,
thus

λ1||h||+ λ2||SF,F̃ || ≥ ||h|| − ||SF,F̃ (h)||.
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Hence
||SF,F̃ (h)|| ≥ 1− λ1

1 + λ2
||h||.

By the above inequalities for each h ∈ H we have

|〈SF,F̃ (h), h〉|2 ≤ (BΛ,v‖h‖2)
(∫

X

v2||Λ̃x(πF̃ (x)(h))||2dµ
)
.

Therefore∫
X

v2||Λ̃x(πF̃ (x)(h))||2dµ) ≥ 1
BΛ,v

||SF,F̃ (h)||2 ≥ 1
BΛ,v

(
1− λ1

1 + λ2

)2

||h||2.

�

Definition 2.8. Two Bessel gc-fusion mappings (Λ, F, v) and (Λ̃, F̃ , v) for H are called
a dual pair if

TgfT
∗
gf̃

= I.

Corollary 2.9. If (Λ, F, v) and (Λ̃, F̃ , v) is a dual pair of gc-fusion Bessel mappings for
H then both of (Λ, F, v) and (Λ̃, F̃ , v) are gc-fusion frames for H.
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