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A SPECTRAL DECOMPOSITION IN ONE CLASS OF
NON-SELFADJOINT OPERATORS

G. M. GUBREEV, M. V. DOLGOPOLOVA, AND S. I. NEDOBACHIY

Abstract. In this paper, a class of special finite dimensional perturbations of Volterra

operators in Hilbert spaces is investigated. The main result of the article is finding
necessary and sufficient conditions for an operator in a chosen class to be similar

to the orthogonal sum of a dissipative and an anti-dissipative operators with finite

dimensional imaginary parts.

1. Integral estimates of the resolvent norms

1.1. Let B be an arbitrary Volterra dissipative operator with trivial kernel, acting on a
separable Hilbert space H. We note that in this article the operator is called dissipative, if
it satisfies ImB := 1

2i (B−B
∗) > 0. In what follows we assume that ImB is an operator

of rank n, i.e., the dimenion of the non-selfadjoint subspace L := (ImB)H is equal to n.
The main objects of the investigation make operators of the type

(1.1) Kh = B∗h+
n∑
k=1

(h, fk)gk, h ∈ H,

where {gk}n1 is a some basis of the subspace L, fk(1 6 k 6 n) are arbitrary vectors of
space H.

We briefly discuss only two reasons that make a study of operators of type (1.1)
of some interest. Firstly, for a lot of concrete examples of operators B the problem
of the corresponding operator K roots vectors unconditional basis being property is of
the independent interest. For example, the eigen vectors of the operator K can be the
vectors exponents, the property of being an unconditional basis indication of which find
the important applications in problems of control theory for systems with the distributed
parameters [1].

Secondly, the investigation of the spectral problems of type

dx(t)
dt

= iλH(t)x(t), x(0) = Ax(a), a > 0,

where H(t) is non-negative almost everywhere on [0, a] matrix-valued function, amounts
to studying the operators K in case all the vectors fk belongs to L also.

The main result of this paper (theorem 2.1) is finding the conditions, under which the
operator K is similar to the orthogonal sum of dissipative and anti-dissipative operators
with the finite-dimensional imaginary parts. Now these operators are investigated enough
complete [2], [3].
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As result of simple calculations we’ll get

(1.2) K(I − zK)−1h = B∗(I − zB∗)−1h+
n∑
k=1

fk(h, z)(I − zB∗)−1gk, h ∈ H,

where the functionals fk(h, z) are determined by formulae

(1.2′) fk(h, z) =
n∑
j=1

Ψkj(z)
(
(I − zB∗)−1h, fj

)
, Ψ(z) := Φ−1(z), 1 6 k 6 n,

where, in turn, the elements of Φ(z) are calculating in the way

(1.3) Φkj(z) = δjk − z
(
(I − zB∗)−1gj , fk

)
, 1 6 k, j 6 n.

For the formulation this section main result of we’ll need the next concepts. Firstly,
the (A2)-Muckenhoupt condition for almost everywhere non-negative on the real axis
(n× n)-matrix weight W is in the [4]

(A2) sup
∆

{∥∥∥( 1
|∆|

∫
∆

W (x)dx
)1/2( 1

|∆|

∫
∆

W−1(x)dx
)1/2∥∥∥} <∞,

where ∆ is an arbitrary interval of real axis and |∆| is its length.
The second concept is connected with the theory of non-selfadjoint operators. Let B

be Volterra dissipative operator with n-dimensional imaginary part, i.e.

(1.4)
1
i
(B −B∗)h =

n∑
k=1

(h, ϕk)ϕk, h ∈ H.

The entire matrix-valued function Θ, which elements are determined by equalities

(1.5) Θjk(z) = δkj + iz
(
(I − zB)−1ϕk, ϕj

)
, 1 6 k, j 6 n

is called the characteristic matrix-valued function of operator B. If in these formulae we’ll
turn to the another system of vectors {ϕk}, then the according characteristic matrix-
valued function is got from Θ(z) by multiplication from the left and from the right on
the constant unitary matrix. We note, that matrix-valued function Θ(z) is inner in the
C+, i.e.

Θ(z)Θ∗(z)− En 6 0, z ∈ C+, Θ(x)Θ∗(x)− En = 0, x ∈ R,

where as En the identity matrix is denoted.
With every operator K of type (1.1) we’ll connect the matrix weight

(1.6) W (x) := Φ(x)Φ∗(x), x ∈ R,

where Φ is determined by formulae (1.3). Further, the entire function ∆(z) = det Φ(z)
roots set we denote as Λ. It follows from the formula (1.2), that σ(K) =

{
λ−1
k : λk ∈ Λ

}
∪

{0}, moreover, the numbers λ−1
k belong to the discrete spectrum of operator K.

The next result plays the important role in this paper constructions.

Theorem 1.1. We assume, the operator K of type (1.1) doesn’t have the real eigenvalues.
Then, if the matrix weight W (x) is determined by equality (1.6) and satisfies the condition
(A2), then the integral estimation

(1.7)
∫

R

∥∥K(I − xK)−1h
∥∥2
dx 6M‖h‖2, h ∈ H

holds, and here M is a some constant. Conversely, let for all h ∈ H the unequality (1.7)
holds and let the characteristic matrix-valued function Θ(z) of operator B is such that
elements of matrix e−iδzΘ(z) are bounded in C+ under some δ > 0. Then the matrix
weight W (x) satisfies (A2)-Muckenhoupt condition.
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We’ll presuppose some subsidiary statements to theorem 1.1 proof. We’ll turn to the
functional model of operator B for it. As KerB = {0}, then operator B is unitary
equalent to the operator

(1.8) (Bh)(z) := z−1 (h(z)− h(0)) ,

acting in the model space KΘ := H2
+(Cn) 	 ΘH2

+(Cn), where H2
+(Cn) is Hardy vector

class in C+, and Θ is a characteristic matrix-valued function of operator B [5]. It isn’t
difficult to verify the operator B∗ acts by formula

(1.9) (B∗h)(z) = z−1 (h(z)−Θ(z)h(0)) , h ∈ KΘ.

We note, that every operator of type (1.1) is unitary equal to the operator

(1.10) Kh = z−1 (h(z)−Θ(z)h(0)) +
n∑
k=1

(h, fk)gk

in space KΘ, where fk are the arbitrary vectors from KΘ (1 6 k 6 n), and vectors gk are
defined by equalities

(1.11) gk = z−1(En −Θ(z))ck, 1 6 k 6 n.

In these formulae the vectors system {ck}n1 runs through the set of all the basises of space
Cn. Really, it follows from formulae (1.8), (1.9), that

B −B∗

i
h = i

En −Θ(z)
z

h(0) = i
En −Θ(z)

z

n∑
k=1

(h(0), ek)ek,

where ek (1 6 k 6 n) are the standard orths of space Cn. If we assume ϕk = z−1(En −
Θ(z))ek, we’ll get

B −B∗

i
h = i

n∑
k=1

(h(0), ek)Cnϕk =
1

2π

n∑
k=1

(h, ϕk)KΘϕk,

i.e. the subspace of model operator non-selfadjointion L is stretched on the system of
vectors {ϕk}n1 . In such a way, an arbitrary basis of subspace L consists of vectors (1.11).
It is known [6], that under the unitary equivalence of operator to its functional model,
the subspace of non-selfadjointion is transferring into the subspace of model operator
non-selfadjointion. So, every operator of considered class is unitary equivalent to some
operator of type (1.10).
1.2. In what follows we’ll denote as Qn the set of operators K in separable Hilbert space
H, which are defined by formulae (1.1). With the every such operator we’ll connect the
mapping

(1.12) D(z, h) := − 1
2πi

row
{(

(I − zB∗)−1gk, h
)
H

}n
1
.

We note, in this formula vectors {gk}n1 make a basis of subspace L := (ImB)H. Moreover,
in the next formulation the norm in Cn is Euclidian one, i.e. if α = row {α}n1 , then
‖α‖2 =

∑n
k=1 |αk|2.

Lemma 1.1. There exist such constants m,M > 0, that for all h ∈ H the two-sided
estimation

m‖h‖2H 6
∫

R
‖D(x, h)‖2Cn dx 6M‖h‖2H

holds.
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Proof. In power of the theorem about the unitary equivalence of functional model it is
enough to proove lemma for the operator B∗ acting by formula (1.9) in the space KΘ.
The vectors gk are given by equalities (1.11).

Step 1. At first we’ll proove the correctness of equalities

(1.13) gk = (I + iB∗)PΘ
ck
x+ i

, 1 6 k 6 n,

where PΘ is the orthoprojector from H2
+(Cn) onto KΘ. Let P− be the orthoprojector from

Ln2 (R)1 onto Hardy class H2
−(Cn). Taking into consideration the formula PΘ = ΘP−Θ∗,

we’ll get

PΘ
ck
x+ i

= ΘP−
Θ∗(x)ck
x+ i

= Θ(x)
Θ∗(x)−Θ∗(i)

x+ i
ck =

(En −Θ(x)Θ∗(i))
x+ i

ck, 1 6 k 6 n.

From (1.9) the formula

(I + iB∗)h = z−1 ((z + i)h(z)− iΘ(z)h(0))

is following. Therefore

(I + iB∗)PΘ
ck
x+ i

= z−1 ((En −Θ(z)Θ∗(i)) ck −Θ(z) (En −Θ∗(i)) ck)

= z−1 (En −Θ(z)) ck = gk,

i.e. the equalities (1.13) are proved.
Step 2. Let us proove, that for all z ∈ C− the formulae

(1.14) (I + zB∗)−1gk = PΘ
ck

x+ z
, 1 6 k 6 n

hold.
Really, it is easily concluding from (1.9), that

(I + zB∗)−1gk =
λgk(λ) + zΘ(λ)Θ−1(−z)gk(−z)

z + λ
, 1 6 k 6 n.

Taking into consideration (1.13) we get

(I + zB∗)−1gk = (I + zB∗)−1(I + zB∗)PΘ
ck
x+ i

=
λ+ i

λ+ z
PΘ

ck
x+ i

+
z − i
λ+ z

Θ(λ)Θ−1(−z)PΘ
ck
x+ i

, λ ∈ C+.

We remark, the representations

PΘ
ck
x+ i

− ck
λ+ i

= Θ(λ)hk(λ), hk ∈ H2
+(Cn), 1 6 k 6 n

hold.
Therefore, it follows from the previous equality, that

(I + zB∗)−1gk =
λ+ i

λ+ z

ck
λ+ i

+ Θ(λ)
(
λ+ i

λ+ z
hk(λ) +

z − i
λ+ z

Θ−1(−z)PΘ
ck
x+ i

)
.

As KΘ = H2
+(Cn)	ΘH2

+(Cn), the equalities (1.14)

(I + zB∗)−1gk = PΘ(I + zB∗)−1gk = PΘ
ck

x+ z
, 1 6 k 6 n

follow from it.
Step 3. For each vector h(λ) = col (hk(λ))n1 from space KΘ and for each z ∈ C−,

taking account of (1.14) we’ll calculate the inner products

− 1
2πi

(
(I − zB∗)−1gk, h

)
KΘ

= − 1
2πi

(
PΘ

ck
x− z

, h

)
KΘ

= − 1
2πi

∫
R

(ck, h(x))
x− z

dx.

1As Ln
2 (R) the standard space L2 of Cn-valued functions on real axis is denoted.
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If we input the notations

h∗(z) = row
(
hj(z̄)

)n
1
, ck = col (ckj)nj=1, 1 6 k 6 n,

then we can transform

(ck, h(x))Cn =
n∑
j=1

ckjh
∗
j (x) =

{
h∗(x) tC

}
k
,

where C is the matrix composed of columns c1, c2, . . . , cn, tC is a transposed matrix C,
and as {h∗(x)C}k the k component of line h∗(x)C is denoted.

So, from (1.12) the formula

(1.15) D(z, h)(tC)−1 = − 1
2πi

∫
R

h∗(x)
x− z

dx = h∗(z), z ∈ C−

follows.
Therefore, the equality∫

R

∥∥D(x, h)(tC)−1
∥∥2

Cn dx =
∫

R
‖h∗(x)‖2Cn dx = ‖h‖2KΘ

holds, and the statement of lemma follows from it. �

Let us remind that the entire matrix-valued function Φ(z) is defined by formulae (1.3),
and the functionals fk(h, z) are computed by formulae (1.2’).

Lemma 1.2. Let K be an arbitrary operator of class Qn without real eigenvalues. The
matrix weight W (x) := Φ(x)Φ∗(x), x ∈ R satisfies the (A2) condition if and only if the
constant M > 0 such that for all h ∈ H

(1.16)
∫

R

n∑
k=1

|fk(h, x)|2 dx 6M ‖h‖2H

exists.

Proof. Step 1. If the vector-valued function l(x) = col (lk(x))n1 is continious and finite
on R, then vector ϕ of type

(1.17) ϕ =
∫

R

n∑
k=1

(I − zB∗)−1gklk(x)dx

belongs to the space H. For each h ∈ H taking account of lemma 1.1 we have

|(ϕ, h)| 6
∫

R

∣∣∣ n∑
k=1

(
(I − xB∗)−1gk, h

)
lk(x)

∣∣∣dx 6 4π2

∫
R
‖D(x, h)‖Cn ‖l(x)‖Cn dx

6 4π2
(∫

R
‖D(x, h)‖2 dx

)1/2(∫
R
‖l(x)‖2dx

)1/2

6M1

(∫
R
‖l(x)‖2dx

)1/2

‖h‖.

Therefore integral (1.17) can be given a sense for each vector-valued function l ∈ Ln2 (R),
moreover,

(1.18) ‖ϕ‖2 6M2
1 ‖l‖2.

Step 2. We’ll input under consideration the vector-valued function f(h, z) := col {fk(h, z)}n1
and calculate it’s value for vector h = ϕ (see formula (1.7)). At first we notice, that if

h =
∑

ck(I − λB∗)−1gk, ck ∈ C, c = col (ck)n1 ,
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then, taking account of formulae (1.2’), (1.3), we get

fk(h, z) =
n∑
j=1

Ψkj(z)
n∑

m=1

cm
(
(I − zB∗)−1(I − λB∗)−1gm, fj

)
=

n∑
m=1

n∑
j=1

Ψkj(z)(λ− z)−1 (Φjm(z)− Φjm(λ)) cm.

We note, that here the next variant of Hilbert identity

(I − zB∗)−1(I − λB∗)−1 = (z − λ)−1
(
z(I − zB∗)−1 − λ(I − λB∗)−1

)
was used.

The received formulae can be rewritten in the vector form

f(h, z) = (λ− z)−1Φ−1(z) (Φ(z)− Φ(λ)) c.

Now let ϕ be defined by formula (1.17), in which l run through the space Ln2 (R). It
follows from the previous equality, that

f(ϕ, z) =
∫

R
f
( n∑
k=1

lk(y)(I − yB∗)−1gk, z
)
dy = Φ−1(z)

∫
R

Φ(z)− Φ(y)
y − z

l(y)dy.

Step 3. Now let the estimation (1.16) holds. We’ll consider it on the vectors ϕ of type
(1.7). Using the calculated value f(ϕ, z) and inequality (1.18) we’ll find

(1.19)

∫
R
‖f(ϕ, x)‖2Cn dx =

∫
R

∥∥∥Φ−1(x)
∫

R

Φ(x)− Φ(y)
y − x

l(y)dy
∥∥∥2

Cn
dx

6M‖h‖2H 6MM2
1

∫
R
‖l(x)‖2Cndx.

Taking account of boundness of Hilbert transform H, from (1.19) we conclude the esti-
mate ∫

R

∥∥Φ−1(x)HΦ(y)l(y)
∥∥2

Cn dx 6M2

∫
R
‖l(x)‖2Cn dx

for all l ∈ Ln2 (R). It follows from here [4], that weight
(
Φ−1(x)

)∗Φ−1(x) and weight
Φ(x)Φ∗(x) satisfy the (A2) condition on R both.

Step 4. Conversely, let weight W (x) satisfies the (A2) condition. Then operator
Φ−1HΦ is bounded in the space Ln2 (R) [4] and, therefore, the estimate (1.19) holds, i.e.

(1.20)
∫

R
‖f(ϕ, x)‖2Cn dx 6MM2

1

∫
R
‖l(x)‖2Cn dx,

where ϕ and l are connected by equality (1.17). As we remarked yet, we may consider
that in (1.17) B∗ acts in KΘ by formula (1.9), and vectors gk are defined by equalities
(1.11).

Let C be the matrix composed of columns c1, c2, . . . , cn, which input in formula (1.11).
We assume

(1.21) l(x) = − 1
2πi

C−1ϕ0(x),

where ϕ0 is an arbitrary function from KΘ, and we’ll calculate the vector-valued function
ϕ according in force of (1.17). Taking account of formulae (1.12), (1.15) we’ll get for each
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h ∈ KΘ

(ϕ, h)KΘ = − 1
2πi

∫
R

n∑
k=1

(
(I − zB∗)−1gk, h

) {
C−1ϕ0(x)

}
k
dx

=
∫

R

n∑
j=1

{
D(x, h)C−1

}
j
{ϕ0(x)}j dx

=
∫

R

n∑
j=1

{ϕ0(x)}j {h
∗(x)}j dx = (ϕ0, h)KΘ ,

i.e. ϕ = ϕ0. In such way, if in (1.20) l ∈ KΘ, then ϕ run through all the space KΘ and
in force of (1.21)∫

R
‖l(x)‖2dx 6M2

∫
R
‖ϕ0(x)‖2dx = M2

∫
R
‖ϕ(x)‖2dx,

i.e. the inequality (1.16) holds. �

Let us remind, that the characteristic matrix-valued function Θ(z) of operator B is
determined by formulae (1.4), (1.5).

Lemma 1.3. If under some δ > 0 the elements of matrix e−iδzΘ(z) are bounded in C+,
then for each basis {gk}n1 of non-selfadjointion space L the constant α > 0, such that∥∥∥∑

k=1

ck(I − xB∗)−1gk

∥∥∥2

H
> α‖C‖2Cn , x ∈ R

for each vector C := col (ck)n1 , exists.

Proof. Without loss of generality, we can consider gk = ϕk (1 6 k 6 n), where the basis
{ϕk}n1 is contained in formulae (1.4), (1.5). Then the equality [6]

(1.22) En −Θ(z)Θ∗(z) = Im zR(z), z ∈ C

holds. Here the elements of matrix R(z) are determined by formulae

Rkj(z) =
(
(I − z̄B∗)−1gk, (I − z̄B∗)−1gj

)
, 1 6 k, j 6 n.

Therefore it follows, from lemma condition and (1.22), that under some η > 0

(1.23)
∥∥∥ n∑
k=1

ck (I − (x− iη)B∗)−1
gk

∥∥∥2

=
n∑

k,j=1

ckRkj(x+ iη)c̄j > α0

n∑
k=1

|ck|2,

where α0 > 0. As KerB = {0} and the operator B is dissipative one, then there exist
non-bounded densely given operator (B∗)−1 which is also dissipative one. Therefore, the
semigroup U(t) := exp

{
i(B∗)−1t

}
is contractive and nilpotent [7], and, consequently,

(1.24) (2π)−1

∫
R

∥∥B∗(I − xB∗)−1h
∥∥2
dx =

∫ ∞
0

‖U(t)h‖2dt 6M‖h‖2, h ∈ H.

It is easily follows from here, that for each vector g ∈ H the two-sided estimation

(1.25)
∥∥∥(I − (x− iη)B∗)−1

g
∥∥∥ � ∥∥(I − xB)−1g

∥∥ , x ∈ R

holds. At last we assume g =
∑n
k=1 ckgk here and take account of inequality (1.23). �

The proof of theorem 1.1. Let weight W (x) satisfies the matrix Muckenhoupt condition.
As ‖Θ(z)c‖ 6 ‖c‖, z ∈ C+, c ∈ Cn [6], then it follows from (1.22), that ‖(I + (x −
iη)B∗)−1gk‖, 1 6 k 6 n is bounded on R and, therefore in force of (1.25),∥∥(I − xB∗)−1gk

∥∥ 6M, 1 6 k 6 n.
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Now the estimate (1.7) is easily following from formulae (1.2), (1.16), (1.24).
Conversely, let for all h ∈ H the inequality (1.7) holds. It follows from formula (1.2)

taking account of (1.24), that

(1.26)
∫

R

∥∥∥ n∑
k=1

fk(h, x)(I − xB∗)−1gk

∥∥∥2

H
dx 6M‖h‖2, h ∈ H.

Applying lemma 1.3, we’ll get

α

n∑
k=1

|fk(h, x)|2 6 ‖
n∑
k=1

fk(h, x)(I − xB∗)−1gk‖2, h ∈ H, x ∈ R.

Now the estimate (1.16) follows from (1.26) and we take account of lemma 1.2. �

The proved theorem will be used in the next paragraph in theorem 2.1 proof.

2. The spectral decomposition of class Qn operators

2.1. In this paragraph we’ll continue the class Qn operators investigation. The further
progress is connected with studying of vector-valued functions

(2.1) K(h, z) := col
{(

(I − zK)−1h, gj
)}n

1
, h ∈ H

properties, where K is an arbitrary operator of type (1.1). As a result of elementary
calculations we get

(2.2)
(
(I − zK)−1h, gj

)
=
(
(I − zB∗)−1h, gj

)
+ z

n∑
k=1

fk(h, z)
(
(I − zB∗)−1gk, gj

)
.

We’ll put in consideration the column

K0(h, z) = col
{(

(I − zB∗)−1h, gj
)}n

1
, z ∈ C, h ∈ H.

We’ll remind, that the vectors system {gk}n1 forms a basis of subspace (ImB)H in this
formula.

Lemma 2.1. The next statements are correct:
1) the constants m,M > 0 such that

m‖h‖2H 6
∫

R
‖K0(h, x)‖2Cn dx 6M‖h‖2H, h ∈ H

exist;
2) for each h ∈ H

K0(h, x) ∈ H2
−(Cn), Θ(x)K0(h, x) ∈ H2

+(Cn), x ∈ R,

where Θ is the operator B characteristic matrix-valued function.

Proof. We’ll consider the line

(2.3)
tK0(h,−z̄) = row

{(
gj , (I + z̄B∗)−1h

)}n
1

= row
{

(I − z(−B))−1
gj , h

}n
1

= −2πiD1(z, h),

where D1(z, h) is defined by formula (1.12) for operator B1 := (−B)∗. We’ll remark, that
{gj}n1 is also a basis of subspace (ImB1)H and the easily verified equality

Θ1(z) = Θ∗(−z̄), z ∈ C,

where Θ1 is a characteristic matrix-valued function of operator B1 holds.
Now it is clear, that from lemma 1.1 and from equality (2.3) the first statement

of lemma follows. Further, we conclude from formula (1.15), that components of line
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tK0(h,−z̄), h ∈ H, belong to Hardy classH2
− and, therefore, K0(h, x) ∈ H2

−(Cn). Further,
it follows again from (1.15) for the transformation D1(z, h), that components of line

D1(z, h)Θ1(z) = − 1
2πi
· tK0(h,−z̄)Θ∗(−z̄)

belong to H2
+. It is equaivalent to fact Θ(x)K0(h, x) ∈ H2

+(Cn) for all h ∈ H. �

Lemma 2.2. If the matrix weight W (x) = Φ(x)Φ∗(x), x ∈ R satisfies the (A2) condition,
then the constant M > 0, such that∫

R
‖K(h, x)‖2Cn dx 6M‖h‖2H, h ∈ H,

exists.

Proof. Without loss of generality we can consider that in (2.1) gk = ϕk (1 6 k 6 n),
where basis {ϕk}n1 is contained in formulae (1.4), (1.5). Therefore from (2.2) taking
account of (1.5) we conclude the equalities(

(I − zK)−1h, gj
)

=
(
(I − zB∗)−1h, gj

)
− i

n∑
k=1

(
δjk −Θ∗jk(z̄)

)
fk(h, z), 1 6 j 6 n,

which can be rewritten in a vector form

(2.4) K(h, z) = K0(h, z)− i (En −Θ∗(z̄)) f(h, z), h ∈ H,

where f(h, z) = col {fk(h, z)}n1 , Θ(z) is the operator B characteristic matrix-valued
function. As Θ(z) is an inner one in C+, then

‖K(h, x)‖Cn 6 ‖K0(h, x)‖Cn + 2‖f(h, x)‖Cn .

Now the statement of lemma follows from the lemma 2.1 and lemma 1.2. �

2.2. In this article we consider the problem of conditions under which the lower bound

(2.5) m‖h‖2H 6
∫

R
‖K(h, x)‖2Cn dx, h ∈ H

holds, where m is a some positive constant. We’ll start from the factorizations of the
entire matrix-valued function Φ, which elements are defined by equalities (1.3).

Lemma 2.3. Let the entire matrix-valued function Φ corresponds to operator K ∈ Qn.
Then

1) in the domain C+ the factorization

Φ(z)Θ(z) = w+(z)Q+(z)

holds. Here w+ is the an outer matrix-valued function and Q+ is the inner one
[2] in C+.

2) in the domain C− the factorization

Φ(z) = w−(z)Q−(z)

holds. Here w− is the outer matrix-valued function and Q− is the inner one in
C−.

Proof. It follows from equalities (1.3) and (1.12), that the columns of matrix z−1(En −
Φ(z)) lie in the image of transform D(z, h). It follows from (1.15), that parameters
of vector-valuated function D(z, h)Θ(z) belong to H2

+. Therefore the elements of ma-
trix z−1 (En − Φ(z)) Θ(z) belong to H2

+ and, consequently, the elements of matrix (z +
i)−1Φ(z)Θ(z) have this property also. In such way, the factorization [8].

(z + i)−1Φ(z)Θ(z) =
◦
w+(z)Q+(z), z ∈ C+
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is correct. Here
◦
w+ is an outer matrix-valued function and Q+ is an inner one in a

domain C+. As w+(z) := (z + i)
◦
w+(z) is outer one also, then the first statement of

lemma is proved. The second statement is prooving analogously. �

Let v be some inner in C+ matrix-valued function of order n. In the model space
Kv = H2

+(Cn)	 vH2
+(Cn) we’ll consider the operator

(Taϕ)(x) = Pve−iaxϕ(x), ϕ ∈ Kv,

where Pv is the orthoprojector from H+
2 (Cn) onto Kv. As for each h+ ∈ H2

+(Cn) the
equality (ϕ,Θ(x)h+) = 0 holds, then(

e−iaxϕ(x),Θ(x)h+

)
=
(
ϕ(x),Θ(x)eiaxh+(x)

)
= 0.

It follows from here, that the formula

(2.6) (Taϕ)(x) = P+e
−iaxϕ(x), ϕ ∈ Kv

is correct. Here P+ is the orthoprojector from Ln2 (R) onto H2
+(Cn).

It is assumed, that v(z) is analytical in some neighbourhood z = 0 and the condition
v(0) = En holds.

Lemma 2.4. If the condition

inf
Imλ>0

{
|det v(λ)|+

∣∣eiaλ − 1
∣∣} > 0

holds, then 1 does not belong to operator Ta spectrum.

Proof. In space Kv we’ll consider the semigroup of contraction operators [3]

Tt = P+e
−itxϕ(x), ϕ ∈ Kv

and we’ll compute the next integral, assuming Imλ > 0∫ ∞
0

eiλtTtϕdt = P+

∫ ∞
0

ei(λ−xt)ϕ(x)dt = −iP+
ϕ(x)
x− λ

= −iϕ(x)− ϕ(λ)
x− λ

, ϕ ∈ Kv.

On the other hand we’ll consider the operator

(2.7) (Af)(z) = zf(z)− lim
y→∞

iyf(iy)

on the maximal by inclusion domain of definition in space Kv. The simple calculations
show, that

(A− λI)−1ϕ =
ϕ(x)− ϕ(λ)

x− λ
.

From here it follows [7], that Tt = exp{−iAt} and it is necessary to formulate the con-
ditions, under which 1 /∈ σ(T ∗a ). It is made with the help of theorem about the mapping
of spectrum in functional calculus Sz.-Nagy-Foias [9]. For the contraction operator

V = (A∗ − iI)(A∗ + iI)−1

we have

(2.8) T ∗a = exp{iA∗a} = u(V ), u(z) = exp
{
−1 + z

1− z
a

}
with the help of the standard transform [9] we’ll turn from space Kv to space

Kw(D) := H2
+(D)	 wH2

+(D), w(z) := v
(
i(1 + z)(1− z)−1

)
, z ∈ D,

where H2
+(D) is a Hardy class in the unit disk D. Coming from the formula (2.7) it isn’t

difficult to verify that operator V is defined by equality

(V f)(z) = Pwzf(z), f ∈ Kw(D),
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where Pw is the orthoprojector from H2
+(D) onto Kw(D). We’ll denote the minimal

function of contraction V as mV (z), z ∈ D. Then from (2.8) 1 /∈ σ(T ∗a ) follows if and
only if [9] the condition

(2.9) inf
z∈D
{|mV (z)|+ |u(z)− 1|} > 0

holds. As detw(z) is divided into mV (z) in algebra H∞ [2], then from the condition

inf
z∈D
{|detw(z)|+ |u(z)− 1|} > 0

the (2.9) follows. Now it is left to make a change z = (λ − i)(λ + i)−1, λ ∈ C+ in the
last inequality. �

In the constructions what follow we’ll use formula (2.4) for the vector-valued function
K(h, z), i.e.

K(h, z) = K0(h, z)− i (En −Θ∗(z̄)) f(h, z),
where K0(h, z) = col

{(
(I − zB∗)−1h, gj

)}
, the parameters fk(h, z) of column f(h, z)

are defined by formulae (1.2’), Θ(z) is a characteristic matrix-valued function of operator
B. We’ll input the column of entire functions F (h, z) := col

{(
(I − zB∗)−1h, fj

)}n
1

and
notice, that

(2.10) f(h, z) = Φ−1(z)F (h, z), z /∈ Λ.

We’ll remind, that as Λ we denote the sequence of roots of equation det Φ(z) = 0.
We’ll input the notations

(2.10′) Λ± := Λ ∩ C±; µ+
k := λ−k , λ−k ∈ Λ−; µ−k := λ+

k , λ+
k ∈ Λ+.

Further, as b+(z) we’ll denote the Blaschke product in C+ with zeroes on sequence {µ+
k }.

Analogously, let b−(z) be Blaschke product in C− with zeroes {µ−k }. We note, that both
products are built taking account of det Φ(z) zeroes multiplicity.

The next lemma will be proved in that special case when Θ(z) = eiazEn. Moreover,
we assume Λ ∩ R = ∅.

Lemma 2.5. Let the operator K ∈ Q is such that Θ(z) = eiazEn and let the weight
W (x) = Φ(x)Φ∗(x), x ∈ R satisfies the (A2) matrix condition. Then if the conditions

inf
Imλ>0

{
|b+(λ)|+ |eiaλ − 1|

}
> 0, inf

Imλ<0

{
|b−(λ)|+ |e−iaλ − 1|

}
> 0

hold, then the estimate (2.5) holds.

Proof. Step 1. As Θ(z) = eiazEn, then it follows from (2.4), (2.10), that

(2.11) K(h, z) = K0(h, z)− i(1− e−iaz)Φ−1(z)F (h, z), h ∈ H.

The existance of factorization Φ(z) = w−(z)Q−(z), z ∈ C− follows from lemma 2.3.
Therefore

Φ−1(x)F (h, x) = Q−1
− (x)w−1

− (x− i0)F (h, x), x ∈ R
and it follows from (1.16), that

(2.11′)
∫

R

∥∥w−1
− (x− i0)F (h, x)

∥∥2
dx 6M‖h‖2, h ∈ H.

Also we note, that W (x) = Φ(x)Φ∗(x) = w−(x − i0)w∗−(x − i0), where w− is the outer
matrix-valued function. Further, the parameters of F (h, z) are the entire functions of
exponential type, not overestimated a. Therefore it follows from (2.11′) [10], that

w−1
− (x− i0)F (h, x) ∈ H2

−(Cn), h ∈ H.

In domain C+ we’ll consider the inner matrix-valued function

(2.12) Θ+(z) := Q∗−(z̄), z ∈ C+.
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Then the functions of type

P+Φ−1(x)F (h, x) = P+Θ+(x+ i0)w−1
− (x− i0)F (h, x)

are orthogonal to subspace Θ+(x)H2
+(Cn), i.e. they belong to the model space KΘ+ .

Taking account of lemma 2.1 and equality (2.11) we come to the lower bound∫
R
‖K(h, x)‖2Cn dx >

∫
R
‖P+K(h, x)‖2Cn dx >

∫
R

∥∥(1− P+e
−iax)P+Φ−1(x)F (h, x)

∥∥2
dx.

If we assume the condition of lemma 2.4 holds, i.e.

inf
Imλ>0

{
|det Θ+(λ)|+ |eiaλ − 1|

}
> 0,

then previous estimate can be continued

(2.13)
∫

R
‖K(h, x)‖2Cndx > m

∫
R
‖P+Φ−1(x)F (h, x)‖2dx.

It follows from lemma 2.3 and equality (2.12), that

det Φ(z̄) = f(z) det Θ+(z), z ∈ C+,

where f(z) is some outer function. From this equality det Θ+(z) = eiαzb+(z), α > 0
follows [11]. Therefore from the lemma 2.5 condition we conclude, that the conditions of
lemma 2.4 hold, i.e. estimate (2.13) holds.

Step 2. We remind that the factorization

Φ(z)eiaz = w+(z)Q+(z)

holds in domain C+. So, from (2.11) under z ∈ C+ we find

eiazK(h, z) = eiazK0(h, z)− i(eiaz − 1)Q−1
+ (z)w−1

+ (z)eiazF (h, x).

We’ll input the inner matrix-valued function in domain C−
(2.13′) Θ−(z) := Q∗+(z̄), z ∈ C−.

Then we’ll get the representation

(2.14) eiaxK(h, x) = eiaxK0(h, x)− i(eiax − 1)Θ−(x− i0)w−1
+ (x+ i0)F (h, x)eiax.

As from (1.16) we conclude the estimate∫
R

∥∥w−1
+ (x+ i0)F (h, x)eiax

∥∥2
dx 6M‖h‖2, h ∈ H,

then it follows from the paper [10] results again, that

w−1
+ (x+ i0)F (h, x)eiax ∈ H2

−(Cn), h ∈ H.

Therefore, functions of type

ϕ−(x) := P−Θ−(x− i0)w−1
+ (x+ i0)F (h, x)eiax, h ∈ H

belongs to the space H2
−(Cn)	Θ−H2

−(Cn).
Now from (2.14) and lemma 2.1 we conclude the lower bound∫

R
‖K(h, x)‖2 dx >

∫
R
‖P−K(h, x)‖2 dx >

∫
R

∥∥(1− P−eiax)ϕ−(x)
∥∥2
dx.

From lemma 2.4 analog for operator

(Vaϕ−)(x) := P−eiaxϕ−(x), ϕ− ∈ H2
−(Cn)	Θ−H2

−(Cn)

it follows, that in case

(2.15) inf
Imλ<0

{
|det Θ−(λ)|+ |e−iaλ − 1|

}
> 0
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the previous estimate can be continued

(2.16)

∫
R
‖K(h, x)‖2dx > m

∫
R
‖ϕ−(x)‖2dx

= m

∫
R
‖P−Θ−(x)w−1

+ (x+ i0)F (h, x)‖2dx = m

∫
R
‖P−Φ−1(x)F (h, x)‖2dx.

Now we’ll prove that condition (2.15) holds. Really, it follows from lemma 2.3 and
equality (2.13), that

e−inazdet Φ(z̄) = g(z) det Θ−(z), z ∈ C−,

where g(z) is some outer function in C−. Therefore, det Θ−(z) = e−iβzb−(z), β > 0,
z ∈ C− and, so, inequality (2.15) is a corollary of proved lemma conditions.

Step 3. We’ll assume, that the estimate (2.5) doesn’t hold, i.e. the sequence hn, such
that ‖hn‖ = 1 and ∫

R
‖K(hn, x)‖2dx→ 0, n→∞

exists. Then it follows from (2.12) and (2.16), that

Φ−1(x)F (hn, x)→ 0, n→∞

in metric of space Ln2 (R). Now from (2.11) we conclude, that K0(hn, x) → 0 in Ln2 (R)
and in force of lemma 2.1 hn → 0, which is impossible. �

Remark. If the part of Fredholm spectrum Λ− is an empty or finite set, then the condition

inf
Imλ>0

{
|det Θ+(λ)|+ |eiaλ − 1|

}
> 0

concluding the estimate (2.13) is certainly realized. Therefore in this case the first in-
equality in the lemma 2.5 formulation can be excepted. Analogously, if the set Λ+ is
empty or finite, the second inequality in the lemma 2.5 formulationn can be excepted.
2.3. In the reasoning what follow, we’ll denote the operator K of class Qn with Θ(z) =
eiazEn as Ka, and a corresponding vector-valued function of type (2.1) as Ka(h, z). So,
in conditions of lemma 2.5 the double inequality

(2.17) m‖h‖2H 6
∫

R
‖Ka(h, x)‖2Cndx 6M‖h‖2H, h ∈ H

is correct.
We’ll consider the integral

(2.18) Ph :=
1

2πi

∫
R

n∑
k=1

fk(x, h)(I − xB∗)−1gkdx

for each h ∈ H, where functionals fk(x, h) have previous sence and the integration is
carried on in the direction of parameter x increase. It is integral of type (1.17) and so,
in force of lemma 1.2 and (1.18), it gives the bounded operator

‖Ph‖2 6 C
∫

R

n∑
k=1

|fk(x, h)|2dx 6 C1‖h‖2, h ∈ H.

Lemma 2.6. Let K be an arbitrary operator of class Qn without real eigenvalues and let
weight W (x) = Φ(x)Φ∗(x), x ∈ R satisfies the (A2) matrix condition. Then the equality

(2.19) K(Ph, x) = P+K(h, x), h ∈ H, x ∈ R

where P+ is the orthoprojector from Ln2 (R) onto H2
+(Cn), is correct.
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Proof. It follows from formulae (2.1) and (2.18), that

K(Ph, z) =
1

2πi

∫
R

n∑
k=1

fk(x, h)K((I − xB∗)−1gk, z)dx.

In force of (2.4) taking account of formula Θ∗(z̄) = Θ−1(z) [6], we’ll get

(2.20)
K
(
(I − xB∗)−1gk, z

)
= K0

(
(I − xB∗)−1gk, z

)
− i
(
En −Θ−1(z)

)
f
(
(I − xB∗)−1gk, z

)
.

We’ll remind that vectors gk, 1 6 k 6 n are contained in formulae (1.4), (1.5) by definition
of matrix-valued function Θ(z). So

K0

(
(I − xB∗)−1gk, z

)
= col

{(
(I − zB∗)−1(I − xB∗)−1gk, gj

)}n
j=1

= col

{
z
(
(I − zB∗)−1gk, gj

)
z − x

−
x
(
(I − xB∗)−1gk, gj

)
z − x

}n
j=1

= col

{
i
Θ−1
jk (z)−Θ−1

jk (x)
z − x

}n
j=1

= −i(x− z)−1
(
Θ−1(z)−Θ−1(x)

)
ek,

where ek (1 6 k 6 n) are the standard orths of space Cn. Also, we’ll take account of the
fact, that in lemma 1.2 proof (step 2) the formula

f
(
(I − xB∗)−1gk, z

)
= (x− z)−1Φ−1(z) (Φ(z)− Φ(λ)) ek

was got.
Therefore, if we return to (2.20), then we find

K
(
(I − xB∗)−1gk, z

)
= −i(x− z)−1

(
Θ−1(z)−Θ−1(x)

)
ek

− i(x− z)−1
(
En −Θ−1(z)

)
Φ−1(z) (Φ(z)− Φ(x)) ek

= i(x− z)−1
(
Θ−1(x)− En

)
ek + i(x− z)−1

(
En −Θ−1(z)

)
Φ−1(z)Φ(x)ek.

Therefore formula for K(Ph, z) can be written in a form

(2.21)
K(Ph, z) =

1
2πi

∫
R

i(Θ−1(x)− En)f(h, x)dx
x− z

+
1

2π
(
En −Θ−1(z)

)
Φ−1(z)

∫
R

Φ(x)f(h, x)
x− z

dx.

The second summand of this equality is equal to 0 under z ∈ C+. Really, it follows
from (2.10) that the entire vector-valued function F (h, z) = col

{
((I − zB∗)−1h, fj)

}n
1

is bounded in C− (dissipativity of operator B) and such, that in force of lemma 1.2∫
R

(
W−1(x)F (h, x), F (h, x)

)
dx =

∫
R

∥∥Φ−1(x)F (h, x)
∥∥2
dx

=
∫

R
‖f(h, x)‖2dx 6M‖h‖2, h ∈ H.

From here it follows that F (h, z) belongs to Hardy weight’s class in C− [10], i.e. under
z ∈ C+ the second summand of (2.21) is equal to 0. Directing z → x non-tangently and
taking account of (2.4) and lemma 2.1 we get

K(Ph, x) = P+

(
−i(En −Θ−1(x))f(h, x)

)
= P+

(
K0(h, x)− i(E0 −Θ−1(x))f(h, x)

)
= P+K(h, x),

and it proves the lemma. �
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Now we’ll use the proved lemma to the operators Ka. We input the notations for
images

H1 = PH, H2 = (I − P)H.

Then h = h1 + h2, h1 = Ph, h2 = (I − P)h for each h ∈ H and, moreover, from (2.17)
we conclude the two-sided estimates

‖h‖2H �
∫

R
‖Ka(h, x)‖2dx =

∫
R
‖P+Ka(h, x)‖2dx+

∫
R
‖P−Ka(h, x)‖2dx

=
∫

R
‖Ka(h1, x)‖2dx+

∫
R
‖Ka(h2, x)‖2dx � ‖h1‖2H + ‖h2‖2H.

From here it is following that P and (I −P) are the bounded projectors onto subspaces
H1, H2 and, also, H = H1+̇H2.

Now we’ll consider the linear operator

(Sh)(x) = Ka(h, x), h ∈ H

from H into space Ln2 (R). It follows from (2.17), that S is the isomorphism of H onto its
image. Moreover, the equalities

(SKh)(x) = col
{(

(I − xK)−1Kh, gk
)}

= x−1
(
col
{

((I − xK)−1h, gk)
}
− col {(h, gk)}

)
= x−1 ((Sh)(x)− (Sh)(0)) = k(Sh)(x), h ∈ H,

where the operator k is defined by formula

(kf)(x) = x−1(f(x)− f(0)), f ∈ SH,

are correct.
We note, that h1 ∈ H1 if and only if then Ka(h1, x) ∈ H2

+(Cn). From here it is easily
concluding, that the subspace H1 is invariant under the operator K and, consequently,
subspace SH1 is invariant under the operator k. Therefore [12], the inner in C+ matrix-
valued function U+, such that SH1 = H2

+(Cn) 	 U+H
2
+(Cn), exists. Analogously, the

image SH2 = H2
−(Cn) 	 U−H2

+(Cn), where U− is some inner matrix-valued function in
domain C−. So we come to the equalities

(2.22) SH = KU+ ⊕KU− , SKa = (k+ ⊕ k−)S,

where operators k+, k− are defined by formulae

(2.23)
(k+f)(z) = z−1(f(z)− f(0)), f ∈ KU+

(k−g)(z) = z−1(g(z)− g(0)), g ∈ KU− .

Lemma 2.7. Let K be an arbitrary operator of class Qn without the real eigenvalues. If
the conditions of lemma 2.5 hold, then there exist inner matrix-valued functions V+, V− in
domains C+,C− correspondingly such that operator K is similar to the operator k+⊕k−
in space KV+ ⊕KV− .2

Proof. Step 1. Let K be an arbitrary operator of class Qn. We can consider, that K is
acting in space KΘ by formulae (1.10), (1.11), i.e.

Kh = B∗h+
n∑
k=1

(h, fk)gk, gk = z−1(En −Θ(z))ck,

2In this formulation operators k+, k− act by formulae (2.23) in spaces KV+ ,KV− correspondingly.
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where vectors {ck}n1 forms some basis in Cn. We denote as a the exponential type of
characteristic matrix-valued function Θ(z). In space Ka := H2

+(Cn) 	 eiazH2
+(Cn) we’ll

consider the operator

(B∗ah)(z) = z−1
(
h(z)− eiazh(0)

)
, h ∈ Ka.

It is known, that Θ is a divisor of eiazEn and so subspace KΘ ⊆ Ka. It is invariant under
operator Ba and, moreover, B = Ba|KΘ [6]. Now we consider the operator

Kah = B∗ah+
n∑
k=1

(h, fk)g̃k, g̃k = z−1(1− eiaz)ck,

which belongs to class Qn and Θ(z) = eiazEn in space Ka. It isn’t difficult to verify the
correctness of equalities

PΘg̃k = gk, 1 6 k 6 n,

where PΘ is the orthoprojector from Ka onto KΘ. So PΘKah = Kh, h ∈ KΘ and then

(2.24) K∗ah = K∗h, h ∈ KΘ.

Now we’ll compute the matrix-valued functions corresponding to operators K and Ka in
force of formula (1.3). We have

Φakj(z) :=δjk − z
(
(I − zB∗a)−1g̃k, fj

)
= δkj − z

(
PΘ(I − zB∗a)−1g̃k, fj

)
=δkj − z

(
(I − zB∗)−1gk, fj

)
= Φkj(z), 1 6 k, j 6 n,

i.e. Φa(z) ≡ Φ(z), z ∈ C.
Step 2. As Φa = Φ, then the conditions of lemma 2.5 hold for operator Ka, i.e. the

two-sided inequality (2.17) holds. Therefore the equality (2.22) is correct, and, so

K∗aS
∗h = S∗(k∗+ ⊕ k∗−)h, h ∈ K := KU+ ⊕KU− ,

where U+(U−) is inner (n × n)-matrix-valued function in C+ (C−). We’ll define the
subspace L of space K by equality

L = {l ∈ K : S∗l ∈ KΘ} .

If we take account of (2.24) then it is following from the last equality, that

(2.25) K∗S∗l = S∗(k∗+ ⊕ k∗−)l, l ∈ L.

So, the subspace L is invariant under k∗+ ⊕ k∗−, where both operators have only discrete
spectrum. Moreover, the dimensions of their imaginary parts do not overestimate n.
Further, k∗+ is anti-dissipative, and k∗− is dissipative operator. Therefore [13], the space
L can be represented as L = L1⊕L2, where subspace L1 is invariant under k∗+, and sub-
space L2 is invariant under k∗−. Consequently, it follows from (2.25), that operator K∗

is similar to the orthogonal sum of dissipative and anti-dissipative operators. Moreover,
both summands have only discrete spectrum and the dimensions of their imaginary parts
don’t overestimate n. So operator K is similar to the orthogonal sum with the analogous
properties of summands. At last we use the theorem about functional models of dissipa-
tive operators with the discrete spectrum and n-dimensional imaginary parts [5]. �

2.4. In this article the main result of paper about spectral structure of special finite-
dimensional perturbations of Volterra operators will be proved. We’ll remind, that the
question is about operators of type (class Qn)

Kh = B∗h+
n∑
k=1

(h, fk)gk, h ∈ H,
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where B is Volterra dissipative operator with imaginary part ImB of rank n, fk (1 6
k 6 n) are the arbitrary vectors of space H, gk (1 6 k 6 n) is a some basis of subspace
(ImB)H. The entire matrix-valued function Φ(z) with elements

Φkj(z) = δjk − z
(
(I − zB∗)−1gj , fk

)
, 1 6 k, j 6 n

correspond to each operator K ∈ Qn. We denote the equation det Φ(z) = 0 roots set as
Λ (taking account of multiplicities), and, moreover, we assume

Λ± := Λ ∩ C±; Λ+ = {λ+
k }; Λ− = {λ−k }.

Further, as B+(λ) the Blaschke product in C+ with zeroes on sequence Λ+ is denoted.
As B−(λ) the Blaschke product in C− with zeroes on Λ− is denoted (taking account of
multiplicities).

Let k be an arbitrary completely continious dissipative operator with the trivial kernel
and imaginary part Im k of rank not more then n. The set of such operators acting in the
separable Hilbert space we denote as Dn. If k ∈ Dn then the non-bounded operator k−1

exists, moreover the semigroup exp{−ik−1t}, t > 0 is contractive. The set of operators
k ∈ Dn such that exp{−ik−1t} has negative exponential type we denote as D−n .

At last we remind that characteristic matrix-valued function Θ(z) of operator B is
defined by formulae (1.4), (1.5), a is the exponential type of Θ(z).

Theorem 2.1. Let K ∈ Qn and doesn’t have the real eigenvalues. If the matrix weight
Φ(x)Φ∗(x), x ∈ R satisfies the (A2) condition and the inequalities

(2.25) inf
Im z>0

{
|B+(z)|+ |eiaz − 1|

}
> 0, inf

Im z<0

{
|B−(z)|+ |e−iaz − 1|

}
> 0

are correct, then the operator K is similar to the orthogonal sum k1⊕ (−k2), where k1, k2

are the some operators of class D−n .
Conversely, let the operator K ∈ Qn be similar to the orthogonal sum k1 ⊕ (−k2),

k1, k2 ∈ D−n . If under some δ > 0 the matrix-valued function e−izδΘ(z) is bounded in
C+, then the weight Φ(x)Φ∗(x) satisfies the (A2) condition and the inequalities (2.25)
hold.

Remark. If the set Λ+ (Λ−) is finite or empty then in theorem 2.1 formulation the first
(second) inequality (2.25) must be excepted.

Proof. It isn’t difficult to see that the inequalities (2.25) are equivalent to the inequalities
which are contained in the lemma 2.5 formulation. Therefore, it follows from lemma 2.7,
that K is similar to k1⊕ (−k2), where k1, k2 are the operators of class Dn. Now we prove
that both operators k1, k2 ∈ D−n . Really, the correctness of estimate (1.7) follows from
the theorem 1.1. Therefore

(2.26)
∫

R

∥∥(k−1
1 − xI)−1f

∥∥2
dx 6M1‖f‖2,

∫
R

∥∥(k−1
2 − xI)−1g

∥∥2
dx 6M1‖g‖2,

for all f, g from the spaces where k1, k2 act. From resolvent generator representation by
Laplace transform of semigroup [7] it follows that

(2.27)
∫

R

∥∥exp{−ik−1
1 t}f

∥∥2
dx 6M1‖f‖2,

∫
R

∥∥exp{−ik−1
2 t}g

∥∥2
dx 6M2‖g‖2.

It is known [14], that from here the negativity of both semigroups exponential types
follows, i.e. k1, k2 ∈ D−n .

Conversely, let K ∈ Qn is similar to the orthogonal sum k1 ⊕ (−k2). As exponential
types exp{−ik−1

1 t}, exp{−ik−1
2 t} are negative, then the estimates (2.27) hold and so the

estimate (1.7) is correct for the operator K. It follows from the theorem 1.1, that the
weight Φ(x)Φ∗(x) satisfies the matrix Muckenhoupt condition. Further, the inequali-
ties (2.25) are equivalent to fact that 1 does not contained in the operators spectrums
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exp{−ik−1
1 a}, exp{−ik−1

2 a}. As k1, k2 ∈ D−n , the spectral radiuses of these operators are
less then 1, i.e. (2.25) hold. �

The further consideration of class Qn operators spectral properties is connected with
the more detailed investigation of operators k1, k2. We hope to dedicate the separate
publication to it.
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