FUNCTIONS ON SURFACES AND INCOMPRESSIBLE SUBSURFACES

SERGIY MAKSYMENKO

ABSTRACT. Let M be a smooth connected compact surface, P be either a real line \mathbb{R} or a circle S^1 . Then we have a natural *right* action of the group $\mathcal{D}(M)$ of diffeomorphisms of M on $\mathcal{C}^{\infty}(M, P)$. For $f \in \mathcal{C}^{\infty}(M, P)$ denote respectively by $\mathcal{S}(f)$ and $\mathcal{O}(f)$ its stabilizer and orbit with respect to this action. Recently, for a large class of smooth maps $f: M \to P$ the author calculated the homotopy types of the connected components of $\mathcal{S}(f)$ and $\mathcal{O}(f)$. It turned out that except for few cases the identity component of $\mathcal{S}(f)$ is contractible, $\pi_i \mathcal{O}(f) = \pi_i M$ for $i \geq 3$, and $\pi_2 \mathcal{O}(f) = 0$, while $\pi_1 \mathcal{O}(f)$ it only proved to be a finite extension of $\pi_1 \mathcal{D}_{\mathrm{id}}(M) \oplus \mathbb{Z}^l$ for some $l \geq 0$. In this note it is shown that if $\chi(M) < 0$, then $\pi_1 \mathcal{O}(f) = G_1 \times \cdots \times G_n$, where each G_i is a fundamental group of the restriction of f to a subsurface $B_i \subset M$ being either a 2-disk or a cylinder or a Möbius band. For the proof of main result incompressible subsurfaces and cellular automorphisms of surfaces are studied.

1. INTRODUCTION

Let M be a smooth compact connected surface and P be either the real line \mathbb{R} or the circle S^1 . Consider the *right* action of the group $\mathcal{D}(M)$ of diffeomorphisms of M on $\mathcal{C}^{\infty}(M, P)$ defined by

$$h \cdot f = f \circ h^{-1}$$

for $h \in \mathcal{D}(M)$ and $f \in \mathcal{C}^{\infty}(M, P)$. For every $f \in \mathcal{C}^{\infty}(M, P)$ let
 $\mathcal{O}(f) = \{f \circ h \mid h \in \mathcal{D}(M)\},$
 $\mathcal{S}(f) = \{h \mid f = f \circ h, h \in \mathcal{D}(M)\}$

be respectively the orbit and the stabilizer of f with respect to this action. We will endow $\mathcal{D}(M)$, $\mathcal{S}(f)$, $\mathcal{C}^{\infty}(M, P)$, and $\mathcal{O}(f)$ with the corresponding topologies \mathcal{C}^{∞} . Denote by $\mathcal{S}_{\mathrm{id}}(f)$ the identity path component of $\mathcal{S}(f)$ and by $\mathcal{O}_f(f)$ the path component of fin $\mathcal{O}(f)$. In [10] the author calculated the homotopy types of $\mathcal{S}_{\mathrm{id}}(f)$ and $\mathcal{O}_f(f)$ for all Morse maps $f: M \to P$.

Moreover, in [12] the results of [10] were extended to a large class of maps with (even degenerate) isolated critical points satisfying certain "non-degeneracy" conditions. In fact there were introduced three types of isolated critical points (called S, P, and N) and the following three axioms for f:

- (Bd) f takes constant value at each connected component of ∂M and $\Sigma_f \subset \text{Int}M$.
- (SPN) Every critical point of f is either an S- or a P- or an N-point.
- (Fibr) The natural map $p: \mathcal{D}(M) \to \mathcal{O}(f)$ defined by $p(h) = f \circ h^{-1}$ is a Serre fibration with fiber $\mathcal{S}(f)$ in topologies \mathcal{C}^{∞} .

²⁰⁰⁰ Mathematics Subject Classification. 37C05,57S05,57R45.

Key words and phrases. Incompressible surface, diffeomorphisms group, cellular automorphism, homotopy type.

This research is partially supported by grant of Ministry of Science and Education of Ukraine, No. M/150-2009.

SERGIY MAKSYMENKO

Recall that if $f : (\mathbb{C}, 0) \to (\mathbb{R}, 0)$ is a smooth germ for which $0 \in \mathbb{C}$ is an *isolated* critical point, then there exists a *homeomorphism* $h : \mathbb{C} \to \mathbb{C}$ such that h(0) = 0 and

$$f \circ h(z) = \begin{cases} \pm |z|^2, & \text{if } z \text{ is a } local extremum, [3], \\ \operatorname{Re}(z^n), (n \ge 1) & \text{otherwise, so } z \text{ is a } saddle, [15], \end{cases}$$

Examples of the foliation by level sets of f near 0 are presented in Figure 1.1.

FIGURE 1.1. Isolated critical points

From this point of view S-points are saddles, while P- and N-points a local extremes. Moreover, P-points admit non-trivial f-preserving circle actions (as non-degenerate local extremes do), while N-points admit only \mathbb{Z}_n -action preserving f. We will not give precise definitions but recall a large class of examples of such points.

Example 1.1. [10]. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a homogeneous polynomial without multiple factors with deg $f \geq 2$, so

$$f = L_1 \cdots L_a \cdot Q_1 \cdots Q_b, \qquad a + 2b \ge 2$$

where every L_i is a linear function and every Q_j is an irreducible over \mathbb{R} (i.e. definite) quadratic form such that $L_i/L_{i'} \neq \text{const}$ for $i \neq i'$ and $Q_j/Q_{j'} \neq \text{const}$ for $j \neq j'$.

If $a \ge 1$, so f has linear factors and thus 0 is a saddle, then the origin $0 \in \mathbb{R}^2$ is an S-point for f.

If a = 0 and b = 1, so $f = Q_1$, then the origin $0 \in \mathbb{R}^2$ is a P-point for f.

Otherwise, a = 0 and $b \ge 2$, so $f = Q_1 \cdots Q_b$. Then the origin $0 \in \mathbb{R}^2$ is an N-point for f.

Lemma 1.2. [10]. Let $f : M \to P$ be a C^{∞} map satisfying (Bd), and such that every of its critical points belongs to the class described in Example 1.1, in particular, f also satisfies (SPN). Then f also satisfies (Fibr).

It follows from Morse lemma and Example 1.1 that non-degenerate saddles are S-points while non-degenerate local extremes are P-points.

Now the main result of [12] can be formulated as follows.

Theorem 1.3. [10, 12]. Suppose $f : M \to P$ satisfies (Bd) and (SPN). If f has at least one S- or N-point, or if M is non-orientable, then $S_{id}(f)$ is contractible.

Moreover, if in addition f satisfies (Fibr), then $\pi_i \mathcal{O}_f(f) = \pi_i M$ for $i \geq 3$, $\pi_2 \mathcal{O}_f(f) = 0$, and for $\pi_1 \mathcal{O}(f)$ we have the following short exact sequence

$$1 \to \pi_1 \mathcal{D}(M) \oplus \mathbb{Z}^l \to \pi_1 \mathcal{O}_f(f) \to G \to 1,$$

for a certain finite group G and $l \ge 0$ both depending on f.

Thus, the information about the fundamental group $\pi_1 \mathcal{O}_f(f)$ is not complete. The aim of this note is to show that the calculation of $\pi_1 \mathcal{O}_f(f)$ can be reduced to the case when M is either a 2-disk, or a cylinder, or a Möbius band, see Theorems 1.7 and 1.8 below. The obtained results hold for a more general class of maps $M \to P$ than the one considered in [12].

168

1.4. Admissible critical points. We will now introduce a certain type of critical points for f. Let F be a vector field on $M, V \subset M$ be an open subset, and $h : V \to M$ be an embedding. Say that h preserves orbits of F if for every orbit o of F we have that $h(V \cap o) \subset o$.

Definition 1.5. Let $f: M \to P$ be a C^{∞} map and $z \in \text{Int}M$ be an isolated critical point of f which is not a local extreme (so z is a saddle). Say that z is **admissible** if there exists a neighbourhood U of z containing no other critical points of f and a vector field F on U having the following properties:

- (1) f is constant along orbits of F and z is a unique singular point of F.
- (2) Let (\mathbf{F}_t) be the local flow of F on U. Then for every germ of diffeomorphisms $h: (M, z) \to (M, z)$ preserving orbits of F there exists a C^{∞} germ $\sigma: (M, z) \to \mathbb{R}$ such that $h(x) = \mathbf{F}(x, \sigma(x))$ near z.

This definition almost coincides with the definition of an S-point, c.f. [12]. The difference is that for S-points it is also required that the correspondence $h \mapsto \sigma$ is continuous with respect to topologies C^{∞} . In particular every S-point is admissible.

Now put the following two axioms for f both implied by (SPN):

- (Isol) All critical points of f are isolated.
- (SA) Every saddle of f is admissible.

1.6. Main result. Let $\mathcal{D}_{id}(M)$ be the identity path component of the group $\mathcal{D}(M)$ and

$$\mathcal{S}'(f) = \mathcal{S}(f) \cap \mathcal{D}_{\mathrm{id}}(M)$$

be the stabilizer of f with respect to the right action of $\mathcal{D}_{id}(M)$. Thus $\mathcal{S}'(f)$ consists of diffeomorphisms h isotopic to id_M and preserving F, i.e. $f \circ h = f$.

For a closed subset $X \subset M$ denote by $\mathcal{S}'(f, X)$ the subgroup of $\mathcal{S}'(f)$ consisting of diffeomorphisms fixed on some neighbourhood of X.

The aim of this note is to prove the following theorem:

Theorem 1.7. Suppose $\chi(M) < 0$. Let $f : M \to P$ be a C^{∞} map satisfying the axioms (Bd), (Isol), and (SA). Then there exists a compact subsurface $X \subset M$ with the following properties:

(1) f is locally constant on ∂X and every connected component B of $\overline{M \setminus X}$ is either a 2-disk or a 2-cylinder or a Möbius band. Moreover, B contains critical points of f.

(2) Let $h \in S'(f, X)$ and B be a connected component of $M \setminus X$. Then the restriction $h|_B$ is isotopic in B to id_B with respect to some neighbourhood of $\partial B \cap X$.

(3) The inclusion $i : S'(f, X) \subset S'(f)$ induces a group isomorphism $i_0 : \pi_0 S'(f, X) \approx \pi_0 S'(f)$.

The proof of this theorem will be given in §7. We will now show how to simplify calculations of $\pi_1 \mathcal{O}(f)$ using Theorem 1.7.

Let X be the surface of Theorem 1.7 and let B_1, \ldots, B_l be all the connected components of $\overline{M \setminus X}$. For every $i = 1, \ldots, l$ denote by $\mathcal{D}_{id}(B_i, \partial B_i)$ the group of diffeomorphisms of B_i fixed on some neighbourhood of ∂B_i and isotopic to id_{B_i} relatively to some neighbourhood of B_i . Let also $\mathcal{S}'(f|_{B_i}, \partial B_i)$ be the stabilizer of the restriction $f|_{B_i} : B_i \to P$ with respect to the right action of $\mathcal{D}_{id}(B_i, \partial B_i)$. Then we have an evident isomorphism of groups:

(1.1)
$$\psi: \mathcal{S}'(f, X) \approx \underset{i=1}{\overset{l}{\times}} \mathcal{S}'(f|_{B_i}, \partial B_i), \qquad \psi(h) = (h|_{B_1}, \dots, h|_{B_l}),$$

It is easy to show that ψ is in fact a homeomorphism with respect to the corresponding C^{∞} topologies.

Theorem 1.8. Under assumptions of Theorem 1.7 suppose that f also satisfies (Fibr). Then we have an isomorphism:

$$\pi_1 \mathcal{O}_f(f) \approx \underset{i=1}{\overset{l}{\times}} \pi_0 \mathcal{S}'(f|_{B_i}, \partial B_i).$$

Proof. It is easy to show that if f satisfies (Fibr), then $\mathcal{O}_f(f)$ is the orbit of f with respect to the action of $\mathcal{D}_{id}(M)$ and the projection $p : \mathcal{D}_{id}(M) \to \mathcal{O}_f(f)$ is a Serre fibration as well, see [11]. Hence we get the following part of exact sequence of homotopy groups

$$\cdots \to \pi_1 \mathcal{D}_{\mathrm{id}}(M) \to \pi_1 \mathcal{O}_f(f) \to \pi_0 \mathcal{S}'(f) \to \pi_0 \mathcal{D}_{\mathrm{id}}(M) \to \cdots$$

Since $\chi(M) < 0$, we have $\pi_1 \mathcal{D}_{id}(M) = 0$, [5, 4, 7]. Moreover, $\mathcal{D}_{id}(M)$ is path-connected, whence together with Theorem 1.7 we obtain an isomorphism:

$$\pi_1 \mathcal{O}_f(f) \approx \pi_0 \mathcal{S}'(f) \stackrel{i_0}{\approx} \pi_0 \mathcal{S}'(f, X) \stackrel{(1.1)}{\approx} \underset{i=1}{\overset{l}{\times}} \pi_0 \mathcal{S}'(f|_{B_i}, \partial B_i).$$

proved. \Box

Theorem is proved.

Thus a general problem of calculation of $\pi_1 \mathcal{O}_f(f)$ for maps satisfying the above axioms completely reduces to the case when $\chi(M) \ge 0$. A presentation for $\pi_1 \mathcal{O}_f(f)$ will be given in another paper.

1.9. Structure of the paper. In next four sections we study incompressible subsurfaces $N \subset M$. §2 contains their definition and some elementary properties. In §3 we show how such subsurfaces appear in studying maps $M \to P$ with isolated singularities. In §4 and §5 we extend results of W. Jaco and P. Shalen [8] about deformations of incompressible subsurfaces and periodic automorphisms of surfaces. §6 contains two technical statements about deformations of diffeomorphisms preserving a map $M \to P$. Finally in §7 we prove Theorem 1.7.

2. Incompressible subsurfaces

The following Lemma 2.1 is well-known, see e.g. [14, Pr. 2.1]. It was also implicitly formulated in [8, page 359].

Lemma 2.1. 1) Let M be a connected surface, and $N \subset \text{Int}M$ be a proper compact (possibly not connected) subsurface neither of whose connected components is a 2-disk. Then the following conditions are equivalent:

- (a) for every connected component N_i of N the inclusion homomorphism $\pi_1 N_i \rightarrow \pi_1 M$ is injective;
- (b) none of the connected components of $\overline{M \setminus N}$ is a 2-disk.

If these conditions hold, then N will be called *incompressible*, see [8, Def. 3.2].

Corollary 2.2. If $N \subset M$ is incompressible, then $\chi(M) \leq \chi(N)$.

Corollary 2.3. Let $R \subset \text{Int}M$ be a proper compact connected subsurface. Then the following conditions are equivalent:

- (R1) the homomorphism $\xi : \pi_1 R \to \pi_1 M$ is trivial;
- (R2) R is contained in some 2-disk $D \subset M$.

Proof. The implication $(R2) \Rightarrow (R1)$ is evident.

 $(R1) \Rightarrow (R2)$. Suppose R is not contained in any 2-disk. We will show that ξ is non-trivial. Let N be the union of R with all of the connected components of $\overline{M \setminus N}$ which are 2-disks. Then by our assumption N is not a 2-disk and by Lemma 2.1 N is incompressible. Notice that ξ is a product of homomorphisms induced by the inclusions $R \subset N \subset M$:

$$\xi = \beta \circ \alpha : \pi_1 R \xrightarrow{\alpha} \pi_1 N \xrightarrow{\rho} \pi_1 M.$$

Also notice that α is surjective and by Lemma 2.1 β is a non-trivial monomorphism. Hence ξ is also non-trivial.

Corollary 2.4. Let $R \subset \text{Int}M$ be a proper (possibly non connected) subsurface such that neither of its connected components is contained in some 2-disk. Then every connected component B of $\overline{M \setminus R}$ which is not a 2-disk is incompressible.

Proof. Let C be a connected component of $M \setminus B$. Due to Lemma 2.1 it suffices to show that C is not a 2-disk. Notice that $C \cap R \neq \emptyset$, whence it contains some connected component R_i of R. By Corollary 2.3 the product of homomorphisms $\pi_1 R_i \to \pi_1 C \to \pi_1 M$ is non-trivial, and therefore $\pi_1 C \to \pi_1 M$ is also non-trivial. This implies that C is not a 2-disk.

3. Incompressible subsurfaces associated to a map $M \to P$

3.1. Singular foliation Δ_f of f. Let $f: M \to P$ be a map satisfying axioms (Bd) and (lsol). Then f induces on M a one-dimensional foliation Δ_f with singularities defined as follows: a subset $\omega \subset M$ is a leaf of Δ_f if and only if ω is either a critical point of f or a connected component of the set $f^{-1}(c) \setminus \Sigma_f$ for some $c \in P$. Thus the leaves of Δ_f are 1-dimensional submanifolds of M and critical points of f. Local structure of Δ_f near critical points of f is illustrated in Figure 1.1.

Denote by Δ_f^{reg} the union of all leaves of Δ_f homeomorphic to the circle and by Δ_f^{cr} the union of all other leaves. The leaves in Δ_f^{reg} (resp. Δ_f^{cr}) will be called *regular* (resp. *critical*). Similarly, connected components of Δ_f^{reg} (resp. Δ_f^{cr}) will be called *regular* (resp. *critical*) components of Δ_f . It follows from (Bd) that $\partial M \subset \Delta_f^{\text{reg}}$. It is also evident, that every critical leaf of Δ_f^{cr} either is homeomorphic to an open interval or is a critical point of f.

3.2. Atoms and canonical neighbourhoods of critical components of Δ_f . For every critical component K of Δ_f define its regular neighbourhood R_K as follows. Let c_1, \ldots, c_l be all the critical values of f and the values of f on ∂M . Since M is compact, it follows from axioms (Bd) and (Isol) that l is finite. For each $i = 1, \ldots, l$ let $W_i \subset P$ be a closed connected neighbourhood (i.e. just an arc) of c_i containing no other c_j . We will assume that $W_i \cap W_j = \emptyset$ for $i \neq j$.

Now let K be a critical component of Δ_f . Then $f(K) = c_i$ for some *i*. Let R_K be the connected component of $f^{-1}(W_i)$ containing K. Evidently, R_K is a union of leaves of Δ_f . Following [2] we will call R_K an *atom* of K, see Figure 3.1.

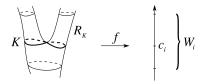


FIGURE 3.1

Evidently, R_K is a regular neighbourhood of K with respect to some triangulation of M. Similarly to [8] define the *canonical neighbourhood* N_K of K to be the union of R_K with all the connected components of $\overline{M \setminus R_K}$ being 2-disks. If N_K is not a 2-disk, then by Lemma 2.1 N_K is incompressible in M.

Notice that

(3.1)
$$\partial R_K = f^{-1}(\partial W_i) \cap R_K.$$

Let K' be another critical component of Δ_f such that f(K') = f(K). Since $R_{K'}$ is also constructed via W_i , we obtain from (3.1) that f takes on $\partial R_{K'}$ the same values as on ∂R_K . This technical assumption is not essential, however it will be useful for the proof of Theorem 1.7.

Lemma 3.3. Let K and K' be two distinct critical components of Δ_f .

- (i) Then R_K ∩ R_{K'} = Ø, while N_K and N_{K'} are either disjoint or one of them, say N_K, is contained in N_{K'}. In the last case N_K is a 2-disk.
- (ii) Suppose f(K) = f(K') and there exists $h \in \mathcal{S}(f)$ such that h(K) = K'. Then $h(R_K) = R_{K'}$ and $h(N_K) = N_{K'}$.

Proof. (i) follows from the assumption that $W_i \cap W_j = \emptyset$ for $i \neq j$, and (ii) follows from (3.1). We leave the details for the reader.

Lemma 3.4. Let K be a critical component of Δ_f such that N_K is a 2-disk. Then either

- (i) M is a 2-disk itself, or
- (ii) N_K is contained in a unique canonical neighbourhood $N_{K'}$ of another critical component K' of Δ_f such that $N_{K'}$ is not a 2-disk.

Proof. Let **R** be the union of atoms of all critical components of Δ_f . Then every connected component B of $\overline{M \setminus \mathbf{R}}$ is diffeomorphic to the cylinder $S^1 \times [0, 1]$ and the restriction $f|_B$ has no critical points.

Notice that $\overline{M \setminus N_K}$ is connected since N_K is a 2-disk. Also, there exists a unique connected component B (being a cylinder $S^1 \times [0,1]$) of $\overline{M \setminus \mathbf{R}}$ such that $\partial N_K \subset B$. Then $N_K \cup B$ is also a 2-disk.

Let n be the total number of critical components of Δ_f in $\overline{M \setminus N_K}$.

If n = 0, then $N_K \cup B = M$. Whence M is a 2-disk.

Suppose that $n \geq 1$. Let γ be another connected component of ∂B distinct from ∂N_K . Then there exists an atom $R_{K'}$ of some critical component K' of Δ_f such that $\gamma \subset \partial R_{K'}$. Since $N_K \cup B$ is a 2-disk, we see that it is contained in $N_{K'}$. If $N_{K'}$ is not a 2-disk, then the lemma is proved. Otherwise, the number of critical components in $\overline{M \setminus N_{K'}}$ is less than in $\overline{M \setminus N_K}$ and the lemma holds by the induction on n.

Example 3.5. Let \mathbb{T}^2 be a 2-torus embedded in \mathbb{R}^3 as shown in Figure 3.2 and $f : \mathbb{T}^2 \to \mathbb{R}$ be the projection onto the vertical line. Figure 3.2a) shows the critical components of level-sets of f, and Figure 3.2b) presents blackened canonical neighbourhoods of three critical components of Δ_f containing canonical neighbourhoods of all other critical components of Δ_f .

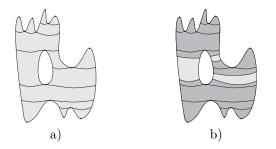


FIGURE 3.2

3.6. Canonical neighbourhoods of negative Euler characteristic. Suppose M is not a 2-disk. Let K_1, \ldots, K_r be all the critical components of Δ_f whose canonical neighbourhoods are not 2-disks. By Lemma 3.4 this collection is non-empty and by Lemma 3.3 $N_{K_i} \cap N_{K_j} = \emptyset$ for $i \neq j$. Moreover, again by Lemma 3.4, any other critical component of Δ_f is contained in some N_{K_i} . It follows that $\overline{M \setminus \bigcup_{i=1}^r N_{K_i}}$ contains no critical points of f, whence it is a disjoint union of cylinders $S^1 \times I$. Therefore

(3.2)
$$\chi(M) = \sum_{i=1}^{r} \chi(N_{K_i})$$

The following two statements will be used for the construction of a surface X of Theorem 1.7, see §7.

Lemma 3.7. The following conditions are equivalent:

(1) $\chi(M) < 0;$ (2) $\chi(N_{K_i}) < 0$ for some i = 1, ..., r.

Proof. $(1) \Rightarrow (2)$. As $\chi(M) < 0$, we get from (3.2) that $\chi(N_{K_i}) < 0$ for some *i*. The implication $(2) \Rightarrow (1)$ follows from Corollary 2.2.

Corollary 3.8. Let K_1, \ldots, K_k be all the critical components of Δ_f whose canonical neighbourhoods have negative Euler characteristic and R_{K_1}, \ldots, R_{K_k} be their atoms. Put $\mathcal{R}_{<0} := \bigcup_{i=1}^k R_{K_i}$. If $\mathcal{R}_{<0} \neq \emptyset$, then every connected component B of $\overline{M \setminus \mathcal{R}_{<0}}$ is either a 2-disk, or a cylinder, or a Möbius band.

Proof. Since the homomorphism $\pi_1 R_{K_i} \to \pi_1 M$ is non-trivial for each i, it follows from Corollary 2.4 that B is incompressible. Suppose $\chi(B) < 0$. Notice that f takes constant values of ∂B . Then by Lemma 3.7 there exists a critical component $K \subset B$ of Δ_f such that the canonical neighbourhood N of K with respect to $f|_B$ has negative Euler characteristic. It follows that the homomorphisms $\pi_1 N \to \pi_1 B \to \pi_1 M$ induced by the inclusions $N \subset B \subset M$ are monomorphisms, so N is incompressible in M. This implies that N is a canonical neighbourhood of K with respect to f. But since $\chi(N) < 0$, we should have that $N \subset \mathcal{R}_{<0}$, which contradicts to the assumption.

4. Deformations of incompressible subsurfaces

The aim of this section is to extend some results of [8] concerning incompressible subsurfaces, see Proposition 4.5.

4.1. \pm -twist. Let $\gamma \subset \operatorname{Int} M$ be a two-sided simple closed curve, U be its regular neighbourhood diffeomorphic to $S^1 \times [-1, 1]$ so that γ correspond to $S^1 \times 0$. Take a function $\mu : [-1, 1] \to [0, 1]$ such that $\mu = 0$ near $\{\pm 1\}$ and $\mu = 1$ on some neighbourhood of 0. Define the following homeomorphism $g_{\gamma} : M \to M$ by

(4.1)
$$g_{\gamma}(x) = \begin{cases} (z e^{2\pi i \mu(t)}, t), & x = (z, t) \in S^1 \times [-1, 1] \cong U \\ x, & x \in M \setminus U, \end{cases}$$

see Figure 4.1. Then g_{γ} is fixed on some neighbourhood of $\overline{M \setminus U}$ and isotopic to id_M via an isotopy supported in $\mathrm{Int}U$. Evidently, g_{γ} is a product of Dehn twists in opposite directions along the curves parallel to γ . Therefore we will call g_{γ} a \pm -twist near γ .

The following lemma is a particular case of [6, Lm. 6.1].

Lemma 4.2. [6, Lm. 6.1]. Suppose $\chi(M) < 0$. Let $\gamma \subset \text{Int}M$ be a simple closed curve which does not bound a 2-disk nor a Möbius band, $h : M \to M$ be a homeomorphism homotopic to id_M and such that $h(\gamma) = \gamma$. Let also $H : M \times I \to M$ be any homotopy of

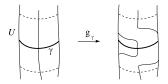


FIGURE 4.1. \pm -twist

 id_M to h. Then there exists another homotopy $G_t : M \times I \to M$ of id_M to h such that $G_t(\gamma) = \gamma$ and $G_t = H_t$ on $\overline{M \setminus U}$ for all $t \in I$.

Moreover, there exists $m \in \mathbb{Z}$ and a homotopy $G' : M \times I \to M$ of id_M to $g_{\gamma}^m \circ h$ such that $G'_t = G$ outside U and G'_t is fixed on γ for all $t \in I$.

The following statement is also well-known.

Lemma 4.3. Let M be a surface with $\chi(M) < 0$. Suppose $\partial M \neq \emptyset$ and let $\gamma_1, \ldots, \gamma_l$ be all the connected components of ∂M . For each $i = 1, \ldots, l$ let τ_i be a Dehn twist along the curve parallel to γ_i and fixed on ∂M . Let $m_1, \ldots, m_l \in \mathbb{Z}$ be integer numbers not of all are equal to zero. Then the homeomorphism $\tau_1^{m_1} \circ \cdots \circ \tau_l^{m_l}$ is not homotopic to id_M via a homotopy fixed on ∂M .

4.4. **Deformations of incompressible subsurfaces.** Let M be a surface distinct from the 2-sphere S^2 and the projective plane \mathbb{RP}^2 , $N \subset M$ be an incompressible subsurface, and N_1, \ldots, N_k be all of its connected components. Let also $h : M \to M$ be a homeomorphism homotopic to id_M and $H : M \times I \to M$ be any homotopy of id_M to h.

The following Proposition 4.5 follows the line of [8, Lm. 4.2]. In fact the first part of statement (B) is a particular case of that lemma.

Proposition 4.5. c.f. [8, Lm. 4.2] (A) If N_j is not a cylinder for some j, then $h(N_j) \cap N_j \neq \emptyset$.

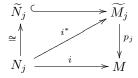
(B) Suppose $\chi(N_j) < 0$ and $h(N_j) \subset N_j$ for some j. Then there exists a homotopy $G: N_j \times I \to N_j$ of the identity map id_{N_j} to the restriction $h|_{N_j}$ such that $G_t(x) = H_t(x)$ whenever $H(x \times I) \subset N_j$.

Moreover, suppose $H(\gamma \times I) \subset \gamma$ for each connected component γ of ∂N_j . Extend G to a map $G: M \times I \to M$ by $G_t = H_t$ on $M \setminus N_j$. Then G is a homotopy of id_M to h.

(C) Suppose $\chi(N_j) < 0$ and $h(N_j) = N_j$ for all j = 1, ..., k. Then there exists a homotopy $G : M \times I \to M$ of id_M to h such that $G(N_j \times I) \subset N_j$ for all j = 1, ..., k and $G(B \times I) \subset B$ for every connected component B of $\overline{M \setminus N}$.

(D) Suppose $\chi(N_j) < 0$ and h is fixed on N for all j = 1, ..., k. Then there exists a homotopy of id_M to h fixed on N.

Proof. First we make the following remark which repeats the key arguments of [8, Lm. 4.2]. For j = 1, ..., k let $p_j : \widetilde{M}_j \to M$ be the covering map corresponding to the subgroup $\pi_1 N_j$ of $\pi_1 M$. Then the embedding $i : N_j \subset M$ lifts to the embedding $i^* : N_j \to \widetilde{M}_j$ which induces an isomorphism between $\pi_1 N_j$ and $\pi_1 \widetilde{M}_j$. Denote $\widetilde{N}_j = i^*(N_j)$. Then we have the following commutative diagram:



Since \widetilde{M}_j and N_j are aspherical, it follows from Whitehead's theorem that \widetilde{N}_j is a strong deformation retract of \widetilde{M}_j . Then every connected component of $\operatorname{Int}(\widetilde{M}_j \setminus \widetilde{N}_j)$ is an

open cylinder. Let $H: N_j \times I \to M$ be any homotopy between the identity embedding $H_0 = i: N_j \subset M$ and $H_1 = h|_{N_j}$. Then there exists a lifting $\widetilde{H}: N_j \times I \to \widetilde{M}_j$ such that $\widetilde{H}_0 = i^*$ and $p_j \circ \widetilde{H} = H$. Denote $\widetilde{N}'_j = \widetilde{H}_1(N_j)$. Since both \widetilde{N}_j and \widetilde{N}'_j are deformational retracts of \widetilde{M}_j , they are incompressible in \widetilde{M}_j .

(A) Suppose $h(N_j) \cap N_j = \emptyset$. Then $\operatorname{Int}(\widetilde{N}'_j)$ is included into some connected component C of $\operatorname{Int}(\widetilde{M}_j \setminus \widetilde{N}_j)$ being a cylinder. Since \widetilde{N}'_j is incompressible in M, it is also incompressible in C, whence \widetilde{N}'_j and therefore N_j are cylinders. Thus if N_j is not a cylinder, then we obtain that $h(N_j) \cap N_j \neq \emptyset$.

(B) Let $r_j: \widetilde{M}_j \to \widetilde{N}_j$ be any retraction. Then the map

$$G = p_j \circ r_j \circ \tilde{H} : N_j \times I \to N_j$$

is a homotopy of id_{N_j} to $h|_{N_j}$ in N_j . It is easy to see that $G_t(x) = H_t(x)$ whenever $H(x \times I) \subset N_j$.

Suppose that $H(\gamma \times I) \subset \gamma \subset N_j$ for each connected component γ of ∂N_j . Then by the construction $G_t = H_t$ on ∂N_j . Notice that ∂N_j separates M. Extend G to all of $M \times I$ by G = H of $(M \setminus N_j) \times I$. Then G is continuous, $G_0 = \mathrm{id}_M$ and $G_1 = h$.

(C) Suppose $\chi(N_j) < 0$ and $h(N_j) = N_j$ for all $j = 1, \ldots, k$. Let $\gamma_1, \ldots, \gamma_l$ be all the connected components of ∂N . Since N is incompressible, we have by Corollary 2.2 that $\chi(M) \leq \chi(N_j) < 0$ as well. Moreover, by (B) for each j the restriction $h|_{N_j}$ is a homeomorphism of N_j homotopic in N_j to id_{N_j} . This, in particular, implies that $h(\gamma_i) = \gamma_i$ for $i = 1, \ldots, l$.

Then by Lemma 4.2 we can suppose that $H(\gamma_i \times I) \subset \gamma_i$ for all i = 1, ..., l as well. Moreover, due to (B) it can be additionally assumed that $H(N_j \times I) \subset N_j$.

Let B be a connected component of $\overline{M \setminus N}$. Since N is incompressible, B is not a 2-disk. Then by Corollary 2.4 B is incompressible. Therefore we can apply statement (B) to B and change the homotopy G on $B \times I$ so that $G(B \times I) \subset B$.

(D) Suppose h is fixed on N. For each i let U_i be a regular neighbourhood of γ_i , and g_i be a \pm -twist near γ_i supported in U_i . We can assume that $U_i \cap U_j = \emptyset$ for $i \neq j$. Then by Lemma 4.2 there exist integer numbers $m_1, \ldots, m_l \in \mathbb{Z}$ and a homotopy $G : M \times I \to M$ of id_M to a homeomorphism $h' := g_1^{m_1} \circ \cdots \circ g_l^{m_l} \circ h$ such that G_t is fixed on L for each $t \in I$. By (C) we can also assume that $G(N_j \times I) \subset N_j$ and $G(B \times I) \subset B$ for every connected component of $\overline{M \setminus N}$ and each $j = 1, \ldots, k$.

In particular, we see that the restriction $h'|_N$ is homotopic to id_N relatively ∂N . But this restriction is evidently a product of Dehn twists along boundary components of N. Since $\chi(N_j) < 0$ for all j, we get from Lemma 4.3 that $m_i = 0$ for all $i = 1, \ldots, l$. Hence h' = h. Thus G is in fact a homotopy between id_M and h relatively ∂N . Since ∂N separates M, and id_M and h are fixed on N, we can change G on $N \times I$ by $G_t(x) = x$. This gives a homotopy between id_M and h relatively to N.

5. Automorphisms of cellular subdivisions

Let N be a compact surface and $\Xi = \{e_{\lambda}\}_{\lambda \in \Lambda}$ be some partition of N into a disjoint family of connected orientable submanifolds. Say that a homeomorphism $h: N \to N$ is a Ξ -homeomorphism provided it yields a permutation of elements of Ξ , that is for each $e \in \Xi$ its image h(e) also belongs to Ξ . An element $e \in \Xi$ will be called h-invariant if h(e) = e. Say that e is h^+ -invariant (h^- -invariant) if the restriction $h|_e: e \to e$ is a preserving (reversing) orientation map. We will also say that h is Ξ -trivial if each $e \in \Xi$ is h^+ -invariant. **Remark 5.1.** Notice that we can say that a map $h : e \to e$ preserves or reverses orientation only if dim $e \ge 1$. To each 0-dimensional element $e \in \Xi$ (being of course a point) we formally assign a "positive orientation" and assume that by definition every cellular homeomorphism preserves orientation of each invariant 0-element of Ξ .

Example 5.2. Let M be a connected surface and $K \subset \text{Int}M$ be an embedded finite connected graph. Assume that K is a subcomplex of M with respect to some triangulation of M. By R_K we will denote a regular neighbourhood of K. Following [8] define a *canonical* neighbourhood N_K of K to be the union of a regular neighbourhood R_K of K with those connected components of $M \setminus R_K$ which are 2-disks. Notice that $N_K \setminus K$ is a disjoint union of open 2-disks and half-open cylinders $S^1 \times (0, 1]$ with $S^1 \times \{1\}$ corresponding boundary components of ∂N_K . Thus we obtain a natural partition of N_K by vertexes and edges of K and connected components of $N_K \setminus K$. We shall denote this partition by Ξ_K .

Now let Ξ be a cellular subdivision of N. Denote by N_i (i = 0, 1, 2) the *i*-th skeleton of N. In particular, N_1 is a finite connected subgraph in N such that $N \setminus N_1$ is a disjoint union of 2-disks. Let c_i (i = 0, 1, 2) be the total number of *i*-cells of Δ . Then of course $\chi(N) = c_0 - c_1 + c_2$.

Let $C = \{C_i, \partial_i\}$ be the \mathbb{R} -chain complex of N corresponding to a given cellular subdivision. Thus C_i is a real vector space of dimension c_i with the *oriented i*-cells of Ξ as a basis. Then every Ξ -homeomorphism h induces a chain automorphism $\{h_i : C_i \to C_i, i = 0, 1, 2\}$ of C.

Recall that for each continuous mapping $h: N \to N$ we can define its *Lefschetz number* L(h) by the formula:

$$L(h) = \operatorname{tr}(\bar{h}_0) - \operatorname{tr}(\bar{h}_1) + \operatorname{tr}(\bar{h}_2)$$

where $\bar{h}_i : H_i(N, \mathbb{R}) \to H_i(N, \mathbb{R})$ is the induced homomorphism of the corresponding homology groups and tr is the trace of this homomorphism. If h is cellular, then L(h)can also be calculated via the chain homomorphisms h_i by:

$$L(h) = \operatorname{tr}(h_0) - \operatorname{tr}(h_1) + \operatorname{tr}(h_2)$$

The following theorem is relevant to [8, Lm. 4.4] being a statement about periodic homeomorphisms.

Theorem 5.3. c.f. [8, Lm. 4.4]. Let M be a compact surface, $K \subset M$ a connected subgraph, N_K be a canonical neighbourhood of K. Let also $h: M \to M$ a homeomorphism such that h is homotopic to id_M , h(K) = K, and h preserves the set of vertexes of K of degree 2, and $h(N_K) = N_K$. In particular, $h|_{N_K}$ is a Ξ_K -homeomorphism.

- (1) If $\chi(N_K) < 0$, then h is Ξ_K -trivial.
- (2) Suppose that $N_K = M$, M is orientable, and $\chi(M) \ge 0$. Then every **annulus** $a \in \Xi_K$ is h^+ -invariant, and the total number of h-invariant cells of Ξ_K is equal to $\chi(M)$.

The proof of Theorem 5.3 will be given in §5.7. It is based on Proposition 4.5 and on the following statement.

Proposition 5.4. Let N be a closed, orientable surface endowed with some cellular subdivision Ξ and $h : N \to N$ be a Ξ -homeomorphism preserving orientation of N and being not Ξ -trivial, i.e. $h(e) \neq e$ for some cell $e \in \Xi$. Then the number of h-invariant cells of Ξ is precisely equal to L(h). In particular, $L(h) \geq 0$.

Proof. Let k_i (i = 0, 1, 2) be the number of *h*-invariant *i*-cells of Ξ and $k := k_0 + k_1 + k_2$. We will show that

(5.1)
$$k_i = (-1)^i \operatorname{tr}(h_i),$$

which will imply

$$k = \sum_{i=0}^{2} k_i = \sum_{i=0}^{2} (-1)^i \operatorname{tr}(h_i) = L(h).$$

To prove (5.1) we have to show that there are no h^- -invariant 0- and 2-cells and no h^+ -invariant 1-cells. For 0-cells this holds by Remark 5.1 and for 2-cells from the assumptions that N is orientable and h preserves orientation.

Let e be an h-invariant 1-cell and f_0 and f_1 be two 2-cells that are incident to e. It is possible of course that $f_0 = f_1$. Since h preserves orientation, it follows that

(a) either $h_2(f_j) = +f_j$ for j = 0, 1, and $h_1(e) = +e$,

(b) or $h_2(f_j) = +f_{1-j}$ for j = 0, 1, and $h_1(e) = -e$.

The following Claim 5.5 implies that in the case (a) h is Ξ -trivial. Since h is not Ξ -trivial, we will get from (b) that all h-invariant 1-cells are h^- -invariant.

Claim 5.5. Suppose that there exists a 1-cell $e \in \Xi$ such that

- (i) $h_1(e) = +e \in C_1$ and
- (ii) h preserves each 2-cell which is adjacent to e.

Then h is Ξ -trivial.

Proof. Notice that for each vertex $v \in N_0$ the inclusion $N_1 \subset N$ induces a cyclic ordering of edges that are incident to v.

Let v be a vertex of e. Then it follows from (i) and (ii) that all of the 1- and 2cells incident to v are h^+ -invariant. Moreover, for each 1-cell that is incident to v the conditions (i) and (ii) also hold true. Since N is connected, it follows that h is Ξ trivial.

Proposition 5.4 is completed.

Corollary 5.6. Let N be a closed surface, Ξ be a cellular subdivision of M, and h : $N \to N$ be a Ξ -homeomorphism. If h is isotopic to id_N , then each of the following conditions implies that h is Ξ -trivial:

- (1) $\chi(N) < 0;$
- (2) $\chi(N) \ge 0$ and the total number of h^+ -invariant 2-cells is greater than $\chi(N)$.

Proof. Since h is isotopic to id_N , we have that $L(h) = L(id_N) = \chi(N)$.

If N is orientable, then h preserves orientation and by Proposition 5.4 h is either Ξ -trivial or has exactly $\chi(N) \ge 0$ invariant cells. Each of the conditions (1) and (2) implies that the number of h-invariant cells is not equal to $\chi(N)$. Hence h is Ξ -trivial.

Suppose that N is non-orientable and let $p: \widetilde{N} \to N$ be its oriented double covering. Then Ξ lifts to some cellular subdivision $\widetilde{\Xi}$ of \widetilde{N} and h lifts to a unique $\widetilde{\Xi}$ -cellular homeomorphism \widetilde{h} of \widetilde{N} which is isotopic to $\mathrm{id}_{\widetilde{N}}$. Therefore $L(\widetilde{h}) = L(\mathrm{id}_{\widetilde{N}}) = \chi(\widetilde{N}) = 2\chi(N)$.

We claim that every of the conditions (1) and (2) implies that \tilde{h} is Ξ -trivial, whence h will be Ξ -trivial.

(1) If $\chi(N) < 0$, then $\chi(\widetilde{N}) < 0$, whence \tilde{h} is Ξ -trivial.

(2) Suppose that $\chi(N) \geq 0$ and the total number b of h^+ -invariant 2-cells is greater than $\chi(N)$. Let e be an h^+ -invariant 2-cell of Ξ and \tilde{e}_1 and \tilde{e}_2 be its liftings in $\tilde{\Xi}$. Then they are \tilde{h}^+ -invariant. Hence \tilde{h} has at least $2b > 2\chi(N) = \chi(\tilde{N})$ invariant cells. Then by Proposition 5.4 \tilde{h} is $\tilde{\Xi}$ -trivial.

5.7. Proof of Theorem 5.3. Let $h: M \to M$ be a homeomorphism homotopic to the identity and such that $h|_{N_K}$ is a Ξ_K -homeomorphism. Let $\gamma_1, \ldots, \gamma_b$ be all the connected components of ∂N_K , and a_1, \ldots, a_b be the annuli of Ξ_K corresponding to them, so that $\gamma_i \subset a_i$. Shrink every γ_i to a point x_i and denote the obtained surface by \hat{N}_K . Then \hat{N}_K is a closed orientable surface and Ξ_K yields an evident cellular partition $\widetilde{\Xi}$ of \widehat{N}_K such that each annulus a_i corresponds to a certain 2-cell $\hat{a}_i \in \Xi$.

Also notice that $\chi(\widehat{N}_K) = \chi(N_K) + b$.

Claim 5.8. Suppose that either $\chi(N_K) < 0$ or $N_K = M$. Then

- (a) h|_{N_K} is homotopic to id_{N_K} in N_K.
 (b) h(γ_i) = γ_i for i = 1,..., b and h preserves orientation of γ_i;
- (c) h induces some $\widetilde{\Xi}$ -homeomorphism $\widehat{h}: \widehat{N}_K \to \widehat{N}_K$ homotopic to $\mathrm{id}_{\widehat{N}_K}$ with respect to $\{x_1, \ldots, x_b\}$, in particular, every 2-cell $a_i \in \widetilde{\Xi}$ is \widehat{h}^+ -invariant; (d) $L(\widehat{h}) = L(\operatorname{id}_{\widehat{N}_K}) = \chi(\widehat{N}_K) = \chi(N_K) + b.$

Proof. (a) For $N_K = M$ this statement is trivial. If $\chi(N_K) < 0$, then by (B) of Proposition 4.5 (or directly by [8, Lm. 4.1]) $h|_{N_K}$ is homotopic to id_{N_K} in N_K . All other statements (b)-(d) follow from (a). \Box

Now we can complete Theorem 5.3.

(1) Suppose that $\chi(N_K) < 0$. If also $\chi(\widehat{N}_K) < 0$, then by (1) of Corollary 5.6 \widehat{h} is $\widetilde{\Xi}$ -trivial, whence h is Ξ_K -trivial as well.

Let $\chi(\widehat{N}_K) \geq 0$. By Claim 5.8 \widehat{h} has at least $b \widehat{h}^+$ -invariant 2-cells a_1, \ldots, a_b . Moreover, since $\chi(\hat{N}_K) - b = \chi(N_K) < 0$, we obtain that $b > \chi(\hat{N}_K)$, whence by (2) of Corollary 5.6 \widehat{h} is $\widetilde{\Xi}$ -trivial. Therefore h is Ξ_K -trivial.

(2) Suppose that $N_K = M$ and M is orientable. It follows from (c) of Claim 5.8 and Proposition 5.4 that \hat{h} is either Ξ -trivial or has exactly $\chi(\hat{N}_K)$ invariant cells. Therefore, h is either Ξ_K -trivial or has exactly $\chi(\widehat{N}_K) - b = \chi(N_K) = \chi(M)$ invariant cells.

6. Deformations of diffeomorphism near critical components of Δ_f

The following two propositions will be crucial for the proof of Theorem 1.7. Suppose $f: M \to P$ satisfies (Bd), (Isol), and (SA).

Proposition 6.1. Let K be a critical component of Δ_f such that every $z \in K \cap \Sigma_f$ is admissible, R be its atom, and U be any neighbourhood of R. Let also $h \in \mathcal{S}(f)$. Suppose that $h(\omega) = \omega$ for each leaf ω of Δ_f contained in K and that h preserves orientation of ω whenever dim $\omega = 1$. Then h is isotopic in $\mathcal{S}(f)$ to a diffeomorphism $h' \in \mathcal{S}(f)$ such that h' = h on $M \setminus U$, and h' is the identity on some neighbourhood of R in U.

Proof. This proposition follows the line of [10, Th. 6.2]. For the convenience of the reader we will recall the key arguments for the case when M is orientable. A non-orientable case can be deduced from the orientable one similarly to [10, Th. 6.2].

As M is orientable, it has a symplectic structure. Let H be the Hamiltonian vector field of f. Then f is constant along orbits of H, the set of singular points of H coincides with the set of critical points of f, and the foliation by orbits of H coincides with Δ_f . In particular, H is tangent to ∂M and therefore generates a flow $\mathbf{H}: M \times \mathbb{R} \to M$.

We will now change H on neighbourhoods of admissible critical points of f similarly to [10, Lm. 5.1]. Let $z \in \Sigma_f$ be such a point and F_z be a vector field on some neighbourhood U_z of z satisfying assumptions of Definition 1.5. Then it follows from (i) of Definition 1.5 that for every $x \in U_z$ the vectors H(x) and F_z are parallel each other. Therefore, using partition unity technique and changing (if necessary) the signs of F_z , we can change H near each $z \in R \cap \Sigma_f$ and assume that $H = F_z$ on U_z .

Claim 6.2. There exists a neighbourhood U of R and a unique C^{∞} function $\sigma : U \to \mathbb{R}$ such that $h(x) = \mathbf{H}(x, \sigma(x))$ for all $x \in U$.

Proof. Let $z \in K \cap \Sigma_f$. By assumption h preserves leaves of Δ_f (i.e. orbits of **H**) in K with their orientations. Since $F_z = H$ near z, it follows from (ii) of Definition 1.5 that there exists a neighbourhood V_z of z and a unique C^{∞} function $\sigma_z : V_z \to \mathbb{R}$ such that $h(x) = \mathbf{H}(x, \sigma_z(x))$. Then the functions $\{\sigma_z\}_{z \in K \cap \Sigma_f}$ yield a unique C^{∞} function σ on the union $\bigcup_{z \in K \cap \Sigma_f} V_z$. It remains to note that $K \setminus \Sigma_f$ is a disjoint union of open intervals, whence σ uniquely extends to a C^{∞} function on R such that $h(x) = \mathbf{H}(x, \sigma(x))$, see [10, Lm. 6.4] for details.

Then the desired isotopy of h to h' in $\mathcal{S}(f)$ can be constructed similarly to [10, Lm. 4.14]. Take any C^{∞} function $\mu : M \to [0,1]$ such that $\mu = 0$ on some neighbourhood of $\overline{M \setminus U}$, $\mu = 1$ on R, and μ is constant along orbits of F. Then the function $\nu = \mu \sigma$ is C^{∞} and well-defined on all of M. Consider the following homotopy

(6.1)
$$g: M \times I \to M, \qquad g_t(x) = \mathbf{F}(x, t\nu(x)).$$

Then $g_0 = \operatorname{id}_M$, g_t is fixed on $\overline{M \setminus U}$, and $g_1 = h$ on R. Since μ is constant along orbits of F and h is a diffeomorphism, it follows from [10, Lm. 4.14] that g is an isotopy. Hence $g_t^{-1} \circ h : M \to M$, $(t \in I)$, is an isotopy in $\mathcal{S}(f)$ supported in U and deforming h to a desired diffeomorphism $h' = g_1^{-1} \circ h$.

Proposition 6.3. Let $X \subset M$ be a compact subsurface such that ∂X consists of (regular) leaves of Δ_f . Suppose $h \in S_{id}(f)$ is fixed on some neighbourhood U of X. Then there exists an isotopy of h to id_M in S(f) fixed on some neighbourhood of X.

Proof. Again we will consider only the case when M is orientable. Let $\mathbf{H} : M \times \mathbb{R} \to M$ be the flow constructed in the proof of Proposition 6.1. Since $h \in \mathcal{S}_{id}(f)$, there exists an isotopy $G : M \times I \to M$ of id_M to h in $\mathcal{S}(f)$. Then is it easy to show that each G_t preserves orbits of \mathbf{H} on some neighbourhood of X, see [10, Lm. 3.4]. Now it follows from [9, Th. 25], see also [13], that there exists a continuous function $\Lambda : (M \setminus \Sigma_f) \times I \to \mathbb{R}$ such that Λ_t is C^{∞} for each $t \in I$, $\Lambda_0 = 0$, and $G_t(x) = \mathbf{H}(x, \Lambda_t(x))$ for all $x \in M \setminus \Sigma_f$. Let $\mu : M \to [0, 1]$ be a C^{∞} function constant along orbits of H, $\mu = 0$ on X, and $\mu = 1$ on some neighbourhood of $\overline{M \setminus U}$. Define the following map $a : M \times I \to M$ by

$$a(x,t) = \begin{cases} \mathbf{H}(x,\mu(x)\Lambda(x,t)), & x \in U\\ G_t(x), & x \in M \setminus U. \end{cases}$$

We claim that a is an isotopy between id_M and h in $\mathcal{S}(f)$ fixed on some neighbourhood of X.

Since $\mu = 1$ on some neighbourhood of $\overline{M \setminus U}$, we see that a is continuous and a_t is C^{∞} for each t. Moreover,

$$a(x,0) = \begin{cases} \mathbf{H}(x,0) = x, & x \in U\\ G_0(x) = x, & x \in M \setminus U \end{cases}$$

Since h is fixed on U, it follows that $\Lambda(x, 1) = 0$ on U. Therefore $\mu \Lambda_1 = \Lambda_1$ and $a_1 = h$. As $\mu = 0$ on X, we obtain that a_t , $(t \in I)$, is fixed on X.

7. Proof of Theorem 1.7

Suppose $\chi(M) < 0$ and that $f : M \to P$ satisfies (Bd), (Isol), and (SA). We have to find a compact subsurface $X \subset M$ satisfying conditions (1)-(3) of Theorem 1.7.

SERGIY MAKSYMENKO

Construction of X. Let K_1, \ldots, K_k be all the critical components of level-sets of f whose canonical neighbourhoods N_{K_i} have negative Euler characteristic: $\chi(N_{K_i}) < 0$. Since $\chi(M) < 0$, we have by Lemma 3.4 that this collection is non-empty. Denote

$$\mathcal{K} = \bigcup_{i=1}^{k} K_i,$$

For each i = 1, ..., k choose an atom R_i for K_i in a way described in §3.2, and let N_i be the corresponding canonical neighbourhood of K_i . Then we can assume that conditions (i) and (ii) of Lemma 3.3 hold. In particular, $R_i \cap R_j = N_i \cap N_j = \emptyset$ for $i \neq j$.

Denote $\mathcal{R}_{<0} := \bigcup_{i=1}^{k} R_i$. Let also B_1, \ldots, B_q be all the connected components of $\overline{M \setminus \mathcal{R}_{<0}}$ such that every B_i is a cylinder and f has no critical points in B_i . Put

$$X = \mathcal{R}_{<0} \cup B_1 \cup \cdots \cup B_q.$$

We will show that X satisfies the statement of Theorem 1.7.

Example 7.1. Let M be an orientable surface of genus 2 embedded in \mathbb{R}^3 in a way shown in Figure 7.1a) and $f: M \to \mathbb{R}$ be the projection to the vertical line. Critical components of level-sets of f whose canonical neighbourhoods have negative Euler characteristic are denoted by K_1 and K_2 . The corresponding surface X is shown in Figure 7.1b).

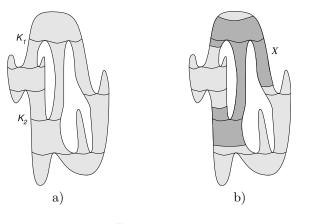


FIGURE 7.1

Before proving Theorem 1.7 we establish the following statement.

Claim 7.2. (i) Let $h \in S'(f)$. Then h preserves every leaf $\omega \subset \mathcal{R}_{<0}$ of Δ_f and its orientation.

(ii) Suppose h is fixed on a neighbourhood of $\mathcal{R}_{<0}$. Then for every connected component B of $\overline{M \setminus \mathcal{R}_{<0}}$ the restriction $h|_B$ is isotopic to id_B with respect to a neighbourhood of $\partial B \cap \mathcal{R}_{<0}$.

Proof. (i). It follows from the definition of \mathcal{K} that $h(\mathcal{K}) = \mathcal{K}$. We claim that in fact $h(K_i) = K_i$ for all $i = 1, \ldots, k$.

Indeed, suppose that $h(K_i) = K_j$ for some j. Then by Lemma 3.3 $h(R_i) = R_j$ and $h(N_i) = N_j$. On the other hand, since N_i is incompressible, $\chi(N_i) < 0$, and h is isotopic to id_M , it follows from (1) of Proposition 4.5 that $h(N_i) \cap N_i \neq \emptyset$. But $N_i \cap N_j = \emptyset$ for $i \neq j$. Hence $h(N_i) = N_i$ for each $i = 1, \ldots, k$.

Denote by Ξ_i the corresponding partition of N_i , see §5. Since h preserves the set of critical points of f, it follows that h preserves the set of vertexes of degree 2 of K_i . This implies that the restriction of h to N_i yields a certain automorphism h^* of the partition

 Ξ_i . As $\chi(N_i) < 0$ and h is isotopic to id_M , we get from Theorem 5.3 that h yields a trivial automorphism of Ξ_i . In particular, each (critical) leaf ω of Δ_f in K_i is h⁺-invariant.

Let $\omega \subset R_i$ be a regular leaf of Δ_f and $e \subset N_i$ be the corresponding element of Ξ_i containing ω , so e is either an open 2-disk or a half-open cylinder $S^1 \times (0, 1]$. Then

$$\omega = e \cap f^{-1} \circ f(\omega).$$

Notice that h(e) = e, since h is Ξ_i -trivial. Moreover, $f \circ h = f$ implies that $h \circ f^{-1} \circ f(\omega) = f^{-1} \circ f(\omega)$, whence $h(\omega) = \omega$. It remains to note that h preserves orientation of ω since it preserves orientation of leaves in K_i .

(ii) Let B be a connected component of $\overline{M \setminus \mathcal{R}_{<0}}$. Then it follows from Corollary 3.8 that B is either

- (a) a 2-disk, or
- (b) a Möbius band, or
- (c) a cylinder such that one of its boundary components belongs to $\mathcal{R}_{<0}$ and another one to ∂M , or
- (d) a cylinder with $\partial B \subset \mathcal{R}_{<0}$.

If B is of type (a)-(c), then it is well-known that h is isotopic to id_B with respect to a neighbourhood of $\partial B \cap \mathcal{R}_{<0}$. See [1, 16] for the 2-disk, and [6] for the cases (b) and (c).

Let Q be the union of $\mathcal{R}_{<0}$ with all the components of types (a)-(c). Then we can assume that h is fixed on Q.

It also follows that Q is incompressible and every connected component Q' of Q contains some N_j . This implies that $\chi(Q') \leq \chi(N_j) < 0$. Then by (D) of Proposition 4.5 h is homotopic to id_M via a homotopy fixed on Q. In particular, the restriction of h to every connected component B of type (d) is homotopic in B to id_B relatively ∂B . \Box

Now we can complete Theorem 1.7.

(1) It follows from the definition of $\mathcal{R}_{<0}$ that ∂X consists of some regular leaves of Δ_f , whence f is locally constant of ∂X . Moreover by Corollary 3.8 every connected component B of $\overline{M \setminus \mathcal{R}_{<0}}$ and therefore of $\overline{M \setminus X}$ is either a 2-disk, or a cylinder, or a Möbius band.

It is also easy to see that B contains critical points of f. Indeed, suppose B is either a 2-disk or a Möbius band. Since f is constant on ∂B , it follows that $f|_B$ is null-homotopic. Hence f must have local extremes in IntB.

On the other hand, if B is a cylinder containing no critical points of f, then by the construction of X we should have that $B \subset X$ which is impossible.

Statement (2) is a particular case of (ii) of Claim 7.2.

(3) We have to show that the inclusion $i : S'(f, X) \subset S'(f)$ yields a bijection $i_0 : \pi_0 S'(f, X) \approx \pi_0 S'(f)$.

Claim 7.3. The map $i_0 : \pi_0 \mathcal{S}'(f, X) \to \pi_0 \mathcal{S}'(f)$ is an epimorphism.

Proof. Let $h \in \mathcal{S}'(f)$. We have to show that h is isotopic in $\mathcal{S}'(f)$ to a diffeomorphism fixed on X.

By (i) of Claim 7.2 h preserves the foliation of Δ_f on $\mathcal{R}_{<0}$. Hence by Proposition 6.1 applied to each critical component K_i , (i = 1, ..., k), h is isotopic in $\mathcal{S}'(f)$ to a diffeomorphism fixed on some neighbourhood of $\mathcal{R}_{<0}$, so we can assume that h itself is fixed near $\mathcal{R}_{<0}$.

Let B_i , (i = 1, ..., q), be a connected component of $\overline{X \setminus \mathcal{R}_{<0}}$. By the construction B_i is a cylinder being a union of regular leaves of Δ_f and containing no critical points of f. Choose an orientation for B_i . Then we can define a Hamiltonian flow $\mathbf{H} : B_i \times \mathbb{R} \to B_i$ of f on B_i whose orbits are leaves Δ_f belonging to B_i . Notice that h is fixed on some neighbourhood of $\partial B_i \cap \mathcal{R}_{<0}$ and by (ii) the restriction of h to B is homotopic to id_{B_i} relatively ∂B_i . Then by [10, Lm. 4.12] there exists a C^{∞} function $\alpha : B_i \to \mathbb{R}$ such that $\alpha = 0$ on some neighbourhood of $\partial B_i \cap \mathcal{R}_{<0}$ and $h(x) = \mathbf{H}(x, \alpha(x))$ for all $x \in B_i$.

Notice that $\partial B_i \cap \mathcal{R}_{<0}$ separates M. Then the map

(7.1)
$$a: M \times I \to M, \qquad a(x,t) = \begin{cases} H(x,t\alpha(x)), & x \in B_i, \\ h(x), & x \in M \setminus B \end{cases}$$

is an isotopy of h in $\mathcal{S}(f)$ to a diffeomorphism fixed on B_i . Applying this to each B_i we will made h fixed on all of X.

Claim 7.4. $i_0: \pi_0 \mathcal{S}'(f, X) \to \pi_0 \mathcal{S}'(f)$ is a monomorphism.

Proof. Let $S'_{id}(f)$ and $S'_{id}(f, X)$ be the identity path components of S'(f) and S'(f, X) respectively. It is clear that $S'_{id}(f) = S_{id}(f)$. Hence an injectivity of i_0 means that

$$\mathcal{S}'_{\mathrm{id}}(f,X) = \mathcal{S}'(f,X) \cap \mathcal{S}'_{\mathrm{id}}(f) = \mathcal{S}'(f,X) \cap \mathcal{S}_{\mathrm{id}}(f).$$

Evidently, $\mathcal{S}'_{\mathrm{id}}(f, X) \subset \mathcal{S}'(f, X) \cap \mathcal{S}_{\mathrm{id}}(f).$

Conversely, let $h \in \mathcal{S}'(f, X) \cap \mathcal{S}_{id}(f)$, so h is fixed on some neighbourhood of X and there exists an isotopy $g_t : M \to M$ in $\mathcal{S}(f)$ between $h_0 = id_M$ and $h_1 = h$. Then by Proposition 6.3 this isotopy can be made fixed on some neighbourhood of X. Hence $h \in \mathcal{S}'_{id}(f, X)$.

References

- J. W. Alexander, On the deformation of n-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), no. 12, 406–407.
- A. V. Bolsinov and A. T. Fomenko, Introduction to the Topology of Integrable Hamiltonian Systems, "Nauka", Moscow, 1997 (Russian).
- E. N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities. II, J. Reine Angew. Math. 382 (1987), 145–164.
- C. J. Earle and J. Eells, A fibre bundle description of teichmüller theory, J. Differential Geometry 3 (1969), 19–43.
- C. J. Earle and A. Schatz, *Teichmüller theory for surfaces with boundary*, J. Differential Geometry 4 (1970), 169–185.
- 6. D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
- André Gramain, Le type d'homotopie du groupe des difféomorphismes d'une surface compacte, Ann. Sci. École Norm. Sup. (4) 6 (1973), 53–66.
- William Jaco and Peter B. Shalen, Surface homeomorphisms and periodicity, Topology 16 (1977), no. 4, 347–367.
- Sergiy Maksymenko, Smooth shifts along trajectories of flows, Topology Appl. 130 (2003), no. 2, 183–204.
- Sergiy Maksymenko, Homotopy types of stabilizers and orbits of Morse functions on surfaces, Ann. Global Anal. Geom. 29 (2006), no. 3, 241–285.
- Sergiy Maksymenko, Homotopy dimension of orbits of Morse functions on surfaces, Travaux Mathématiques 18 (2008), 39–44.
- Sergiy Maksymenko, Functions with isolated singularities on surfaces, submitted (2009), arXiv:math/0806.4704.
- 13. Sergiy Maksymenko, Image of a shift map along the oribts of a flow, submitted (2009), arXiv:math/0902.2418.
- L. Paris and D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 417–472.
- A. O. Prishlyak, Topological equivalence of smooth functions with isolated critical points on a closed surface, Topology Appl. 119 (2002), no. 3, 257–267.
- 16. Stephen Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626.

TOPOLOGY DEPT., INSTITUTE OF MATHEMATICS OF NAS OF UKRAINE, TERESHCHENKIVSKA ST. 3, KYIV, 01601 UKRAINE

 $E\text{-}mail \ address: \verb"maks@imath.kiev.ua"$

Received 08.01.2010