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FUNCTIONS ON SURFACES AND INCOMPRESSIBLE
SUBSURFACES

SERGIY MAKSYMENKO

Abstract. Let M be a smooth connected compact surface, P be either a real line

R or a circle S1. Then we have a natural right action of the group D(M) of diffeo-
morphisms of M on C∞(M,P ). For f ∈ C∞(M,P ) denote respectively by S(f) and

O(f) its stabilizer and orbit with respect to this action. Recently, for a large class of

smooth maps f : M → P the author calculated the homotopy types of the connected
components of S(f) and O(f). It turned out that except for few cases the identity

component of S(f) is contractible, πiO(f) = πiM for i ≥ 3, and π2O(f) = 0, while

π1O(f) it only proved to be a finite extension of π1Did(M) ⊕ Zl for some l ≥ 0. In
this note it is shown that if χ(M) < 0, then π1O(f) = G1× · · · ×Gn, where each Gi

is a fundamental group of the restriction of f to a subsurface Bi ⊂M being either a

2-disk or a cylinder or a Möbius band. For the proof of main result incompressible
subsurfaces and cellular automorphisms of surfaces are studied.

1. Introduction

Let M be a smooth compact connected surface and P be either the real line R or
the circle S1. Consider the right action of the group D(M) of diffeomorphisms of M on
C∞(M,P ) defined by

h · f = f ◦ h−1

for h ∈ D(M) and f ∈ C∞(M,P ). For every f ∈ C∞(M,P ) let

O(f) = {f ◦ h | h ∈ D(M)},

S(f) = {h | f = f ◦ h, h ∈ D(M)}
be respectively the orbit and the stabilizer of f with respect to this action. We will
endow D(M), S(f), C∞(M,P ), and O(f) with the corresponding topologies C∞. Denote
by Sid(f) the identity path component of S(f) and by Of (f) the path component of f
in O(f). In [10] the author calculated the homotopy types of Sid(f) and Of (f) for all
Morse maps f : M → P .

Moreover, in [12] the results of [10] were extended to a large class of maps with (even
degenerate) isolated critical points satisfying certain “non-degeneracy” conditions. In
fact there were introduced three types of isolated critical points (called S, P, and N) and
the following three axioms for f :

(Bd) f takes constant value at each connected component of ∂M and Σf ⊂ IntM .
(SPN) Every critical point of f is either an S- or a P- or an N-point.
(Fibr) The natural map p : D(M)→ O(f) defined by p(h) = f ◦h−1 is a Serre fibration

with fiber S(f) in topologies C∞.
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Recall that if f : (C, 0) → (R, 0) is a smooth germ for which 0 ∈ C is an isolated
critical point, then there exists a homeomorphism h : C→ C such that h(0) = 0 and

f ◦ h(z) =
{
±|z|2, if z is a local extremum, [3],
Re(zn), (n ≥ 1) otherwise, so z is a saddle, [15],

Examples of the foliation by level sets of f near 0 are presented in Figure 1.1.

Figure 1.1. Isolated critical points

From this point of view S-points are saddles, while P- and N-points a local extremes.
Moreover, P-points admit non-trivial f -preserving circle actions (as non-degenerate local
extremes do), while N-points admit only Zn-action preserving f . We will not give precise
definitions but recall a large class of examples of such points.

Example 1.1. [10]. Let f : R2 → R be a homogeneous polynomial without multiple
factors with deg f ≥ 2, so

f = L1 · · ·La ·Q1 · · ·Qb, a+ 2b ≥ 2,

where every Li is a linear function and every Qj is an irreducible over R (i.e. definite)
quadratic form such that Li/Li′ 6= const for i 6= i′ and Qj/Qj′ 6= const for j 6= j′.

If a ≥ 1, so f has linear factors and thus 0 is a saddle, then the origin 0 ∈ R2 is an
S-point for f .

If a = 0 and b = 1, so f = Q1, then the origin 0 ∈ R2 is a P-point for f .
Otherwise, a = 0 and b ≥ 2, so f = Q1 · · ·Qb. Then the origin 0 ∈ R2 is an N-point

for f .

Lemma 1.2. [10]. Let f : M → P be a C∞ map satisfying (Bd), and such that every
of its critical points belongs to the class described in Example 1.1, in particular, f also
satisfies (SPN). Then f also satisfies (Fibr).

It follows from Morse lemma and Example 1.1 that non-degenerate saddles are S-points
while non-degenerate local extremes are P-points.

Now the main result of [12] can be formulated as follows.

Theorem 1.3. [10, 12]. Suppose f : M → P satisfies (Bd) and (SPN). If f has at least
one S- or N-point, or if M is non-orientable, then Sid(f) is contractible.

Moreover, if in addition f satisfies (Fibr), then πiOf (f) = πiM for i ≥ 3, π2Of (f) =
0, and for π1O(f) we have the following short exact sequence

1→ π1D(M)⊕ Zl → π1Of (f)→ G→ 1,

for a certain finite group G and l ≥ 0 both depending on f .

Thus, the information about the fundamental group π1Of (f) is not complete. The
aim of this note is to show that the calculation of π1Of (f) can be reduced to the case
when M is either a 2-disk, or a cylinder, or a Möbius band, see Theorems 1.7 and 1.8
below. The obtained results hold for a more general class of maps M → P than the one
considered in [12].
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1.4. Admissible critical points. We will now introduce a certain type of critical points
for f . Let F be a vector field on M , V ⊂ M be an open subset, and h : V → M be
an embedding. Say that h preserves orbits of F if for every orbit o of F we have that
h(V ∩ o) ⊂ o.

Definition 1.5. Let f : M → P be a C∞ map and z ∈ IntM be an isolated critical point
of f which is not a local extreme (so z is a saddle). Say that z is admissible if there
exists a neighbourhood U of z containing no other critical points of f and a vector field
F on U having the following properties:

(1) f is constant along orbits of F and z is a unique singular point of F .
(2) Let (Ft) be the local flow of F on U . Then for every germ of diffeomorphisms

h : (M, z)→ (M, z) preserving orbits of F there exists a C∞ germ σ : (M, z)→ R
such that h(x) = F(x, σ(x)) near z.

This definition almost coincides with the definition of an S-point, c.f. [12]. The differ-
ence is that for S-points it is also required that the correspondence h 7→ σ is continuous
with respect to topologies C∞. In particular every S-point is admissible.

Now put the following two axioms for f both implied by (SPN):
(Isol) All critical points of f are isolated.
(SA) Every saddle of f is admissible.

1.6. Main result. Let Did(M) be the identity path component of the group D(M) and

S ′(f) = S(f) ∩ Did(M)

be the stabilizer of f with respect to the right action of Did(M). Thus S ′(f) consists of
diffeomorphisms h isotopic to idM and preserving F , i.e. f ◦ h = f .

For a closed subset X ⊂ M denote by S ′(f,X) the subgroup of S ′(f) consisting of
diffeomorphisms fixed on some neighbourhood of X.

The aim of this note is to prove the following theorem:

Theorem 1.7. Suppose χ(M) < 0. Let f : M → P be a C∞ map satisfying the axioms
(Bd), (Isol), and (SA). Then there exists a compact subsurface X ⊂M with the following
properties:

(1) f is locally constant on ∂X and every connected component B of M \X is either
a 2-disk or a 2-cylinder or a Möbius band. Moreover, B contains critical points of f .

(2) Let h ∈ S ′(f,X) and B be a connected component of M \X. Then the restriction
h|B is isotopic in B to idB with respect to some neighbourhood of ∂B ∩X.

(3) The inclusion i : S ′(f,X) ⊂ S ′(f) induces a group isomorphism i0 : π0S ′(f,X) ≈
π0S ′(f).

The proof of this theorem will be given in §7. We will now show how to simplify
calculations of π1O(f) using Theorem 1.7.

Let X be the surface of Theorem 1.7 and let B1, . . . , Bl be all the connected com-
ponents of M \X. For every i = 1, . . . , l denote by Did(Bi, ∂Bi) the group of diffeo-
morphisms of Bi fixed on some neighbourhood of ∂Bi and isotopic to idBi

relatively
to some neighbourhood of Bi. Let also S ′(f |Bi

, ∂Bi) be the stabilizer of the restriction
f |Bi

: Bi → P with respect to the right action of Did(Bi, ∂Bi). Then we have an evident
isomorphism of groups:

(1.1) ψ : S ′(f,X) ≈
l
×
i=1
S ′(f |Bi

, ∂Bi), ψ(h) = (h|B1 , . . . , h|Bl
),

It is easy to show that ψ is in fact a homeomorphism with respect to the corresponding
C∞ topologies.
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Theorem 1.8. Under assumptions of Theorem 1.7 suppose that f also satisfies (Fibr).
Then we have an isomorphism:

π1Of (f) ≈
l
×
i=1

π0S ′(f |Bi
, ∂Bi).

Proof. It is easy to show that if f satisfies (Fibr), then Of (f) is the orbit of f with respect
to the action of Did(M) and the projection p : Did(M) → Of (f) is a Serre fibration as
well, see [11]. Hence we get the following part of exact sequence of homotopy groups

· · · → π1Did(M)→ π1Of (f)→ π0S ′(f)→ π0Did(M)→ · · ·
Since χ(M) < 0, we have π1Did(M) = 0, [5, 4, 7]. Moreover, Did(M) is path-connected,
whence together with Theorem 1.7 we obtain an isomorphism:

π1Of (f) ≈ π0S ′(f)
i0≈ π0S ′(f,X)

(1.1)
≈

l
×
i=1

π0S ′(f |Bi
, ∂Bi).

Theorem is proved. �

Thus a general problem of calculation of π1Of (f) for maps satisfying the above axioms
completely reduces to the case when χ(M) ≥ 0. A presentation for π1Of (f) will be given
in another paper.

1.9. Structure of the paper. In next four sections we study incompressible subsurfaces
N ⊂M . §2 contains their definition and some elementary properties. In §3 we show how
such subsurfaces appear in studying maps M → P with isolated singularities. In §4 and
§5 we extend results of W. Jaco and P. Shalen [8] about deformations of incompressible
subsurfaces and periodic automorphisms of surfaces. §6 contains two technical statements
about deformations of diffeomorphisms preserving a map M → P . Finally in §7 we prove
Theorem 1.7.

2. Incompressible subsurfaces

The following Lemma 2.1 is well-known, see e.g. [14, Pr. 2.1]. It was also implicitly
formulated in [8, page 359].

Lemma 2.1. 1) Let M be a connected surface, and N ⊂ IntM be a proper compact
(possibly not connected) subsurface neither of whose connected components is a 2-disk.
Then the following conditions are equivalent:

(a) for every connected component Ni of N the inclusion homomorphism π1Ni →
π1M is injective;

(b) none of the connected components of M \N is a 2-disk.
If these conditions hold, then N will be called incompressible, see [8, Def. 3.2].

Corollary 2.2. If N ⊂M is incompressible, then χ(M) ≤ χ(N).

Corollary 2.3. Let R ⊂ IntM be a proper compact connected subsurface. Then the
following conditions are equivalent:

(R1) the homomorphism ξ : π1R→ π1M is trivial;
(R2) R is contained in some 2-disk D ⊂M .

Proof. The implication (R2)⇒(R1) is evident.
(R1)⇒(R2). Suppose R is not contained in any 2-disk. We will show that ξ is non-

trivial. Let N be the union of R with all of the connected components of M \N which are
2-disks. Then by our assumptionN is not a 2-disk and by Lemma 2.1N is incompressible.
Notice that ξ is a product of homomorphisms induced by the inclusions R ⊂ N ⊂M :

ξ = β ◦ α : π1R
α→ π1N

β→ π1M.
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Also notice that α is surjective and by Lemma 2.1 β is a non-trivial monomorphism.
Hence ξ is also non-trivial. �

Corollary 2.4. Let R ⊂ IntM be a proper (possibly non connected) subsurface such that
neither of its connected components is contained in some 2-disk. Then every connected
component B of M \R which is not a 2-disk is incompressible.

Proof. Let C be a connected component of M \B. Due to Lemma 2.1 it suffices to show
that C is not a 2-disk. Notice that C ∩ R 6= ∅, whence it contains some connected
component Ri of R. By Corollary 2.3 the product of homomorphisms π1Ri → π1C →
π1M is non-trivial, and therefore π1C → π1M is also non-trivial. This implies that C is
not a 2-disk. �

3. Incompressible subsurfaces associated to a map M → P

3.1. Singular foliation ∆f of f . Let f : M → P be a map satisfying axioms (Bd) and
(Isol). Then f induces on M a one-dimensional foliation ∆f with singularities defined
as follows: a subset ω ⊂ M is a leaf of ∆f if and only if ω is either a critical point of
f or a connected component of the set f−1(c) \ Σf for some c ∈ P . Thus the leaves of
∆f are 1-dimensional submanifolds of M and critical points of f . Local structure of ∆f

near critical points of f is illustrated in Figure 1.1.
Denote by ∆reg

f the union of all leaves of ∆f homeomorphic to the circle and by ∆cr
f

the union of all other leaves. The leaves in ∆reg
f (resp. ∆cr

f ) will be called regular (resp.
critical). Similarly, connected components of ∆reg

f (resp. ∆cr
f ) will be called regular

(resp. critical) components of ∆f . It follows from (Bd) that ∂M ⊂ ∆reg
f . It is also

evident, that every critical leaf of ∆cr
f either is homeomorphic to an open interval or is a

critical point of f .

3.2. Atoms and canonical neighbourhoods of critical components of ∆f . For
every critical component K of ∆f define its regular neighbourhood RK as follows. Let
c1, . . . , cl be all the critical values of f and the values of f on ∂M . Since M is compact,
it follows from axioms (Bd) and (Isol) that l is finite. For each i = 1, . . . , l let Wi ⊂ P
be a closed connected neighbourhood (i.e. just an arc) of ci containing no other cj . We
will assume that Wi ∩Wj = ∅ for i 6= j.

Now let K be a critical component of ∆f . Then f(K) = ci for some i. Let RK be
the connected component of f−1(Wi) containing K. Evidently, RK is a union of leaves
of ∆f . Following [2] we will call RK an atom of K, see Figure 3.1.

Figure 3.1

Evidently, RK is a regular neighbourhood of K with respect to some triangulation of
M . Similarly to [8] define the canonical neighbourhood NK of K to be the union of RK
with all the connected components of M \RK being 2-disks. If NK is not a 2-disk, then
by Lemma 2.1 NK is incompressible in M .

Notice that

(3.1) ∂RK = f−1(∂Wi) ∩ RK .
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Let K ′ be another critical component of ∆f such that f(K ′) = f(K). Since RK′ is also
constructed via Wi, we obtain from (3.1) that f takes on ∂RK′ the same values as on
∂RK . This technical assumption is not essential, however it will be useful for the proof
of Theorem 1.7.

Lemma 3.3. Let K and K ′ be two distinct critical components of ∆f .

(i) Then RK ∩RK′ = ∅, while NK and NK′ are either disjoint or one of them, say
NK , is contained in NK′ . In the last case NK is a 2-disk.

(ii) Suppose f(K) = f(K ′) and there exists h ∈ S(f) such that h(K) = K ′. Then
h(RK) = RK′ and h(NK) = NK′ .

Proof. (i) follows from the assumption that Wi ∩ Wj = ∅ for i 6= j, and (ii) follows
from (3.1). We leave the details for the reader. �

Lemma 3.4. Let K be a critical component of ∆f such that NK is a 2-disk. Then either

(i) M is a 2-disk itself, or
(ii) NK is contained in a unique canonical neighbourhood NK′ of another critical

component K ′ of ∆f such that NK′ is not a 2-disk.

Proof. Let R be the union of atoms of all critical components of ∆f . Then every con-
nected component B of M \R is diffeomorphic to the cylinder S1× [0, 1] and the restric-
tion f |B has no critical points.

Notice that M \NK is connected since NK is a 2-disk. Also, there exists a unique
connected component B (being a cylinder S1 × [0, 1]) of M \R such that ∂NK ⊂ B.
Then NK ∪B is also a 2-disk.

Let n be the total number of critical components of ∆f in M \NK .
If n = 0, then NK ∪B = M . Whence M is a 2-disk.
Suppose that n ≥ 1. Let γ be another connected component of ∂B distinct from

∂NK . Then there exists an atom RK′ of some critical component K ′ of ∆f such that
γ ⊂ ∂RK′ . Since NK ∪ B is a 2-disk, we see that it is contained in NK′ . If NK′ is not
a 2-disk, then the lemma is proved. Otherwise, the number of critical components in
M \NK′ is less than in M \NK and the lemma holds by the induction on n. �

Example 3.5. Let T2 be a 2-torus embedded in R3 as shown in Figure 3.2 and f :
T2 → R be the projection onto the vertical line. Figure 3.2a) shows the critical compo-
nents of level-sets of f , and Figure 3.2b) presents blackened canonical neighbourhoods of
three critical components of ∆f containing canonical neighbourhoods of all other critical
components of ∆f .

a) b)

Figure 3.2



FUNCTIONS ON SURFACES AND INCOMPRESSIBLE SUBSURFACES 173

3.6. Canonical neighbourhoods of negative Euler characteristic. Suppose M is
not a 2-disk. Let K1, . . . ,Kr be all the critical components of ∆f whose canonical
neighbourhoods are not 2-disks. By Lemma 3.4 this collection is non-empty and by
Lemma 3.3 NKi

∩NKj
= ∅ for i 6= j. Moreover, again by Lemma 3.4, any other critical

component of ∆f is contained in some NKi
. It follows that M \ ∪ri=1NKi

contains no
critical points of f , whence it is a disjoint union of cylinders S1 × I. Therefore

(3.2) χ(M) =
r∑
i=1

χ(NKi).

The following two statements will be used for the construction of a surface X of
Theorem 1.7, see §7.

Lemma 3.7. The following conditions are equivalent:
(1) χ(M) < 0;
(2) χ(NKi) < 0 for some i = 1, . . . , r.

Proof. (1)⇒(2). As χ(M) < 0, we get from (3.2) that χ(NKi) < 0 for some i.
The implication (2)⇒(1) follows from Corollary 2.2. �

Corollary 3.8. Let K1, . . . ,Kk be all the critical components of ∆f whose canonical
neighbourhoods have negative Euler characteristic and RK1 , . . . , RKk

be their atoms. Put
R<0 := ∪ki=1RKi

. If R<0 6= ∅, then every connected component B of M \ R<0 is either
a 2-disk, or a cylinder, or a Möbius band.

Proof. Since the homomorphism π1RKi → π1M is non-trivial for each i, it follows from
Corollary 2.4 that B is incompressible. Suppose χ(B) < 0. Notice that f takes constant
values of ∂B. Then by Lemma 3.7 there exists a critical component K ⊂ B of ∆f

such that the canonical neighbourhood N of K with respect to f |B has negative Euler
characteristic. It follows that the homomorphisms π1N → π1B → π1M induced by the
inclusions N ⊂ B ⊂M are monomorphisms, so N is incompressible in M . This implies
that N is a canonical neighbourhood of K with respect to f . But since χ(N) < 0, we
should have that N ⊂ R<0, which contradicts to the assumption. �

4. Deformations of incompressible subsurfaces

The aim of this section is to extend some results of [8] concerning incompressible
subsurfaces, see Proposition 4.5.

4.1. ±-twist. Let γ ⊂ IntM be a two-sided simple closed curve, U be its regular neigh-
bourhood diffeomorphic to S1 × [−1, 1] so that γ correspond to S1 × 0. Take a function
µ : [−1, 1] → [0, 1] such that µ = 0 near {±1} and µ = 1 on some neighbourhood of 0.
Define the following homeomorphism gγ : M →M by

(4.1) gγ(x) =

{
(z e2πiµ(t), t), x = (z, t) ∈ S1 × [−1, 1] ∼= U

x, x ∈M \ U,

see Figure 4.1. Then gγ is fixed on some neighbourhood of M \ U and isotopic to idM
via an isotopy supported in IntU . Evidently, gγ is a product of Dehn twists in opposite
directions along the curves parallel to γ. Therefore we will call gγ a ±-twist near γ.

The following lemma is a particular case of [6, Lm. 6.1].

Lemma 4.2. [6, Lm. 6.1]. Suppose χ(M) < 0. Let γ ⊂ IntM be a simple closed curve
which does not bound a 2-disk nor a Möbius band, h : M → M be a homeomorphism
homotopic to idM and such that h(γ) = γ. Let also H : M × I →M be any homotopy of
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Figure 4.1. ±-twist

idM to h. Then there exists another homotopy Gt : M × I → M of idM to h such that
Gt(γ) = γ and Gt = Ht on M \ U for all t ∈ I.

Moreover, there exists m ∈ Z and a homotopy G′ : M × I →M of idM to gmγ ◦ h such
that G′t = G outside U and G′t is fixed on γ for all t ∈ I.

The following statement is also well-known.

Lemma 4.3. Let M be a surface with χ(M) < 0. Suppose ∂M 6= ∅ and let γ1, . . . , γl be
all the connected components of ∂M . For each i = 1, . . . , l let τi be a Dehn twist along
the curve parallel to γi and fixed on ∂M . Let m1, . . . ,ml ∈ Z be integer numbers not of
all are equal to zero. Then the homeomorphism τm1

1 ◦ · · · ◦ τml

l is not homotopic to
idM via a homotopy fixed on ∂M .

4.4. Deformations of incompressible subsurfaces. Let M be a surface distinct from
the 2-sphere S2 and the projective plane RP2, N ⊂M be an incompressible subsurface,
and N1, . . . , Nk be all of its connected components. Let also h : M → M be a homeo-
morphism homotopic to idM and H : M × I →M be any homotopy of idM to h.

The following Proposition 4.5 follows the line of [8, Lm. 4.2]. In fact the first part of
statement (B) is a particular case of that lemma.

Proposition 4.5. c.f. [8, Lm. 4.2] (A) If Nj is not a cylinder for some j, then h(Nj) ∩
Nj 6= ∅.

(B) Suppose χ(Nj) < 0 and h(Nj) ⊂ Nj for some j. Then there exists a homotopy
G : Nj×I → Nj of the identity map idNj to the restriction h|Nj such that Gt(x) = Ht(x)
whenever H(x× I) ⊂ Nj.

Moreover, suppose H(γ × I) ⊂ γ for each connected component γ of ∂Nj. Extend G
to a map G : M × I →M by Gt = Ht on M \Nj. Then G is a homotopy of idM to h.

(C) Suppose χ(Nj) < 0 and h(Nj) = Nj for all j = 1, . . . , k. Then there exists a
homotopy G : M × I → M of idM to h such that G(Nj × I) ⊂ Nj for all j = 1, . . . , k
and G(B × I) ⊂ B for every connected component B of M \N .

(D) Suppose χ(Nj) < 0 and h is fixed on N for all j = 1, . . . , k. Then there exists a
homotopy of idM to h fixed on N .

Proof. First we make the following remark which repeats the key arguments of [8, Lm. 4.2].
For j = 1, . . . , k let pj : M̃j → M be the covering map corresponding to the subgroup
π1Nj of π1M . Then the embedding i : Nj ⊂ M lifts to the embedding i∗ : Nj → M̃j

which induces an isomorphism between π1Nj and π1M̃j . Denote Ñj = i∗(Nj). Then we
have the following commutative diagram:

Ñj
� � // M̃j

pj

��
Nj

∼=

OO
i∗

88qqqqqqqqqqqqq i // M

Since M̃j and Nj are aspherical, it follows from Whitehead’s theorem that Ñj is a strong
deformation retract of M̃j . Then every connected component of Int(M̃j \ Ñj) is an
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open cylinder. Let H : Nj × I → M be any homotopy between the identity embedding
H0 = i : Nj ⊂M and H1 = h|Nj

. Then there exists a lifting H̃ : Nj × I → M̃j such that
H̃0 = i∗ and pj ◦H̃ = H. Denote Ñ ′j = H̃1(Nj). Since both Ñj and Ñ ′j are deformational
retracts of M̃j , they are incompressible in M̃j .

(A) Suppose h(Nj) ∩ Nj = ∅. Then Int(Ñ ′j) is included into some connected com-
ponent C of Int(M̃j \ Ñj) being a cylinder. Since Ñ ′j is incompressible in M , it is also
incompressible in C, whence Ñ ′j and therefore Nj are cylinders. Thus if Nj is not a
cylinder, then we obtain that h(Nj) ∩Nj 6= ∅.

(B) Let rj : M̃j → Ñj be any retraction. Then the map

G = pj ◦ rj ◦ H̃ : Nj × I → Nj

is a homotopy of idNj
to h|Nj

in Nj . It is easy to see that Gt(x) = Ht(x) whenever
H(x× I) ⊂ Nj .

Suppose that H(γ × I) ⊂ γ ⊂ Nj for each connected component γ of ∂Nj . Then by
the construction Gt = Ht on ∂Nj . Notice that ∂Nj separates M . Extend G to all of
M × I by G = H of (M \Nj)× I. Then G is continuous, G0 = idM and G1 = h.

(C) Suppose χ(Nj) < 0 and h(Nj) = Nj for all j = 1, . . . , k. Let γ1, . . . , γl be all
the connected components of ∂N . Since N is incompressible, we have by Corollary 2.2
that χ(M) ≤ χ(Nj) < 0 as well. Moreover, by (B) for each j the restriction h|Nj is
a homeomorphism of Nj homotopic in Nj to idNj

. This, in particular, implies that
h(γi) = γi for i = 1, . . . , l.

Then by Lemma 4.2 we can suppose that H(γi × I) ⊂ γi for all i = 1, . . . , l as well.
Moreover, due to (B) it can be additionally assumed that H(Nj × I) ⊂ Nj .

Let B be a connected component of M \N . Since N is incompressible, B is not a
2-disk. Then by Corollary 2.4 B is incompressible. Therefore we can apply statement
(B) to B and change the homotopy G on B × I so that G(B × I) ⊂ B.

(D) Suppose h is fixed on N . For each i let Ui be a regular neighbourhood of γi, and gi
be a ±-twist near γi supported in Ui. We can assume that Ui∩Uj = ∅ for i 6= j. Then by
Lemma 4.2 there exist integer numbers m1, . . . ,ml ∈ Z and a homotopy G : M × I →M
of idM to a homeomorphism h′ := gm1

1 ◦ · · · ◦ gml

l ◦ h such that Gt is fixed on L for each
t ∈ I. By (C) we can also assume that G(Nj × I) ⊂ Nj and G(B × I) ⊂ B for every
connected component of M \N and each j = 1, . . . , k.

In particular, we see that the restriction h′|N is homotopic to idN relatively ∂N . But
this restriction is evidently a product of Dehn twists along boundary components of N .
Since χ(Nj) < 0 for all j, we get from Lemma 4.3 that mi = 0 for all i = 1, . . . , l. Hence
h′ = h. Thus G is in fact a homotopy between idM and h relatively ∂N . Since ∂N
separates M , and idM and h are fixed on N , we can change G on N × I by Gt(x) = x.
This gives a homotopy between idM and h relatively to N . �

5. Automorphisms of cellular subdivisions

Let N be a compact surface and Ξ = {eλ}λ∈Λ be some partition of N into a disjoint
family of connected orientable submanifolds. Say that a homeomorphism h : N → N is
a Ξ-homeomorphism provided it yields a permutation of elements of Ξ, that is for each
e ∈ Ξ its image h(e) also belongs to Ξ. An element e ∈ Ξ will be called h-invariant if
h(e) = e. Say that e is h+-invariant (h−-invariant) if the restriction h|e : e → e is a
preserving (reversing) orientation map. We will also say that h is Ξ-trivial if each e ∈ Ξ
is h+-invariant.
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Remark 5.1. Notice that we can say that a map h : e → e preserves or reverses
orientation only if dim e ≥ 1. To each 0-dimensional element e ∈ Ξ (being of course a
point) we formally assign a “positive orientation” and assume that by definition every
cellular homeomorphism preserves orientation of each invariant 0-element of Ξ.

Example 5.2. Let M be a connected surface and K ⊂ IntM be an embedded finite
connected graph. Assume that K is a subcomplex of M with respect to some triangu-
lation of M . By RK we will denote a regular neighbourhood of K. Following [8] define
a canonical neighbourhood NK of K to be the union of a regular neighbourhood RK of
K with those connected components of M \RK which are 2-disks. Notice that NK \K
is a disjoint union of open 2-disks and half-open cylinders S1 × (0, 1] with S1 × {1} cor-
responding boundary components of ∂NK . Thus we obtain a natural partition of NK
by vertexes and edges of K and connected components of NK \K. We shall denote this
partition by ΞK .

Now let Ξ be a cellular subdivision of N . Denote by Ni (i = 0, 1, 2) the i-th skeleton
of N . In particular, N1 is a finite connected subgraph in N such that N \N1 is a disjoint
union of 2-disks. Let ci (i = 0, 1, 2) be the total number of i-cells of ∆. Then of course
χ(N) = c0 − c1 + c2.

Let C = {Ci, ∂i} be the R-chain complex of N corresponding to a given cellular
subdivision. Thus Ci is a real vector space of dimension ci with the oriented i-cells of
Ξ as a basis. Then every Ξ-homeomorhism h induces a chain automorphism {hi : Ci →
Ci, i = 0, 1, 2} of C.

Recall that for each continuous mapping h : N → N we can define its Lefschetz number
L(h) by the formula:

L(h) = tr(h̄0)− tr(h̄1) + tr(h̄2),
where h̄i : Hi(N,R) → Hi(N,R) is the induced homomorphism of the corresponding
homology groups and tr is the trace of this homomorphism. If h is cellular, then L(h)
can also be calculated via the chain homomorphisms hi by:

L(h) = tr(h0)− tr(h1) + tr(h2).

The following theorem is relevant to [8, Lm. 4.4] being a statement about periodic
homeomorphisms.

Theorem 5.3. c.f. [8, Lm. 4.4]. Let M be a compact surface, K ⊂ M a connected
subgraph, NK be a canonical neighbourhood of K. Let also h : M →M a homeomorphism
such that h is homotopic to idM , h(K) = K, and h preserves the set of vertexes of K of
degree 2, and h(NK) = NK . In particular, h|NK

is a ΞK-homeomorphism.
(1) If χ(NK) < 0, then h is ΞK-trivial.
(2) Suppose that NK = M , M is orientable, and χ(M) ≥ 0. Then every annulus

a ∈ ΞK is h+-invariant, and the total number of h-invariant cells of ΞK is equal
to χ(M).

The proof of Theorem 5.3 will be given in §5.7. It is based on Proposition 4.5 and on
the following statement.

Proposition 5.4. Let N be a closed, orientable surface endowed with some cellular
subdivision Ξ and h : N → N be a Ξ-homeomorphism preserving orientation of N
and being not Ξ-trivial, i.e. h(e) 6= e for some cell e ∈ Ξ. Then the number of h-invariant
cells of Ξ is precisely equal to L(h). In particular, L(h) ≥ 0.

Proof. Let ki (i = 0, 1, 2) be the number of h-invariant i-cells of Ξ and k := k0 + k1 + k2.
We will show that

(5.1) ki = (−1)i tr(hi),
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which will imply

k =
2∑
i=0

ki =
2∑
i=0

(−1)i tr(hi) = L(h).

To prove (5.1) we have to show that there are no h−-invariant 0- and 2-cells and
no h+-invariant 1-cells. For 0-cells this holds by Remark 5.1 and for 2-cells from the
assumptions that N is orientable and h preserves orientation.

Let e be an h-invariant 1-cell and f0 and f1 be two 2-cells that are incident to e. It is
possible of course that f0 = f1. Since h preserves orientation, it follows that

(a) either h2(fj) = +fj for j = 0, 1, and h1(e) = +e,
(b) or h2(fj) = +f1−j for j = 0, 1, and h1(e) = −e.
The following Claim 5.5 implies that in the case (a) h is Ξ-trivial. Since h is not

Ξ-trivial, we will get from (b) that all h-invariant 1-cells are h−-invariant.

Claim 5.5. Suppose that there exists a 1-cell e ∈ Ξ such that

(i) h1(e) = +e ∈ C1 and
(ii) h preserves each 2-cell which is adjacent to e.

Then h is Ξ-trivial.

Proof. Notice that for each vertex v ∈ N0 the inclusion N1 ⊂ N induces a cyclic ordering
of edges that are incident to v.

Let v be a vertex of e. Then it follows from (i) and (ii) that all of the 1- and 2-
cells incident to v are h+-invariant. Moreover, for each 1-cell that is incident to v the
conditions (i) and (ii) also hold true. Since N is connected, it follows that h is Ξ-
trivial. �

Proposition 5.4 is completed. �

Corollary 5.6. Let N be a closed surface, Ξ be a cellular subdivision of M , and h :
N → N be a Ξ-homeomorphism. If h is isotopic to idN , then each of the following
conditions implies that h is Ξ-trivial:

(1) χ(N) < 0;
(2) χ(N) ≥ 0 and the total number of h+-invariant 2-cells is greater than χ(N).

Proof. Since h is isotopic to idN , we have that L(h) = L(idN ) = χ(N).
If N is orientable, then h preserves orientation and by Proposition 5.4 h is either Ξ-

trivial or has exactly χ(N) ≥ 0 invariant cells. Each of the conditions (1) and (2) implies
that the number of h-invariant cells is not equal to χ(N). Hence h is Ξ-trivial.

Suppose that N is non-orientable and let p : Ñ → N be its oriented double covering.
Then Ξ lifts to some cellular subdivision Ξ̃ of Ñ and h lifts to a unique Ξ̃-cellular
homeomorphism h̃ of Ñ which is isotopic to id eN . Therefore L(h̃) = L(id eN ) = χ(Ñ) =
2χ(N).

We claim that every of the conditions (1) and (2) implies that h̃ is Ξ̃-trivial, whence
h will be Ξ-trivial.

(1) If χ(N) < 0, then χ(Ñ) < 0, whence h̃ is Ξ̃-trivial.
(2) Suppose that χ(N) ≥ 0 and the total number b of h+-invariant 2-cells is greater

than χ(N). Let e be an h+-invariant 2-cell of Ξ and ẽ1 and ẽ2 be its liftings in Ξ̃. Then
they are h̃+-invariant. Hence h̃ has at least 2b > 2χ(N) = χ(Ñ) invariant cells. Then
by Proposition 5.4 h̃ is Ξ̃-trivial. �
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5.7. Proof of Theorem 5.3. Let h : M → M be a homeomorphism homotopic to the
identity and such that h|NK

is a ΞK-homeomorphism. Let γ1, . . . , γb be all the connected
components of ∂NK , and a1, . . . , ab be the annuli of ΞK corresponding to them, so that
γi ⊂ ai. Shrink every γi to a point xi and denote the obtained surface by N̂K . Then N̂K
is a closed orientable surface and ΞK yields an evident cellular partition Ξ̃ of N̂K such
that each annulus ai corresponds to a certain 2-cell âi ∈ Ξ̃.

Also notice that χ(N̂K) = χ(NK) + b.

Claim 5.8. Suppose that either χ(NK) < 0 or NK = M . Then
(a) h|NK

is homotopic to idNK
in NK .

(b) h(γi) = γi for i = 1, . . . , b and h preserves orientation of γi;
(c) h induces some Ξ̃-homeomorphism ĥ : N̂K → N̂K homotopic to id bNK

with respect

to {x1, . . . , xb}, in particular, every 2-cell ai ∈ Ξ̃ is ĥ+-invariant;
(d) L(ĥ) = L(id bNK

) = χ(N̂K) = χ(NK) + b.

Proof. (a) For NK = M this statement is trivial. If χ(NK) < 0, then by (B) of Propo-
sition 4.5 (or directly by [8, Lm. 4.1]) h|NK

is homotopic to idNK
in NK . All other

statements (b)-(d) follow from (a). �

Now we can complete Theorem 5.3.
(1) Suppose that χ(NK) < 0. If also χ(N̂K) < 0, then by (1) of Corollary 5.6 ĥ is

Ξ̃-trivial, whence h is ΞK-trivial as well.
Let χ(N̂K) ≥ 0. By Claim 5.8 ĥ has at least b ĥ+-invariant 2-cells a1, . . . , ab. Moreover,

since χ(N̂K)−b = χ(NK) < 0, we obtain that b > χ(N̂K), whence by (2) of Corollary 5.6
ĥ is Ξ̃-trivial. Therefore h is ΞK-trivial.

(2) Suppose that NK = M and M is orientable. It follows from (c) of Claim 5.8 and
Proposition 5.4 that ĥ is either Ξ̃-trivial or has exactly χ(N̂K) invariant cells. Therefore,
h is either ΞK-trivial or has exactly χ(N̂K)− b = χ(NK) = χ(M) invariant cells.

6. Deformations of diffeomorphism near critical components of ∆f

The following two propositions will be crucial for the proof of Theorem 1.7. Suppose
f : M → P satisfies (Bd), (Isol), and (SA).

Proposition 6.1. Let K be a critical component of ∆f such that every z ∈ K ∩ Σf is
admissible, R be its atom, and U be any neighbourhood of R. Let also h ∈ S(f). Suppose
that h(ω) = ω for each leaf ω of ∆f contained in K and that h preserves orientation of
ω whenever dimω = 1. Then h is isotopic in S(f) to a diffeomorphism h′ ∈ S(f) such
that h′ = h on M \ U , and h′ is the identity on some neighbourhood of R in U .

Proof. This proposition follows the line of [10, Th. 6.2]. For the convenience of the reader
we will recall the key arguments for the case when M is orientable. A non-orientable
case can be deduced from the orientable one similarly to [10, Th. 6.2].

As M is orientable, it has a symplectic structure. Let H be the Hamiltonian vector
field of f . Then f is constant along orbits of H, the set of singular points of H coincides
with the set of critical points of f , and the foliation by orbits of H coincides with ∆f .
In particular, H is tangent to ∂M and therefore generates a flow H : M × R→M .

We will now change H on neighbourhoods of admissible critical points of f similarly
to [10, Lm. 5.1]. Let z ∈ Σf be such a point and Fz be a vector field on some neigh-
bourhood Uz of z satisfying assumptions of Definition 1.5. Then it follows from (i) of
Definition 1.5 that for every x ∈ Uz the vectors H(x) and Fz are parallel each other.
Therefore, using partition unity technique and changing (if necessary) the signs of Fz,
we can change H near each z ∈ R ∩ Σf and assume that H = Fz on Uz.



FUNCTIONS ON SURFACES AND INCOMPRESSIBLE SUBSURFACES 179

Claim 6.2. There exists a neighbourhood U of R and a unique C∞ function σ : U → R
such that h(x) = H(x, σ(x)) for all x ∈ U .

Proof. Let z ∈ K ∩ Σf . By assumption h preserves leaves of ∆f (i.e. orbits of H) in K
with their orientations. Since Fz = H near z, it follows from (ii) of Definition 1.5 that
there exists a neighbourhood Vz of z and a unique C∞ function σz : Vz → R such that
h(x) = H(x, σz(x)). Then the functions {σz}z∈K∩Σf

yield a unique C∞ function σ on
the union ∪

z∈K∩Σf

Vz. It remains to note that K \Σf is a disjoint union of open intervals,

whence σ uniquely extends to a C∞ function on R such that h(x) = H(x, σ(x)), see [10,
Lm. 6.4] for details. �

Then the desired isotopy of h to h′ in S(f) can be constructed similarly to [10,
Lm. 4.14]. Take any C∞ function µ : M → [0, 1] such that µ = 0 on some neigh-
bourhood of M \ U , µ = 1 on R, and µ is constant along orbits of F . Then the function
ν = µσ is C∞ and well-defined on all of M . Consider the following homotopy

(6.1) g : M × I →M, gt(x) = F(x, tν(x)).

Then g0 = idM , gt is fixed on M \ U , and g1 = h on R. Since µ is constant along orbits
of F and h is a diffeomorphism, it follows from [10, Lm. 4.14] that g is an isotopy. Hence
g−1
t ◦ h : M → M , (t ∈ I), is an isotopy in S(f) supported in U and deforming h to a

desired diffeomorphism h′ = g−1
1 ◦ h. �

Proposition 6.3. Let X ⊂M be a compact subsurface such that ∂X consists of (regular)
leaves of ∆f . Suppose h ∈ Sid(f) is fixed on some neighbourhood U of X. Then there
exists an isotopy of h to idM in S(f) fixed on some neighbourhood of X.

Proof. Again we will consider only the case when M is orientable. Let H : M ×R→M
be the flow constructed in the proof of Proposition 6.1. Since h ∈ Sid(f), there exists
an isotopy G : M × I → M of idM to h in S(f). Then is it easy to show that each
Gt preserves orbits of H on some neighbourhood of X, see [10, Lm. 3.4]. Now it follows
from [9, Th. 25], see also [13], that there exists a continuous function Λ : (M\Σf )×I → R
such that Λt is C∞ for each t ∈ I, Λ0 = 0, and Gt(x) = H(x,Λt(x)) for all x ∈M \ Σf .
Let µ : M → [0, 1] be a C∞ function constant along orbits of H, µ = 0 on X, and µ = 1
on some neighbourhood of M \ U . Define the following map a : M × I →M by

a(x, t) =

{
H(x, µ(x)Λ(x, t)), x ∈ U
Gt(x), x ∈M \ U.

We claim that a is an isotopy between idM and h in S(f) fixed on some neighbourhood
of X.

Since µ = 1 on some neighbourhood of M \ U , we see that a is continuous and at is
C∞ for each t. Moreover,

a(x, 0) =

{
H(x, 0) = x, x ∈ U
G0(x) = x, x ∈M \ U.

Since h is fixed on U , it follows that Λ(x, 1) = 0 on U . Therefore µΛ1 = Λ1 and a1 = h.
As µ = 0 on X, we obtain that at, (t ∈ I), is fixed on X. �

7. Proof of Theorem 1.7

Suppose χ(M) < 0 and that f : M → P satisfies (Bd), (Isol), and (SA). We have to
find a compact subsurface X ⊂M satisfying conditions (1)-(3) of Theorem 1.7.
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Construction of X. Let K1, . . . ,Kk be all the critical components of level-sets of f
whose canonical neighbourhoods NKi

have negative Euler characteristic: χ(NKi
) < 0.

Since χ(M) < 0, we have by Lemma 3.4 that this collection is non-empty. Denote

K =
k
∪
i=1

Ki,

For each i = 1, . . . , k choose an atom Ri for Ki in a way described in §3.2, and let Ni be
the corresponding canonical neighbourhood of Ki. Then we can assume that conditions
(i) and (ii) of Lemma 3.3 hold. In particular, Ri ∩Rj = Ni ∩Nj = ∅ for i 6= j.

Denote R<0 :=
k
∪
i=1

Ri. Let also B1, . . . , Bq be all the connected components of

M \ R<0 such that every Bi is a cylinder and f has no critical points in Bi. Put

X = R<0 ∪B1 ∪ · · · ∪Bq.

We will show that X satisfies the statement of Theorem 1.7.

Example 7.1. Let M be an orientable surface of genus 2 embedded in R3 in a way shown
in Figure 7.1a) and f : M → R be the projection to the vertical line. Critical components
of level-sets of f whose canonical neighbourhoods have negative Euler characteristic are
denoted by K1 and K2. The corresponding surface X is shown in Figure 7.1b).

a) b)

Figure 7.1

Before proving Theorem 1.7 we establish the following statement.

Claim 7.2. (i) Let h ∈ S ′(f). Then h preserves every leaf ω ⊂ R<0 of ∆f and its
orientation.

(ii) Suppose h is fixed on a neighbourhood of R<0. Then for every connected component
B of M \ R<0 the restriction h|B is isotopic to idB with respect to a neighbourhood of
∂B ∩R<0.

Proof. (i). It follows from the definition of K that h(K) = K. We claim that in fact
h(Ki) = Ki for all i = 1, . . . , k.

Indeed, suppose that h(Ki) = Kj for some j. Then by Lemma 3.3 h(Ri) = Rj and
h(Ni) = Nj . On the other hand, since Ni is incompressible, χ(Ni) < 0, and h is isotopic
to idM , it follows from (1) of Proposition 4.5 that h(Ni)∩Ni 6= ∅. But Ni ∩Nj = ∅ for
i 6= j. Hence h(Ni) = Ni for each i = 1, . . . , k.

Denote by Ξi the corresponding partition of Ni, see §5. Since h preserves the set of
critical points of f , it follows that h preserves the set of vertexes of degree 2 of Ki. This
implies that the restriction of h to Ni yields a certain automorphism h∗ of the partition
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Ξi. As χ(Ni) < 0 and h is isotopic to idM , we get from Theorem 5.3 that h yields a trivial
automorphism of Ξi. In particular, each (critical) leaf ω of ∆f in Ki is h+-invariant.

Let ω ⊂ Ri be a regular leaf of ∆f and e ⊂ Ni be the corresponding element of Ξi
containing ω, so e is either an open 2-disk or a half-open cylinder S1 × (0, 1]. Then

ω = e ∩ f−1 ◦ f(ω).

Notice that h(e) = e, since h is Ξi-trivial. Moreover, f◦h = f implies that h◦f−1◦f(ω) =
f−1 ◦ f(ω), whence h(ω) = ω. It remains to note that h preserves orientation of ω since
it preserves orientation of leaves in Ki.

(ii) Let B be a connected component of M \ R<0. Then it follows from Corollary 3.8
that B is either

(a) a 2-disk, or
(b) a Möbius band, or
(c) a cylinder such that one of its boundary components belongs to R<0 and another

one to ∂M , or
(d) a cylinder with ∂B ⊂ R<0.

If B is of type (a)-(c), then it is well-known that h is isotopic to idB with respect to a
neighbourhood of ∂B ∩R<0. See [1, 16] for the 2-disk, and [6] for the cases (b) and (c).

Let Q be the union of R<0 with all the components of types (a)-(c). Then we can
assume that h is fixed on Q.

It also follows that Q is incompressible and every connected component Q′ of Q
contains some Nj . This implies that χ(Q′) ≤ χ(Nj) < 0. Then by (D) of Proposition 4.5
h is homotopic to idM via a homotopy fixed on Q. In particular, the restriction of h to
every connected component B of type (d) is homotopic in B to idB relatively ∂B. �

Now we can complete Theorem 1.7.
(1) It follows from the definition of R<0 that ∂X consists of some regular leaves of

∆f , whence f is locally constant of ∂X. Moreover by Corollary 3.8 every connected
component B of M \ R<0 and therefore of M \X is either a 2-disk, or a cylinder, or a
Möbius band.

It is also easy to see that B contains critical points of f . Indeed, suppose B is either a
2-disk or a Möbius band. Since f is constant on ∂B, it follows that f |B is null-homotopic.
Hence f must have local extremes in IntB.

On the other hand, if B is a cylinder containing no critical points of f , then by the
construction of X we should have that B ⊂ X which is impossible.

Statement (2) is a particular case of (ii) of Claim 7.2.

(3) We have to show that the inclusion i : S ′(f,X) ⊂ S ′(f) yields a bijection i0 :
π0S ′(f,X) ≈ π0S ′(f).

Claim 7.3. The map i0 : π0S ′(f,X)→ π0S ′(f) is an epimorphism.

Proof. Let h ∈ S ′(f). We have to show that h is isotopic in S ′(f) to a diffeomorphism
fixed on X.

By (i) of Claim 7.2 h preserves the foliation of ∆f on R<0. Hence by Proposition 6.1
applied to each critical component Ki, (i = 1, . . . , k), h is isotopic in S ′(f) to a diffeo-
morphism fixed on some neighbourhood of R<0, so we can assume that h itself is fixed
near R<0.

Let Bi, (i = 1, . . . , q), be a connected component of X \ R<0. By the construction Bi
is a cylinder being a union of regular leaves of ∆f and containing no critical points of f .
Choose an orientation for Bi. Then we can define a Hamiltonian flow H : Bi × R→ Bi
of f on Bi whose orbits are leaves ∆f belonging to Bi. Notice that h is fixed on some
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neighbourhood of ∂Bi ∩ R<0 and by (ii) the restriction of h to B is homotopic to idBi

relatively ∂Bi. Then by [10, Lm. 4.12] there exists a C∞ function α : Bi → R such that
α = 0 on some neighbourhood of ∂Bi ∩R<0 and h(x) = H(x, α(x)) for all x ∈ Bi.

Notice that ∂Bi ∩R<0 separates M . Then the map

(7.1) a : M × I →M, a(x, t) =

{
H(x, tα(x)), x ∈ Bi,
h(x), x ∈M \Bi

is an isotopy of h in S(f) to a diffeomorphism fixed on Bi. Applying this to each Bi we
will made h fixed on all of X. �

Claim 7.4. i0 : π0S ′(f,X)→ π0S ′(f) is a monomorphism.

Proof. Let S ′id(f) and S ′id(f,X) be the identity path components of S ′(f) and S ′(f,X)
respectively. It is clear that S ′id(f) = Sid(f). Hence an injectivity of i0 means that

S ′id(f,X) = S ′(f,X) ∩ S ′id(f) = S ′(f,X) ∩ Sid(f).

Evidently, S ′id(f,X) ⊂ S ′(f,X) ∩ Sid(f).
Conversely, let h ∈ S ′(f,X) ∩ Sid(f), so h is fixed on some neighbourhood of X and

there exists an isotopy gt : M → M in S(f) between h0 = idM and h1 = h. Then
by Proposition 6.3 this isotopy can be made fixed on some neighbourhood of X. Hence
h ∈ S ′id(f,X). �
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