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STRONG COMPACT PROPERTIES OF THE MAPPINGS AND
K-RADON-NIKODYM PROPERTY

I. V. ORLOV AND F. S. STONYAKIN

Abstract. For mappings acting from an interval into a locally convex space, we

study properties of strong compact variation and strong compact absolute continuity
connected with an expansion of the space into subspaces generated by the compact

sets. A description of strong K-absolutely continuous mappings in terms of indefinite

Bochner integral is obtained. A special class of the spaces having K-Radon-Nikodym
property is obtained. A relation between the K-Radon-Nikodym property and the

classical Radon-Nikodym property is considered.

0. Introduction

It is well known that a mapping from an interval into a Banach space and, all the more,
into a locally convex space (LCS) can be strongly absolutely continuous without being
an indefinite Bochner integral. In this connection, a class of spaces having the Radon-
Nikodym property (RNP ) was singled out. By definition, for a space with (RNP ), both
of the above-cited properties of the mappings coincide. The theory of the spaces with
(RNP ) intensively develops and has numerous applications [1]–[8].

However, the class of spaces having (RNP ) is sufficiently restricted [1, 2]. There is
also a version, introduced in [9], of a Bochner integral for the spaces L2(Σ;H) for an
operator–valued measure Σ over a Hilbert space H. It appearse that there are the so-
called Radon-Nikodym type theorems valid for spaces without (RNP ) [10]–[15]. Among
useful new notions that were introduced in this area lately, we consider here a suitable
projective description of Banach spaces [16, 17], versions of a weak (RNP ) [18], a use of
special sequence spaces [19] and especially a use of compact sets with (RNP ) [20].

In the paper [21] we used new convex compact properties of mappings into LCS,
compact subdifferential and compact variation, to describe an indefinite Bochner integral.
Note, in particular, a criterion in the case of Frechet spaces ([21], Theorem 3.2).

In this paper, developing the study of [21] in a new direction, we introduce strong com-
pact properties of mappings into LCS, strong K-variation (V sK) and strong K-absolute
continuity (ACsK). Here we are based on an expansion of the main space into an induc-
tive scale of Banach spaces generated by compact sets. The properties of classes V sK and
ACsK are studied in Sections 1–2. Note, in particular, the compact subdifferentiability
a.e. (Theorems 1.1, 2.1).

On the basis of these properties, a description of ACsK as a certain subclass of the
class IB of the indefinite Bochner integrals (Theorem 3.2) is obtained. This made it
possible to select a class of spaces having the K-Radon-Nikodym property (RNP )K ,
where ACsK = IB . Theorem 3.3, establishing that the space c0 has (RNP )K (together
with `p, 1 6 p <∞) is one of the main results of the paper. Examples in Section 3 show
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that in the chain ACsK ⊂ IB ⊂ ACs any combinations of strong inclusions and equalities
are possible.

Throughout the paper, for arbitrary sets A,B in a LCS E, coA denotes the closed
convex hull of A, and B −B = {x− x′ | x ∈ B, x′ ∈ B}.

1. Strong compact variation and its properties

In what follows, we consider a mapping F : I → E acting from a real segment
I = [a; b] into a real LCS E. Further C(E) is the system of all absolutely convex (a.c.)
compacta C ⊂ E, EC = (spanC, ‖ · ‖C) are Banach spaces generated by C ∈ C(E). Here
the identical embeddings EC ↪→ E are compact and E = lim−−−−−−→

C∈C(E)
EC in the case of

Banach E ([22], Theorem 3.3). Denote by V s(I, E) the class of mappings having a usual
finite strong variation (respective to the all continuous seminorms on E).

Definition 1.1. We say that a mapping F possesses a strong compact variation on I
(F ∈ V sK(I, E)) if there exists C ∈ C(E) such that F : I → F (a) + EC and, in addition,
F ∈ V s(I, EC). Denote by V sC(F ) a strong total variation of F in EC .

Let in the mention the general properties of mappings from the class V sK(I, E).

Proposition 1.1. The inclusion V sK(I, E) ⊂ V s(I, E) holds. In the case of dimE <∞,
both classes coincide.

Proof. Because (F ∈ V sK(I, E)) ⇒ (F ∈ V s(I, EC) for some C ∈ C(E) and the embed-
ding EC ↪→ E is continuous), it is obvious that F ∈ V s(I, E). In the case of dimE <∞,
the equality E = EC for a closed unit ball C ⊂ E holds, whence V sK(I, E) = V s(I, E). �

From the linearity of the classes V s(I, EC) and the equality

V sK(I, E) =
⋃

C∈C(E)

V s(I, EC),

we immediately get the following result.

Proposition 1.2. Let E be a complete LCS. Then the class V sK(I, E) is linear.

Proposition 1.3. If F ∈ V sK(I, E1), A ∈ L(E1, E2) then A ◦ F ∈ V sK(I, E2).

Proof. Let V sC(F ) <∞ for some C ∈ C(E1). Then for each x ∈ E1,C ,

(1.1)
‖Ax‖A(C) = inf{λ > 0 | Ax ∈ λ ·A(C)} = inf{λ > 0 | Ax ∈ A(λ · C)}

6 inf{λ > 0 | x ∈ λC} = ‖x‖C .

Hence, for every partition P : a = x0 < x1 < · · · < xn = b, P(I) = {P}, a use of (1.1)
leads to an estimate of partial variation in E2,A(C),

V sA(C)(A ◦ F, P ) =
n∑
k=1

‖A(F (xk))−A(F (xk−1))‖A(C) =
n∑
k=1

‖A(F (xk)− F (xk−1))‖A(C)

6
n∑
k=1

‖F (xk)− F (xk−1)‖C = V sC(F, P ),

whence the inequality V sA(C)(A ◦ F ) 6 V sC(F ) <∞ follows.
This means, in view of compactness of A(C), that A ◦ F ∈ V sK(I, E2). �

Proposition 1.4. Let E be a complete LCS. Then F ∈ V sK(I1
⋃
I2, E) if and only if

F |Ij ∈ V sK(Ij , E), j = 1, 2.
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Proof. Indeed, (F ∈ V s(I1
⋃
I2, EC)) ⇒

(
F |Ij

∈ V sK(Ij , E), j = 1, 2
)

according to the
properties of strong variation in EC . Conversely, if F |Ij

∈ V s(Ij , ECj
), j = 1, 2, set

C3 = co(C1

⋃
C2). Then C3 ∈ C(E) ([23], 8.13.4) and the required result follows from

continuity of the embeddings ECj
↪→ EC (j = 1, 2). �

Proposition 1.5. (F1, F2) ∈ V sK(I, E1 × E2) if and only if Fj ∈ V sK(I, Ej), j = 1, 2.
Moreover, if V sCj

(Fj) <∞, then

(1.2)
1
2
[
V sC1

(F1) + V sC2
(F2)

]
6 V sC1×C2

(F1, F2) 6 V sC1
(F1) + V sC2

(F2).

Proof. At first, calculate the norm in EC1×C2 ,

(1.3)

‖(x1, x2)‖C1×C2 = inf{λ > 0 | (x1, x2) ∈ λ(C1 × C2)}
= inf{λ > 0 | (x1, x2) ∈ (λC1)× (λC2)}
= inf{λ > 0 | x1 ∈ λC1, x2 ∈ λC2}

= inf
[
{λ > 0 | x1 ∈ λC1}

⋂
{λ > 0 | x2 ∈ λC2}

]
= max (inf{λ > 0 | x1 ∈ λC1}, inf{λ > 0 | x2 ∈ λC2})
= max(‖x1‖C1 , ‖x2‖C2).

Taking into account (1.3) and the elementary inequality max(α, β) 6 α + β (α > 0,
β > 0), let’s estimate now the partial variation of (F1, F2) in EC1×C2 for a partition
P ∈ P(I),

V sC1×C2
((F1, F2), P ) =

n∑
k=1

‖(F1(xk), F2(xk))− (F1(xk−1), F2(xk−1))‖C1×C2

=
n∑
k=1

‖(F1(xk)− F1(xk−1), F2(xk)− F2(xk−1))‖C1×C2

=
n∑
k=1

max (‖F1(xk)− F1(xk−1)‖C1 , ‖F2(xk)− F2(xk−1)‖C2)

6
n∑
k=1

(‖F1(xk)− F1(xk−1)‖C1 + ‖F2(xk)− F2(xk−1)‖C2)

= V sC1
(F1, P ) + V sC2

(F2, P ),

whence the inequality in the right-hand side of (1.2) follows. Analogously, using the
inequality max(α, β) > α+β

2 in the preceding calculations we get the inequality in the
left-hand side of (1.2). �

Next denote by B(E1 ×E2;E3) the class of bilinear continuous operators acting from
E1 × E2 into E3.

Proposition 1.6. If Fj ∈ V sK(I, Ej), j = 1, 2, B ∈ B(E1 × E2;E3), then B(F1, F2) ∈
V sK(I, E3). If, in addition, V sCj

(Fj) <∞, then

(1.4) V sB(C1×C2)
(B(F1, F2)) 6 sup

x∈I
‖F1(x)‖C1 · V sC2

(F2) + sup
x∈I
‖F2(x)‖C2 · V sC1

(F1).
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Proof. For a partition P ∈ P(I) it follows that
(1.5)

V sB(C1×C2)
(B(F1, F2), P )=

n∑
k=1

‖B(F1(xk), F2(xk))−B(F1(xk−1), F2(xk−1))‖B(C1×C2)

=
n∑
k=1

‖B(F1(xk)− F1(xk−1), F2(xk)) +B(F1(xk−1), F2(xk)−F2(xk−1))‖B(C1×C2)

6
n∑
k=1

‖B(F1(xk)− F1(xk−1), F2(xk))‖B(C1×C2)

+
n∑
k=1

‖B(F1(xk−1), F2(xk)− F2(xk−1))‖B(C1×C2).

Next, applying (1.1) to the linear operators B(·, F2(xk)) and B(F1(xk−1), ·), we find
respectively that

(1.6)

{
‖B(F1(xk)− F1(xk−1), F2(xk))‖B(C1,F2(xk)) 6 ‖F1(xk)− F1(xk−1)‖C1 ,

‖B(F1(xk−1), F2(xk)− F2(xk−1))‖B(F1(xk−1),C2) 6 ‖F2(xk)− F2(xk−1)‖C2 .

At last, setting, for simplicity, Fj(a) = 0 and denoting λj = supx∈I ‖Fj(x)‖Cj
, j = 1, 2,

we obtain
B(C1, F2(xk)) ⊂ B(C1 × λ2C2) = λ2 ·B(C1 × C2); B(F1(xk−1), C2)

⊂ B(λ1C1 × C2) = λ1 ·B(C1 × C2),

whence

(1.7)


‖B(F1(xk)− F1(xk−1), F2(xk))‖B(C1×C2)

6 λ2 · ‖B(F1(xk)− F1(xk−1), F2(xk))‖B(C1, F2(xk)) ,

‖B(F1(xk−1), F2(xk)− F2(xk−1))‖B(C1×C2)

6 λ1 · ‖B(F1(xk−1), F2(xk)− F2(xk−1))‖B(F1(xk−1), C2)

follows. From (1.5), (1.6) and (1.7) we obtain

V sB(C1×C2)
(B(F1, F2), P ) 6 λ1 · V sC2

(F2, P ) + λ2 · V sC1
(F1, P ),

which implies (1.4). �

Note further that V sC < ∞ and the continuous embedding EC ↪→ EC′ implies that
V sC′ <∞. More precisely, we have

Proposition 1.7. If C1, C2 ∈ C(E), C1 ⊂ λ · C2 (λ > 0), then

V sC2
(F ) 6 λ · V sC1

(F ).

Proof. This directly follows from the inequality ‖ · ‖C2 6 λ · ‖ · ‖C1 . �

Let’s compare now the strong compact variation property V sK and the convex compact
variation property VK that was introduced by us earlier in ([21], Definition 1.3).

Definition 1.2. Given a partition P ∈ P(I) let’s introduce a partial convex variation,

V co(F, P ) =
n∑
k=1

w(F ([xk−1;xk])) ,

where w(A) := co(A−A). We call the total convex variation of F on I the set

V co(F ) =
⋃

P∈P(I)

V co(F, P ) .

We call F a compact variation mapping (F ∈ VK(I, E)) if V co(F ) is a compact set.
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Let’s show that the property V sK is stronger than VK .

Proposition 1.8. If F ∈ V sK(I, E), then F ∈ VK(I, E). Moreover, for all C ∈ C(E),
the inclusion

V coC (F ) ⊂ V sC(F ) · C
holds.

Proof. It’s easy to see that, for a partition P ∈ P(I),
n∑
k=1

sup ‖wF ([xk−1;xk])‖C =
n∑
k=1

inf{λ > 0 | wF ([xk−1;xk]) ⊂ λC} =:
n∑
k=1

λk 6 V
s
C(F ).

From here, we get

V co(F, P ) =
n∑
k=1

wF ([xk−1;xk]) ⊂
n∑
k=1

(λk · C) =
( n∑
k=1

λk

)
· C ⊂ V sC(F ) · C.

�

In ([21], Example 2.3) an example of a mapping from VK(I, E) which is nowhere
K-subdifferentiable was constructed. The main result of this section states that any
mapping from V sK is K-subdifferentiable almost everywhere. First, let us briefly recall
the definition of a K-subdifferential ([21], Definition 2.2, [24], Definition 4.1).

Definition 1.3. Given h > 0, a partial convex subdifferential F at a point x ∈ I is the
set

∂coF (x, h) = co

{
F (x+ h′)− F (x)

h′

∣∣∣∣ 0 < |h′| < h

}
.

The set ∂coF (x) (namely, the intersection of all ∂coF (x, h)) is called the convex subd-
ifferential of F at x, if ∂coF (x, h) ⊂ ∂coF (x) +U for each zero neighborhood U ⊂ E and
|h| < δ = δU > 0. Finally, the K-subdifferential is ∂KF (x) = ∂coF (x) in case of compact
∂coF (x).

Theorem 1.1. If F ∈ V sK(I, E), then
(i) F is continuous everywhere on I, exept for at most a countable set of gap points;

(ii) F is K-subdifferentiable almost everywhere on I. In this case,

(1.8) ∂KF (x) ∈ ϕ(x) · C
for some summable ϕ(x) > 0, F ∈ V s(I, EC) and a.e. x ∈ I.

Proof. Denote by Φ(x) = V sC(F |[a;x]), where V sC(F ) < ∞, C ∈ C(E). Then, in view of
Proposition 1.4, Φ increases on I. It follows that Φ is a.e. differentiable on I and ϕ = Φ′

is nonnegative and summable over I. In addition, the obvious estimate

‖F (x+4x)− F (x)‖C 6 V sC(F |[x;x+4x]) = Φ(x+4x)− Φ(x)

implies
(i) continuity exept for at most a countable set of gap points for F at the same

points as Φ;
(ii) the inclusion

F (x+4x)− F (x)
4x

∈ Φ(x+4x)− Φ(x)
4x

· C .

The last estimate implies the inclusion

∂coF (x, h) ⊂ ∂coΦ(x, h) · C ,

whence, taking into account differentiability a.e. of Φ and compactness of ∂coF (x, h),
K-subdifferentiability a.e. of F and estimate (1.8) follow. �

Note, that (1.8) can be written in the following equivalent form:

(1.9) ‖∂KF (x)‖C 6 ϕ(x) .
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2. Strong compact absolute continuity and its properties

Consider now a more restricted class of mappings. First, denote by ACs(I, E) the
class of mappings F : I → E having the usual strong absolute continuity property (with
respect to each continuous seminorm on E).

Definition 2.1. We say that a mapping F is strongly compactly absolutely continuous
on I (F ∈ ACsK(I, E)) if, for some C ∈ C(E), F : I → F (a) + EC and in addition
F ∈ ACs(I, EC).

Now consider general properties of mappings from the class ACsK(I, E), by analogy
with the ones in the class V sK(I, E).

Proposition 2.1. The inclusion ACsK(I, E) ⊂ ACs(I, E) is valid. In the case of
dimE <∞, the two the classes coincide.

Proposition 2.2. Let E be a complete LCS. Then the class ACsK(I, E) is linear.

Proposition 2.3. Let E be a complete LCS. Then F ∈ ACsK(I1
⋃
I2, E) if and only if

F |Ij
∈ ACsK(Ij , E), j = 1, 2.

The proofs of the propositions above are quite analogous with ones for propositions
1.1, 1.2 and 1.4, respectively.

Proposition 2.4. If F ∈ ACsK(I, E1), A ∈ L(E1, E2) then A ◦ F ∈ ACsK(I, E2).

Proof. Using (1.1), for an arbitrary disjoint system
⋃
k(αk;βk) ⊂ I and F ∈ ACs(I, E1,C),

C ∈ C(E1), we get∑
k

‖A(F (βk))−A(F (αk))‖A(C) =
∑
k

‖A(F (βk)− F (αk))‖A(C)

6
∑
k

‖F (βk)− F (αk)‖C → 0

as
∑
k(βk − αk)→ 0, whence A ◦ F ∈ ACsK(I, E2) follows. �

Proposition 2.5. (F1, F2) ∈ ACsK(I, E1×E2) if and only if Fj ∈ ACsK(I, Ej), j = 1, 2.

Proof. Quite analogously with the proof of Proposition 1.5, for an arbitrary disjoint
system

⋃
k(αk;βk) ⊂ I we get

1
2

(∑
k

‖F1(βk)− F1(αk)‖C1 +
∑
k

‖F2(βk)− F2(αk)‖C2

)
6
∑
k

‖(F1(βk), F2(βk))− (F1(αk), F2(αk))‖C1×C2

6
∑
k

‖F1(βk)− F1(αk)‖C1 +
∑
k

‖F2(βk)− F2(αk)‖C2

for Fj ∈ ACs(I, Ej,Cj
), j = 1, 2, whence

(F1, F2) ∈ ACs(I, (E1 × E2)C1×C2)⇔
(
Fj ∈ ACs(I, Ej,Cj

), j = 1, 2
)
.

�

Proposition 2.6. If Fj ∈ ACsK(I, Ej), j = 1, 2, B ∈ B(E1 × E2;E3) then B(F1, F2) ∈
ACsK(I, E3).
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Proof. Quite analogously with (1.5) – (1.6) – (1.7), for an arbitrary disjoint system⋃
k(αk;βk) ⊂ I and Fj ∈ ACs(I, Ej,Cj

) we get∑
k

‖B(F1, F2)(βk)−B(F1, F2)(αk)‖B(C1×C2)

6 sup
x∈I
‖F1(x)‖C1 ·

∑
k

‖F2(βk)− F2(αk)‖C2

+ sup
x∈I
‖F2(x)‖C1 ·

∑
k

‖F1(βk)− F1(αk)‖C1 ,

whence B(F1, F2) ∈ ACs(I, E3, B(C1×C2)) immediately follows. �

The following statement is analogous with Proposition 1.7.

Proposition 2.7. If C1, C2 ∈ C(E), C1 ⊂ λ · C2 and F ∈ ACs(I, EC1) then F ∈
ACs(I, C2).

A partial inversion of Proposition 2.1 takes place.

Proposition 2.8. Let E be Banach space, E∗σ = (E∗, σ(E∗, E)). Then

ACsK(I, E∗σ) = ACs(I, E∗) .

In particular, if E is a reflexive Banach space then

ACsK(I, Eσ) = ACs(I, E) .

Proof. This directly follows from Banach-Alaoglu theorem on ∗-weak compactness of unit
ball in E∗ ([25], Theorem VII.8.1). �

Let’s pass to the main results od this item. First, explain connection between strong
K-variation and strong K-absolutely continuity.

Theorem 2.1. If F ∈ ACsK(I, E) then F ∈ V sK(I, E).

Proof. Let F ∈ ACs(I, EC), C ∈ C(E). Following to the standard scheme ([26], Theo-
rem IX.2.1), given ε > 0 let δ > 0 be such that the inequality(∑

k

(βk − αk) < δ
)
⇒
(∑

k

‖F (βk)− F (αk)‖C < ε
)

holds for an arbitrary disjoint system
⋃
k(αk;βk) ⊂ I. Given a partition P ∈ P(I),

λ(P ) < δ and fixed j = 1, n, let Pj : xj = y0 < y1 < · · · < ym = xj be an arbitrary
partition of [xj−1;xj ]. Then( m∑

i=1

(yi − yi−1) = 4xj < δ
)
⇒
( m∑
i=1

‖F (yi)− F (yi−1)‖C = V sC(F, Pj) < ε
)
,

whence V sC(F |[xj−1; xj ]) 6 ε and hence, by Proposition 1.4, V sC(F ) 6 n · ε, i.e. F ∈
V sK(I, E) follows. �

Theorems 2.1 and 1.1 immediately imply

Corollary 2.1. If F ∈ ACsK(I, E) then F is K-subdifferentiable a.e. on I.

Next, for the case of Frechet space E in ([21], Theorem 3.2) equivalence of the condi-
tions a.e. K-subdifferentiability and a.e. usual differentiability for A ∈ ACs(I, E) was
proved. Then Proposition 2.1 and the last corollary imply

Corollary 2.2. Let E be Frechet space. If F ∈ ACsK(I, E) then F is differentiable a.e.
on I.
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Note that F from ACsK can be nowhere differentiable if E isn’t Frechet space (see [21],
Example 2.2). Let’s deduce now a criterion of the strong K-absolute continuity.

Theorem 2.2. Let E be a separable LCS. Then F is strongly K-absolute continuous if
and only if F possesses strong K-variation and F is weakly absolutely continuous.

Proof. Necessity of the statement follows at once from Theorem 2.1 and Proposition 2.1.
Conversely, if F ∈ V sK(I, E) then F is K-subdifferentiable on I\e, mes(e) = 0, by
Corollary 2.1. In this case

(2.1)
(F ∈ V s(I, EC))⇒ (∂KF (x) ∈ ϕ(x) · C, x ∈ I\e) , where

ϕ(x) =
d

dx
V sC
(
F |[a; x]

)
> 0

by virtue of (1.8). Next, since F is weakly absolutely continuous then F possesses weak
Lusin N-property, whence weak null measure of F (e) follows.

Let’s check continuity of F . By theorem 1.1, F is continuous everywhere on I exept
at most countable set of gaps. Assume that F (x − 0) 6= F (x + 0), x ∈ I. Then, by
corollary from Hahn-Banach theorem ([23], Corollary 2.1.4) such ` ∈ E∗ exists that
`(F (x− 0)) 6= `(F (x+ 0)), x ∈ I. But that contradicts with weak continuity of F .

Thus, F satisfies all conditions of the generalized finite increments theorem for K-
subdifferentials ([24], Theorem 6.2), namely: continuity on I, K-subdifferentiability on
I exept e ⊂ I with weak null measure of F (e), estimation (2.1). Whence, applying the
theorem on [αk; βk] we find

(2.2) F (βk)− F (αk) ∈
∫ βk

αk

ϕ(t) dt · C , i.e. ‖F (βk)− F (αk)‖C 6
∫ βk

αk

ϕ(t) dt .

Summing inequalities (2.2) for an arbitrary disjoint system
⋃
k(αk; βk) leads to∑

k

‖F (βk)− F (αk)‖C 6
∫

S
k(αk; βk)

ϕ(t) dt ,

from here F ∈ ACs(I, EC) directly follows. �

As consequence, a variant of Banach-Zaretsky theorem can be easily obtained.

Corollary 2.3. Let E be a separable LCS. Then F ∈ ACsK(I, E) if and only if F is
continuous on I, F possesses strong K-variation and weak Lusin N-property on I.

Let’s select now a simple subclass of ACsK .

Definition 2.2. Say that F is strongly compact Lipshitz (F ∈ LipsK(I, E)) if
F : I → F (a) + EC for some C ∈ C(E) and moreover F ∈ Lips(I, EC).

It’s easy to check that the property LipsK coincides with the convex compact Lipchitz
property LipK ([21], Definition 1.5). The following results are immediately verified.

Theorem 2.3. If F ∈ LipsK(I, E) then F ∈ ACsK(I, E).

Corollary 2.4. If F ∈ C1(I, E) then F ∈ ACsK(I, E).

3. A criterion of strong K-absolute continuity and K-Radon-Nikodym
property

If F ∈ ACsK(I, E) then, by virtue of Theorem 2.1, Corollary 2.1 and Proposition 1.8 F
possesses convex K-variation and F is a.e. subdifferentiable on I. In case of a separable
LCS E, these two conditions imply representability F in the form of indefinite Bochner
integral ([21], Theorem 3.1). Thus, there is valid the following
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Theorem 3.1. Let E be a separable LCS. If F ∈ ACsK(I, E) then F is indefinite Bochner
integral, i.e.

(3.1) F (x) = F (a) + (B)
∫ x

a

f(t) dt (a 6 x 6 b)

where f : I → E is (B)-integrable on I.

In fact, the following criterion is valid.

Theorem 3.2. Let E be a separable LCS. Then F ∈ ACsK(I, E) if and only if
(i) F is an indefinite Bochner integral, i.e. (3.1) is fulfilled;

(ii)
∫ b
a
‖f(t)‖Cdt <∞ for some C ∈ C(E).

Proof. In case of F ∈ ACsK(I, E), by virtue of Theorem 3.1, F is indefinite Bochner
integral of the form (3.1). In addition ([21], Theorem 3.1) f(x) ∈ ∂KF (x) and therefore
(1.9) implies ‖f(x)‖C 6 ϕ(x), from which statement (ii) follows.

Conversely, let conditions (i)–(ii) be fulfilled. Since f is (B)-integrable then f is
weakly integrable. From here, taking into account inclusion f(t) ∈ ‖f(t)‖C · C, for
arbitrary x1, x2 ∈ I and ` ∈ E∗ we obtain

`(F (x2)− F (x1)) =
∫ x2

x1

`(f(t)) dt 6
∫ x2

x1

‖f(t)‖Cdt · sup `(C) .

Hence, by corollary from Hahn-Banach theorem,

F (x2)− F (x1) ∈
(∫ x2

x1

‖f(t)‖Cdt
)
· C , i.e. ‖F (x2)− F (x1)‖C 6

∫ x2

x1

‖f(t)‖Cdt .

We get precise analog of (2.2). It follows, just analogously with the proof of Theo-
rem 2.2, that F ∈ ACsK(I, E). �

Remark 3.1. However, it should not be supposed that condition (ii) of Theorem 3.2
means (B)-integrability f for some EC , C ∈ C(E). Let, for example, E be Banach space.
Then, according to Proposition 2.8, ACsK(I, E∗σ) = ACs(I, E∗). At the same time, if E∗

does not possess Radon-Nikodym property (see a simple criterion in [1, 2]), the class of
indefinite Bochner integrals is strictly less than ACs(I, E∗).

Thus, denoting by IB(I, E) the class of indefinite Bochner integrals (3.1), we obtain
the relation

(3.2) ACsK(I, E) ⊂ IB(I, E) ⊂ ACs(I, E) .

As it is known, E possesses Radon-Nikodym property (E ∈ RNP ) ([4]) if IB(I, E) =
ACs(I, E). Let’s introduce a strong compact analog of (RNP ) by equating of two first
terms in (3.2).

Definition 3.1. Say that LCS E possesses K-Radon-Nikodym property (E ∈ (RNP )K)
if each indefinite Bochner integral F : I → E belongs to class ACsK(I, E), i.e. if

ACsK(I, E) = IB(I, E) .

Below it’ll be shown that there exist Banach spaces having (RNP )K but not having
(RNP ). First, by analogy with a known case of `2 ([22], Definition 1.1) let’s consider
compact ellipsoids in the space c0 of the tending to zero scalar sequences.

Definition 3.2. Call the (nondegenerated) ellipsoid in c0 any set of the form

(3.3) Cε =
{
x = (xk)∞1 ∈ c0

∣∣∣∣ sup
k>1

(|xk|/εk) 6 1
}
,

where ε = (εk > 0)∞1

By analogy with the case of `2, it is easy to check
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Proposition 3.1. An ellipsoid Cε in c0 is compact if and only if εk → 0.

Note that the same is true for ellipsoids in `p, 1 6 p <∞. It can be proved by analogy
with ([22], Theorem 1.2) that compact ellipsoids in c0 (and also in `p, 1 < p < +∞) are
universal compact sets, i.e. they absorb the all other compacta. Note also that norm
generated by ellipsoid Cε in ECε

= spanCε has a form

‖x‖Cε = sup
k>1

(|xk|/εk) .

Let’s formulate the main result.

Theorem 3.3. The space c0 possesses K-Radon-Nikodym property. More precisely, if
F : I → c0 has a form (3.1) then ∫ b

a

‖f(t)‖Cε
dt <∞

for some compact ellipsoid Cε ⊂ c0.

Proof. 1) Since f is (B)-integrable on I then f , in particular ([27], Theorems 3.5.3 and
3.7.4 ), is weakly integrable on I, and therefore every coordinate function fk(t) of the
mapping f(t) = (f1(t), f2(t), . . . , fk(t), . . .) is summable on I. Hence, for each compact
ellipsoid Cε ⊂ c0 of the form (3.3) the function ‖f(t)‖Cε

is supremum of a sequence of
measurable functions and therefore is measurable, too. Denote further

(3.4) K :=
∫ b

a

‖f(t)‖c0dt =
∫ b

a

(
sup
k>1
|fk(t)|

)
dt <∞ ,

in view of (B)-integrability of f .
2) Let’s construct now such sequence (εk > 0)∞1 , εk → 0, that

Kε :=
∫ b

a

‖f(t)‖Cε
dt =

∫ b

a

[
sup
k>1

(|fk(t)|/εk)
]
dt <∞ .

First, let’s construct by induction an auxiliary system of the sequences{
εn =

(
εnk > 0

)∞
k=1

}∞
n=1

. Set

ε1 = (1, 1, . . .) ; ε1k =

(
1, 1, . . . , 1;

k︷︸︸︷
1
2
,

1
2
, . . .

)
, k ∈ N .

Then
‖f(t)‖Cε11 > ‖f(t)‖Cε12 > · · · > ‖f(t)‖C

ε1k
> · · · > ‖f(t)‖c0 ,

whence the integral sequence

I1k :=
∫ b

a

‖f(t)‖C
ε1k
dt (k ∈ N)

monotonically decreases and, taking into account (3.4), is situated between

I1 := inf
k>1

I1k =
∫ b

a

‖f(t)‖c0dt = K and I11 := sup
k>1

I1k =
∫ b

a

‖f(t)‖Cε11dt = 2K.

Hence, for every t ∈ I the following limit

(3.5) ϕ1(t) = lim
k→∞

‖f(t)‖C
ε1k

exists. In addition, ϕ1(t) = ‖f(t)‖c0 because ‖f(t)‖c0 = ‖f(t)‖C
ε1k

= |f`(t)| for some
` ∈ N and k ∈ N large enough (here ` and k depend on t).
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By theorem B. Levy ([25], Theorem III.6.3), it follows from (3.5) that I1 = limk→∞ I1k,
whence I1k1 − I1 < 1 for some k1 ∈ N. Now set

ε2 = ε1k1 =

(
1, . . . , 1;

k1︷︸︸︷
1
2
,

1
2
, . . .

)
.

By induction, suppose that the sequences

εp =

(
1, . . . , 1;

k1︷︸︸︷
1
2
, . . . ,

1
2

;

k2︷︸︸︷
1
3
, . . . ,

1
3

; . . . ;

kp−2︷ ︸︸ ︷
1

p− 1
, . . . ,

1
p− 1

;

kp−1︷︸︸︷
1
p
,

1
p
, . . .

)
,

satisfying the condition

(3.6) Ip − Ip−1 <
1

2p−2

(
Ip :=

∫ b

a

‖f(t)‖Cεpdt

)
are constructed for p = 2, . . . , n. Describe construction of the sequence

εn+1 =

(
1, . . . , 1;

k1︷︸︸︷
1
2
, . . . ,

1
2

;

k2︷︸︸︷
1
3
, . . . ,

1
3

; . . . ;

kn︷ ︸︸ ︷
1

n+ 1
, . . . ,

1
n+ 1

;

kn+1︷ ︸︸ ︷
1

n+ 2
,

1
n+ 2

, . . .

)
,

satisfying the conditions

(3.7) In+1 − In < 1
2n−1

(
In+1 :=

∫ b

a

‖f(t)‖Cεn+1dt

)
.

To this end, consider analogously with construction above collection of the sequences

εnk =

(
1, . . . ,

1
n− 1

;

kn−1︷︸︸︷
1
n
, . . . ,

1
n

;

k︷ ︸︸ ︷
1

n+ 1
,

1
n+ 1

, . . .

)
, (k > kn−1)

and choose such kn that inequality

(3.8) Inkn − In < 1
2n−1

(
Inkn =

∫ b

a

‖f(t)‖C
εnkn

dt

)
holds. Setting εn+1 := εnkn we obtain the required result. Thus by induction, the
collection of the sequences {εn}∞1 is constructed.

3) Denote by ε the coordinate-wise limit of εn as n→∞. Hence,

ε =

(
1, . . . , 1;

k1︷︸︸︷
1
2
, . . . ,

1
2

;

k2︷︸︸︷
1
3
, . . . ,

1
3

; . . . ;

kn−1︷︸︸︷
1
n
, . . . ,

1
n

;

kn︷ ︸︸ ︷
1

n+ 1
, . . .

1
n+ 1

; . . .

)
.

Denoting by ε = (εk)∞1 we obtain εk → 0, whence by Proposition 3.1 ellipsoid Cε is
compact in c0. Moreover, for every x ∈ c0:

(3.9) ‖x‖Cε1 6 ‖x‖Cε2 6 · · · 6 ‖x‖Cεn 6 · · · 6 ‖x‖Cε .

In particular, sequence of the integrals
{
In =

∫ b
a
‖f(t)‖Cεndt

}∞
1

monotonically in-

creases. It is easily follows from (3.6)–(3.8) that {In}∞1 is Cauchy sequence. Hence, by
B. Levy theorem the limit

I(ε) := lim
n→∞

In =
∫ b

a

ϕε(t) dt , ϕε(t) = lim
n→∞

‖f(t)‖Cεn ,

exists. In addition, ϕε is summable on I in view of I(ε) <∞.
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Let’s show now that

(3.10) ϕε(t) = ‖f(t)‖Cε
(∀t ∈ I) .

Fix t ∈ T and consider both admissible cases.
a) The equality

‖f(t)‖Cε
= sup

k>1
(|fk(t)|/εk) = |fk0(t)|/εk0

holds for some k0 ∈ N. Then, in view of (3.9), the equality

‖f(t)‖C
εk

= |fk0(t)|/εk0 = ‖f(t)‖Cε

holds, whence (3.10) follows.
b) The equality

‖f(t)‖Cε
= sup

k>1
(|fk(t)|/εk) = lim

`→∞
(|fk`

(t)|/εk`
)

holds for some increasing sequence (|fk`
(t)|/εk`

)∞`=1. Then for any δ > 0 there is such
`0 ∈ N that

(|fk`
(t)|/εk) > ‖f(t)‖Cε

− δ
for all ` > `0, i.e. ‖f(t)‖Cεk`

> (|fk`
(t)|/εk`

) > ‖f(t)‖Cε − δ, whence ϕε(t) > ‖f(t)‖Cε .
The inverse inequality follows from (3.9) and therefore the equality (3.10) is true.

So, the function ‖f(t)‖Cε = ϕε(t) is summable on I and hence, the mapping

F (x) = F (a) + (B)
∫ x

a

f(t) dt ,

belongs to the class ACsK by virtue of Theorem 3.2. �

Remind that the space c0 doesn’t possess the classical (RNP ), that is in this case

(A) ACsK(I, c0) = IB(I, c0) $ ACs(I, c0) .

Note that modifying mutatus mutandis proof of Theorem 3.3 respectively compact
ellipsoids in `p (1 6 p <∞):

Cε =
{
x = (xk)∞1 ∈ `p

∣∣∣∣ ∞∑
k=1

(|xk|p/(εk)p) 6 1
}
, εk →∞ ,

it can be proved K-Radon-Nikodym property for the spaces `p (1 6 p < ∞). So, there
is valid the following

Theorem 3.4. The spaces `p (1 6 p < +∞) possess K-Radon-Nikodym property. In
this case,

(B) ACsK(I, `p) = IB(I, `p) = ACs(I, `p) .

in view of `p ∈ (RNP ) for 1 6 p < +∞.

Note that in the work [19] the special sequence spaces, Banach lattices with (RNP ),
were investigated.

Finally, let’s show now that the case ACsK 6= IB is possible, too.

Example 3.1. Let ET be space of the all real functions ξ : T = [0; 1] → R equipped
with pointwise convergence topology, {‖ · ‖t}t∈T is corresponding defining system of
seminorms, ‖ξ(·)‖t = |ξ(t)|. Denote by EtT the subspaces of ET generated by ‖ · ‖t, by
ÊtT their completions respective to factor norms and by ϕt the canonical embeddings of
ET into ÊtT . Here

(3.11) ϕt(ξ(·)) = ξ(t) .
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Remind that Bochner integrability of f : I = [0; 1] → ET means the same for the all
factor mappings from I into ÊtT , t ∈ T , i.e., in connection with the case, summability of
the all functions f(·)(t) = f(·, t), t ∈ T .

Set f(s)(t) = f(s, t) = 0 for s 6 t 6 1, f(s, t) = 1/2
√
s− t for 0 < t < s. Then

‖f(s)‖t = |f(s, t)| = f(s, t), t ∈ T , f : I → ET .
Next, set F (s)(t) = F (s, t) = 0 for s 6 t 6 1, F (s, t) =

√
s− t for 0 < t < s. Let’s

show that

(3.12) F (s) = (B)
∫ s

0

f(u) du (s ∈ I) .

a) It’s easy to see that

(3.13) F ′(s)(t) = f(s, t) as s ∈ I\{t} .
b) Let’s check summability of f(·, t) over I. Consider the cut-off functions

fN (s, t) = f(s, t) for f(s, t) 6 N, fN (s, t) = 0 for f(s, t) > N.

Then fN (·, t), t ∈ T , are summable over I and, denoting by tN : f(tN , t) = N and taking
into account (3.13), we obtain

(R)
∫ 1

0

fN (s, t) ds = (R)
∫ 1

tN

f(s, t) ds =
√

1− t−
√
tN − t as N →∞ .

Hence, by B. Levy theorem f(·, t) is summable over I. By virtue of (3.11), now the
equality (3.12) follows from

ϕt(F (s)) = F (s, t) =
∫ s

0

f(u, t) du =
∫ s

0

ϕt(f(u)) du (∀s ∈ I) .

Let’s check, at last, nowhere differentiability of F over I. Direct calculation shows∥∥∥∥F (s+4s)− F (s)
4s

∥∥∥∥
t=s

=
∣∣∣∣F (s+4s)− F (s)

4s

∣∣∣∣ =
1

2
√
4s
→∞ as 4s→ + 0 .

Therefore, by Corollary 2.2, F 6∈ ACsK(I, ET ).

Since in the analyzed case F ∈ ACs(I, ET ) means that F (·, t) are absolutely continu-
ous for t ∈ T then

(C) ACsK(I, ET ) $ IB(I, ET ) = ACs(I, ET ) .

Combining the relations (A) and (C) for direct sum of the corresponding spaces, it
can be obtained also the relation

(D) ACsK(I, E) $ IB(I, E) $ ACs(I, E) .

So, all the possible relations (A)–(D) are realized.

Final remarks

Comparing Remark 3.1 with Theorem 3.2 leads to the following natural hypotheses
for the case of Banach (and, possible, even Fréchet) space E:

1. F ∈ ACsK(I, E) if and only if F ∈ IB(I, E).
2. F ∈ ACsK(I, E) if and only if F ∈ IB(I, EC) for some C ∈ C(E) (namely, for

F ∈ ACs(I, EC′) and EC′ ↪→↪→ EC).
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