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BOUNDARY PROBLEMS FOR THE WAVE EQUATION WITH THE
LÉVY LAPLACIAN IN SHILOV’S CLASS

S. ALBEVERIO, YA. I. BELOPOLSKAYA, AND M. N. FELLER

Abstract. We present solutions to some boundary value and initial-boundary value

problems for the ”wave” equation with the infinite dimensional Lévy Laplacian ∆L

∂2U(t, x)

∂t2
= ∆LU(t, x)

in the Shilov class of functions.

1. Introduction

The theory of linear elliptic and parabolic equations with the Lévy Laplacian is now
well developed (see for example [1]).

This paper is devoted to the construction of solution of the boundary value and initial-
boundary value problems for the equation

∂2U(t, x)
∂t2

= ∆LU(t, x)

with the Lévy Laplacian ∆L (”wave” equation) in fundamental domains of the Shilov
functional class.

It should be noted that in the Schilov functional class the Lévy Laplacian is a ”de-
rivative” (see (4)). As a result, in this class the equation ∂2U(t,x)

∂t2 = ∆LU(t, x) is reduced
to the equation

∂2u(t, (a1, x)H , . . . , (am, x)H , ζ)
∂t2

=
∂u(t, (a1, x)H , . . . , (am, x)H , ζ)

∂ζ

∣∣∣
ζ=

‖x‖2
H

2

.

2. Preliminaries

Let H be a real separable Hilbert space with inner product (·, ·)H and the norm ‖ ·‖H ,
and let F (x) be a scalar function defined on H.

The infinite dimensional Laplacian was introduced by P. Lévy [2]. If F is twice strongly
differentiable at a point x0 then the Lévy Laplacian of F in this point is defined (if it
exists) by the formula

(1) ∆LF (x0) = lim
n→∞

1
n

n∑
k=1

(F ′′(x0)fk, fk)H ,

where F ′′(x) is the Hessian of the function F (x) and {fk}∞1 is a chosen orthonormal
basis in H.

Let Ω be a bounded domain in H (that is, a bounded open set in H), Ω = Ω ∪ Γ,
where Γ is the boundary of Ω. We suppose that

(2) Ω = {x ∈ H : 0 ≤ Q(x) < R2}, Γ = {x ∈ H : Q(x) = R2},
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with some R ≥ 0, where Q(x) is a twice differentiable function such that ∆LQ(x) = γ
for a positive nonzero constant γ. Such kind of domains are called fundamental.

For example, the domains
1) Ω = {x ∈ H : ‖x‖2H ≤ R2} (a ball)

and
2) Ω = {x ∈ H : (Bx, x)H ≤ R2}, where B = γE +A, E is the unit operator,
A is a compact linear operator in H (ellipsoid),

are fundamental.
We put

T (x) =
R2 −Q(x)

γ
.

Obviously, the real valued function T (x), x ∈ H, possesses the properties
0 < T (x) ≤ R2

γ for x ∈ Ω; T (x) = 0 for x ∈ Γ; ∆LT (x) = −1.

3. The Shilov class of functions

Let C denote the Shilov class of functions [3], that is a set of functions of the form

(3) F (x) = f
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2

)
,

where the elements a1, . . . , am belong to H, f(ξ1, . . . , ξm, ζ) is a real-valued bounded
continuous function of m+1 variables, defined and continuous in the domain G ⊆ Rm+1,
and

x ∈ Ω =⇒
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2

)
∈ G.

Denote by C∗ the subset of functions from C which are continuously differentiable in
‖x‖2H

2 . For any F ∈ C∗, we have [3]

(4) ∆LF (x) =
∂f((a1, x)H , . . . , (am, x)H , ζ)

∂ζ

∣∣∣
ζ=

‖x‖2
H

2

, x ∈ H.

Note that in the Shilov class functions the Lévy Laplacian does not depend on the choice
of a basis.

3.1. Initial problem with homogeneous boundary condition. 1. First we consider
the problem

(5)
∂2V1(t, x)

∂t2
= ∆LV1(t, x) (t > 0),

(6) V1(0, x) = F (x),

(7) V1(t, 0) = 0,

where F (x) is a given function, and V1(t, x) ∈ C ([0,∞), H)
⋂
C2,1 ((0,∞), H) .

Theorem 1. Let F ∈ C∗,

F (x) = f
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2

)
,

where f(ξ1, . . . , ξm, ζ) is a bounded, continuous, twice differentiable in ζ function on
Rm+1, ak ∈ H, k = 1, . . . ,m. Assume also f(ξ1, . . . , ξm, 0) = 0.

Then

(8) V1(t, x) =
2√
π

∫ ∞
t

2

s
‖x‖2

H
2

f
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2
− t2

4z2

)
e−z

2
dz

is a solution of problem (5)–(7).
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Proof. Let us rewrite the function F (x) in the form F (x) = f
(
Pax,

‖x‖2H
2

)
, where Pa is

a projection to an m-dimensional subspace spanned on vectors a1, . . . , am.
It follows from (8) that

(9)

∂2V1(t, x)
∂t2

=
2f ′ζ(Pax, 0)

√
‖x‖2H

2√
π t

exp
(
−t2

2‖x‖2H

)
− 2√

π

∫ ∞
t

2

s
‖x‖2

H
2

f ′ζ

(
Pax,

‖x‖2H
2
− t2

4z2

) 1
2z2

e−z
2
dz

+
2√
π

∫ ∞
t

2

s
‖x‖2

H
2

t2f ′′ζζ

(
Pax,

‖x‖2H
2
− t2

4z2

) 1
4z4

e−z
2
dz (t > 0).

Taking into account (4), we deduce from (8) that

∆LV1(t, x) =
2√
π

∫ ∞
t

2

s
‖x‖2

H
2

f ′ζ

(
Pax,

‖x‖2H
2
− t2

4z2

)
e−z

2
dz,

because ∆L
‖x‖2H

2 = 1, ∆L

(
‖x‖2H

2

)−1/2

= − 1
2

(
‖x‖2H

2

)−3/2

.
Applying the integration by parts formula, we derive

(10)

∆LV1(t, x) = − 2√
π

∫ ∞
t

2

s
‖x‖2

H
2

f ′ζ

(
Pax,

‖x‖2H
2
− t2

4z2

) 1
2z
d
(
e−z

2
)

=
2f ′ζ(Pax, 0)

√
‖x‖2H

2√
π t

exp
(
−t2

2‖x‖2H

)
− 2√

π

∫ ∞
t

2

s
‖x‖2

H
2

f ′ζ

(
Pax,

‖x‖2H
2
− t2

4z2

) 1
2z2

e−z
2
dz

+
2√
π

∫ ∞
t

2

s
‖x‖2

H
2

t2f ′′ζζ

(
Pax,

‖x‖2H
2
− t2

4z2

) 1
4z4

e−z
2
dz.

Substituting (9) and (10) into (5), we obtain an identity.
Setting t = 0 in (8), we obtain V1(0, x) = F (x), and setting x = 0 in (8) we obtain

V1(t, 0) = 0. �

2. Now consider the auxiliary problem

(11)
∂2V2(t, x)

∂t2
= ∆LV2(t, x) (t > 0, x ∈ Ω),

(12) V2(0, x) = 0,

(13) V2(t, x)
∣∣∣
Γ
= h(t),

where h(t) = V1(t, x)|Γ, V1(t, x) is the solution of problem (5)–(7); V2(t, x) ∈ C
(
[0,∞),Ω

)⋂
C2,1 ((0,∞),Ω).

Theorem 2. Let the conditions of Theorem 1 are satisfied. Let f
(
ξ1, . . . , ξm,

R2

2

)
= 0.

Suppose, in addition, that the Fourier sine-transformation ĥ(β) =
√

2
π

∫∞
0
h(τ)sinβτ dτ
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of the function

h(t) =
2√
π

∫ ∞
t

2
√

R2
2

f
(

(a1, x)H , . . . , (am, x)H ,
R2

2
− t2

4z2

)
e−z

2
dz

exists, and β2ĥ(β) exp(R
2β2

2 ) ∈ L1(0,∞).
We put also Ω = {x ∈ H : ‖x‖2H ≤ R2}.
Then

(14) V2(t, x) =

√
2
π

∫ ∞
0

ĥ(β)eT (x)β2
sintβ dβ

is a solution of problem (11)–(13).

Proof. Since, by the assumptions of the theorem, f
(
Pax,

R2

2

)
= 0, we have

h(0) =
2√
π

∫ ∞
0

f
(
Pax,

R2

2

)
e−z

2
dz = 0.

¿From (14), by direct computation, we deduce

(15)
∂2V2(t, x)

∂t2
= −

√
2
π

∫ ∞
0

β2ĥ(β)eT (x)β2
sintβ dβ.

Taking into account that

∆Le
T (x)β2

= β2eT (x)β2
∆LT (x) = −β2eT (x)β2

,

we obtain

(16) ∆LV2(t, x) = −
√

2
π

∫ ∞
0

β2ĥ(β)eT (x)β2
sintβ dβ.

The substitution of (15) and (16) into (11) gives an identity.
Setting t = 0 in (14), we obtain V2(0, x) = 0.
At the boundary Γ we have T (x) = 0 that yields

V2(t, x)
∣∣∣
Γ
=

√
2
π

∫ ∞
0

ĥ(β)sintβ dβ = h(t),

where h(t) = 2√
π

∫∞
t

2
√

R2
2

f
(
Pax,

R2

2 −
t2

4z2

)
e−z

2
dz. �

3. At the end, we consider the initial-boundary value problem with homogeneous
boundary condition for the wave equation with the Lévy Laplacian, namely

∂2V (t, x)
∂t2

= ∆LV (t, x) (t > 0, x ∈ Ω),(1)

V (0, x) = F (x),(2)

V (t, x) = 0 on Γ,(3)

where F (x) is a given function, and V (t, x) ∈ C
(
[0,∞),Ω

)⋂
C2,1 ((0,∞),Ω) .

Theorem 3. Suppose, that F ∈ C∗,

F (x) = f
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2

)
and the conditions of Theorems 1 and 2 are satisfied.

Then

(20)

V (t, x) =
2√
π

∫ ∞
t

2

s
‖x‖2

H
2

f
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2
− t2

4z2

)
e−z

2
dz

−
√

2
π

∫ ∞
0

ĥ(β)eT (x)β2
sintβ dβ,
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is a solution of problem (17)–(19).

Proof. It follows from (20) and (8), (14) that

V (t, x) = V1(t, x)− V2(t, x).

The function V (t, x) solves (17)
(
since ∂2V1(t,x)

∂t2 = ∆LV1(t, x), ∂2V2(t,x)
∂t2 = ∆LV2(t, x)

)
.

It satisfies the initial condition (18) as V (0, x) = F (x) − 0 = F (x), and the boundary
condition (19), because of V (t, x)

∣∣∣
Γ
= h(t) − h(t) = 0. So the function V (t, x) given by

(20) is a solution of problem (17)–(19). �

3.2. Boundary problem with homogeneous initial condition. Now we shall deal
with the boundary problem

∂2W (t, x)
∂t2

= ∆LW (t, x) (t > 0, x ∈ Ω),(4)

W (0, x) = 0,(5)

W (t, x) = G(t, x) on Γ,(6)

with homogeneous boundary condition, where G(t, x) is a given function, and W (t, x) ∈
C
(
[0,∞),Ω

)⋂
C2,1 ((0,∞),Ω) .

Theorem 4. Let Ω be a fundamental domain. Suppose that the function G(t, x) is
twice differentiable with respect to t and

G(t, x) = g
(
t, (b1, x)H , . . . , (bn, x)H ,

‖x‖2H
2

)
,

belongs to C∗ for every t ∈ [0,∞). Here g(t, ξ1, . . . , ξn, ζ) is a function on Rn+2 such
that g(0, ξ1, . . . , ξn, ζ) = 0, bk ∈ H, k = 1, . . . , n. It is assumed also that the functions
t2g(t, ξ1, . . . , ξn, ζ) and t2 exp

(
R2t2

γ

)
ĝ(t, ξ1, . . . , ξn, ζ) are absolutely Lebesgue integrable

in t over [0,∞).
Then the formula

(24) W (t, x) =

√
2
π

∫ ∞
0

ĝ
(
γ, (b1, x)H , . . . , (bn, x)H , T (x) +

‖x‖2H
2

)
eT (x)γ2

sintγ dγ,

yields a solution of problem (21)–(23).

Here ĝ(γ, ξ1, . . . , ξn, ζ) =
√

2
π

∫∞
0
g(τ, ξ1, . . . , ξn, ζ)sinγτ dτ.

Proof. Let us rewrite the function G(t, x) in the form G(t, x) = g
(
t, Pbx,

‖x‖2H
2

)
, where

Pb is a projection into the n-dimensional space spanned over vectors b1, . . . , bn. Since
the functions tkg(t, ξ1, . . . , ξn, ζ), k = 0, 1, 2, are absolutely integrable, their Fourier sine-
transformation in t exists.

We deduce from (24)

(25)
∂2W (t, x)

∂t2
= −

√
2
π

∫ ∞
0

γ2ĝ
(
γ, Pbx, T (x) +

‖x‖2H
2

)
eT (x)γ2

sintγ dγ,

(26)

∆LW (t, x) = −
√

2
π

∫ ∞
0

γ2ĝ
(
γ, Pbx, T (x) +

‖x‖2H
2

)
eT (x)γ2

sintγ dγ

+

√
2
π

∫ ∞
0

ĝ′ζ

(
γ, Pbx, T (x) +

‖x‖2H
2

)
eT (x)γ2

sin tγ dγ
[
∆LT (x) + ∆L

‖x‖2H
2

]
= −

√
2
π

∫ ∞
0

γ2ĝ
(
γ, Pbx, T (x) +

‖x‖2H
2

)
eT (x)γ2

sintγ dγ,

because

∆Le
T (x)γ2

= γ2eT (x)γ2
∆LT (x) = −γ2eT (x)γ2

, ∆LT (x) = −1, ∆L
‖x‖2H

2
= 1.
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Substituting (25) and (26) into (21) we derive an identity.
Setting t = 0 in (24), we obtain W (0, x) = 0.
At the boundary Γ we have T (x) = 0 and ‖x‖2H = R2, hence (24) yields

W (t, x)
∣∣∣
Γ
=

√
2
π

∫ ∞
0

ĝ
(
γ, Pbx,

‖x‖2H
2

)
sintγ dγ = g

(
t, Pbx,

‖x‖2H
2

)
= G(t, x).

�

3.3. Initial-boundary value problem. Consider the initial-boundary value problem
for the wave equation with the Lévy Laplacian

(27)
∂2U(t, x)
∂t2

= ∆LU(t, x) (t > 0, x ∈ Ω),

(28) U(0, x) = F (x),

(29) U(t, x) = G(t, x) on Γ,

where F (x), G(t, x) are given functions, and U(t, x) ∈ C
(
[0,∞),Ω

)⋂
C2,1 ((0,∞),Ω) .

Assume that the conditions of Theorems 3 and 4 are satisfied. The Theorem 3, 4
imply the following assertion

Corollary. The function

U(t, x) =
2√
π

∫ ∞
t

2

s
‖x‖2

H
2

f
(

(a1, x)H , . . . , (am, x)H ,
‖x‖2H

2
− t2

4z2

)
e−z

2
dz

−
√

2
π

∫ ∞
0

ĥ(β)eT (x)β2
sintβ dβ

+

√
2
π

∫ ∞
0

ĝ
(
γ, (b1, x)H , . . . , (bn, x)H ,

R2

2

)
eT (x)γ2

sintγ dγ,

gives a solution of problem (27)–(29).
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