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BOUNDARY PROBLEMS FOR THE WAVE EQUATION WITH THE
LEVY LAPLACIAN IN SHILOV’S CLASS

S. ALBEVERIO, YA. I. BELOPOLSKAYA, AND M. N. FELLER

ABSTRACT. We present solutions to some boundary value and initial-boundary value

problems for the ”"wave” equation with the infinite dimensional Lévy Laplacian Ap,
02U (t,x)
— L =AUtz
o2 LUt )

in the Shilov class of functions.

1. INTRODUCTION

The theory of linear elliptic and parabolic equations with the Lévy Laplacian is now
well developed (see for example [1]).

This paper is devoted to the construction of solution of the boundary value and initial-
boundary value problems for the equation

0?U(t,x)
ot?
with the Lévy Laplacian Aj ("wave” equation) in fundamental domains of the Shilov

functional class.
It should be noted that in the Schilov functional class the Lévy Laplacian is a "de-

= ALU(t, x)

2
rivative” (see (4)). As a result, in this class the equation 2 gg’i) = ALU(t,z) is reduced
to the equation

&%u(t, (a1, ) g, - (Am, 2)H,C) _ Ou(t,(a1,®)H, ..., (am, T) 5, )

ot ¢ =l

2. PRELIMINARIES

Let H be a real separable Hilbert space with inner product (-, )y and the norm ||| g,
and let F'(x) be a scalar function defined on H.

The infinite dimensional Laplacian was introduced by P. Lévy [2]. If F is twice strongly
differentiable at a point xg then the Lévy Laplacian of F' in this point is defined (if it
exists) by the formula

n

(1) ALF(z0) = Tim =S (F" (o) fu fi)

where F”'(z) is the Hessian of the function F(z) and {fx}7° is a chosen orthonormal
basis in H.

Let Q be a bounded domain in H (that is, a bounded open set in H), Q = QUT,
where I' is the boundary of 2. We suppose that

(2) Q={recH:0<Q(z)<R*, T={zxecH:Q() =R},
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with some R > 0, where Q(z) is a twice differentiable function such that ALQ(z) = v
for a positive nonzero constant . Such kind of domains are called fundamental.
For example, the domains
1) Q={z e H:|z|% < R?} (aball)
and
2) Q= {z € H: (Bz,z)y < R*}, where B =~FE + A, E is the unit operator,
A is a compact linear operator in H (ellipsoid),
are fundamental.
‘We put
R? — Q(x)
S .
Obviously, the real valued function T'(x),x € H, possesses the properties

0<T(£C)SR72 for x€Q; T(x)=0 for 2zl ApT(x)=-1.

T(z) =

3. THE SHILOV CLASS OF FUNCTIONS

Let € denote the Shilov class of functions [3], that is a set of functions of the form

T 2
Q F ) = (@2, ) 1),

where the elements ay,...,a, belong to H, f(&1,...,&m,¢) is a real-valued bounded
continuous function of m+ 1 variables, defined and continuous in the domain G € R™*!,
and

2
r€N = ((al,x)H7...,(am,w)H, ”x2”H>€ G.

Denote by €* the subset of functions from € which are continuously differentiable in
2
HIZHH. For any F' € €*, we have [3]
_ 8f((a17$)H, ceey (amax)HaC)
- aC = llzl2 >
- 2
Note that in the Shilov class functions the Lévy Laplacian does not depend on the choice
of a basis.

(4) ALF(x) x € H.

3.1. Initial problem with homogeneous boundary condition. 1. First we consider
the problem

(5) 8217;’5’@ ~ AVilha) (t>0),
(6) Vi(0,2) = F(x),
(7) V1(t,0) =0,

where F(x) is a given function, and V4 (¢,z) € C ([0,00), H) [ C?* ((0,00), H) .
Theorem 1. Let F € €*,

F(z) = f((al,x)H,...,(am,x)H,W),

2
where f(&1,...,&m,C) is a bounded, continuous, twice differentiable in ¢ function on
R™1 ap e Hk=1,...,m. Assume also f(&1,...,&m,0) = 0.
Then
2 [ x| 2\ _
(8) Vl(t,x):ﬁ/ . f((al,x)H,...,(am,x)m%—@>e S

(=%
2 2

is a solution of problem (5)—(7).
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Proof. Let us rewrite the function F'(z) in the form F(z) = f(Paglc7 %), where P, is

a projection to an m-dimensional subspace spanned on vectors aq, ..., Gn,.
It follows from (8) that

OVi(t,x)  2fL(Pax,0)y/ 12ln < 2 >
= exp

o Vit 2T,
2 Lo el N1
2 P el Y1 g
(9) N f<( oty T )92t ¥
i ﬁ,
2 > 2 p1 ||$H%I t? I
+ ﬁ/ . t fCC(Pa:E’ T — E)@@ dZ (t > 0)
[E3F

Taking into account (4), we deduce from (8) that

_ 2 [ / l2llZ £ .
ALvl(tax)*ﬁ/ ) fg(Pan, 5 @)6 dz,

lolly — AR A LI AN
-1 0, (148) =yl
Applying the mtegratlon by parts formula, we derive

Al o) = f > fé( x,||x2H§{ L)id(ﬁz)

211 (P, 0)y/ 12 ( g )

o) Vat 2[[ll%
2 N ]| A I B
vV Ji(Pars B = ) g e
ALk ||2
2 1 H‘TH%{ 2 1 —2?
/ 215 (Pan 58 = ) e e

Hrn?

7

Substituting (9) and (10) into (5), we obtain an identity.
Setting t = 0 in (8), we obtain V;(0,z) = F(x), and setting x = 0 in (8) we obtain

Vi(t,0) = 0. O
2. Now consider the auxiliary problem

(11) % =ApVa(t,z) (t>0,2€Q),

(12) V2(0,2) = 0,

(13) Va(t, x)| = h(t),

r

where h(t) = Vi(t, z)|r, Vi(t, x) is the solution of problem (5)—(7); Va(t,z) € C ([0, 00), Q)
NC?! ((0,),9).

Theorem 2. Let the conditions of Theorem 1 are satisfied. Let f(fl, vy Emy R;)= 0.

Suppose, in addition, that the Fourier sine-transformation h 2 fo T)sinG7 dr
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of the function
R* 2
\/>/ Cl]_, H7"'a(amax)Ha7_@)€_22dZ

exists, and (2h(5) exp( ) € L1(0,00).
We put also Q = {z € H lz]|3, < R%}.
Then

(14) Va(t,z) = \/Z/OOO il(,é’)eT(””)ﬁ2sintﬁ dg

is a solution of problem (11)-(13).

Proof. Since, by the assumptions of the theorem, f (Pax, %2): 0, we have

= % /OOO f(Paa;, %2>e_zzdz =0.

(From (14), by direct computation, we deduce

D2V >
(15) ;gm = \f / B2h(B)eT @5 sint s d.

Taking into account that
ALeT(m _ ﬂ2 T(x)3> ALT( ) _ﬂQeT(z)ﬁQ’

we obtain

(16) ApVa(t,x) = \/7/ 52 T(m smtﬂdﬁ

The substitution of (15) and (16) into (11) gives an identity.
Setting ¢t =0 in (14), we obtain V2(0,2) = 0.
At the boundary I' we have T'(z) = 0 that yields

tx]_\f/ h(B)sintBdf = h(t),

(P T L i)e% dz.

2 422

where h(t) =

Lfoot
ﬁz/—ﬁ

2

O

3. At the end, we consider the initial-boundary value problem with homogeneous

boundary condition for the wave equation with the Lévy Laplacian, namely

(1) % =ALV(t,z) (t>0, ze),
(2) V(0,z) = F(x),
(3) V(t,z)=0 on T,

where F(z) is a given function, and V(t,x) € C ([0, oo),ﬁ) NC?!((0,00),9).

Theorem 3. Suppose, that F' € €*,
_ [Ed5
F(l’)—f (a17x)H7"'7(am7x)Hu 9

and the conditions of Theorems 1 and 2 are satisfied.
Then

oo 2 2 )
V(t,x):l/ t f((al,x)H,...,(am,as)H,m—t—)e_z dz

2 422

\/>/ h T(x)ﬁ sintBdg,
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is a solution of problem (17)-(19).

Proof. Tt follows from (20) and (8), (14) that
V(t,z) = Vi(t,z) — Va(t, z).

: . PVi(tx) _ *Va(t,w) _
The function V (t,z) solves (17) (since 47 = ALVi(t,z), 2 = ApVa(t,x)).
It satisfies the initial condition (18) as V(0,2) = F(z) — 0 = F(x), and the boundary
condition (19), because of V(Lx)’r: h(t) — h(t) = 0. So the function V (¢, z) given by

(20) is a solution of problem (17)—(19). O

3.2. Boundary problem with homogeneous initial condition. Now we shall deal
with the boundary problem

(4) % =AW(t,x) (t>0, zeq),
(5) W(0,z) =0,
(6) W(t,z) = G(t,x) on T,

with homogeneous boundary condition, where G(¢,x) is a given function, and W (¢, z) €

C ([0,00),Q) N C21 ((0,0), Q).

Theorem 4. Let Q be a fundamental domain. Suppose that the function G(t, ) is
twice differentiable with respect to t and

2
x
G(t,:E) :g(t7 (b17m)Ha7(bn,.’E)H7 || QHH)’

belongs to €* for every t € [0,00). Here g(t,&1,...,&n,C) is a function on R™2 such
that 9(0,&1,...,6n,¢) =0, by € H, k =1,...,n. It is assumed also that the functions

t2g9(t, &1, ., €0, C) and t? exp (#) g(t, &1, ..., &n, Q) are absolutely Lebesgue integrable

int over [0, 00).
Then the formula

2 [ 2 2
(24) Wi(t,x) = \/>/ g(% b, )iy ooy (b ), T(x) + %)eﬂm)v sinty dy,
™ Jo
yields a solution of problem (21)-(23).
Here 9(77517 cee 75117 C) = \/gfooo g(T> 517 cee 75117 C)sin’deT.

Proof. Let us rewrite the function G(¢, ) in the form G(t,z) = g( , , ”lelz), where
P, is a projection into the n-dimensional space spanned over vectors by,...,b,. Since
the functions t*g(t,&1,...,&,,¢), k = 0,1,2, are absolutely integrable, their Fourier sine-
transformation in ¢ exists.

We deduce from (24

€T .
(25) 3t2 = \/>/ Vg %Pbar () + | HH) T sinty dy,
X 21 72 [
(26) + \/;/0 gé (’y,Pbx,T(sc) + T)e @) gin ty dry [ALT(.’E) + ALT

2 [ 2
-/ f/ vgﬁ(% Pz, T(x) + LZHH)eT(””zsintv d,
™ Jo

2
ApeT@7 — 726T($)72ALT(;U) - _726T(w)72’ AT (z) = —1, ALL”Z”H =1

because
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Substituting (25) and (26) into (21) we derive an identity.
Setting t = 0 in (24), we obtain W (0,z) = 0.
At the boundary ' we have T'(z) = 0 and ||z||% = R?, hence (24) yields

2R B [
Wt x‘ _\/7/ v, Pyx, 5 )sznt*ydv—g(t,Pbx, ) G(t, ).

3.3. Initial-boundary value problem. Consider the initial-boundary value problem
for the wave equation with the Lévy Laplacian

O

(27) % _ALU(L) (10, 2 €Q),
(28) U(0,z) = F(x),
(29) U(t,z) = G(t,x) on T,

where F(z), G(t,z) are given functions, and U(t,z) € C ([0,00),Q) N C%* ((0,00),9) .
Assume that the conditions of Theorems 3 and 4 are satisfied. The Theorem 3, 4
imply the following assertion

Corollary. The function
2 t2
Ul(t, x) \/>/ ahm)H,...,(am,x)H,%——)e_Zde

422
HTH2

—\/ = / T(I)BQ sintB dg
[2 R2\ paye?
z b il (@)7" ¢4
+ T A 9(77 (blux)Hw"v(bnvir)Hv 9 )6 sznt'yd%

gives a solution of problem (27)—(29).
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