BOUNDARY PROBLEMS FOR THE WAVE EQUATION WITH THE LÉVY LAPLACIAN IN SHILOV'S CLASS

S. ALBEVERIO, YA. I. BELOPOLSKAYA, AND M. N. FELLER

ABSTRACT. We present solutions to some boundary value and initial-boundary value problems for the "wave" equation with the infinite dimensional Lévy Laplacian Δ_L

$$\frac{\partial^2 U(t,x)}{\partial t^2} = \Delta_L U(t,x)$$

in the Shilov class of functions.

1. INTRODUCTION

The theory of linear elliptic and parabolic equations with the Lévy Laplacian is now well developed (see for example [1]).

This paper is devoted to the construction of solution of the boundary value and initialboundary value problems for the equation

$$\frac{\partial^2 U(t,x)}{\partial t^2} = \Delta_L U(t,x)$$

with the Lévy Laplacian Δ_L ("wave" equation) in fundamental domains of the Shilov functional class.

It should be noted that in the Schilov functional class the Lévy Laplacian is a "derivative" (see (4)). As a result, in this class the equation $\frac{\partial^2 U(t,x)}{\partial t^2} = \Delta_L U(t,x)$ is reduced to the equation

$$\frac{\partial^2 u(t,(a_1,x)_H,\ldots,(a_m,x)_H,\zeta)}{\partial t^2} = \frac{\partial u(t,(a_1,x)_H,\ldots,(a_m,x)_H,\zeta)}{\partial \zeta}\Big|_{\zeta = \frac{\|x\|_H^2}{2}}.$$

2. Preliminaries

Let *H* be a real separable Hilbert space with inner product $(\cdot, \cdot)_H$ and the norm $\|\cdot\|_H$, and let F(x) be a scalar function defined on *H*.

The infinite dimensional Laplacian was introduced by P. Lévy [2]. If F is twice strongly differentiable at a point x_0 then the Lévy Laplacian of F in this point is defined (if it exists) by the formula

(1)
$$\Delta_L F(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (F''(x_0) f_k, f_k)_H,$$

where F''(x) is the Hessian of the function F(x) and $\{f_k\}_1^\infty$ is a chosen orthonormal basis in H.

Let Ω be a bounded domain in H (that is, a bounded open set in H), $\overline{\Omega} = \Omega \cup \Gamma$, where Γ is the boundary of Ω . We suppose that

(2)
$$\Omega = \{x \in H : 0 \le Q(x) < R^2\}, \quad \Gamma = \{x \in H : Q(x) = R^2\},\$$

²⁰⁰⁰ Mathematics Subject Classification. 35R15, 46G05.

Key words and phrases. Lévy Laplacian, hyperbolic equations, wave equation, boundary problems, initial-boundary value problems.

with some $R \ge 0$, where Q(x) is a twice differentiable function such that $\Delta_L Q(x) = \gamma$ for a positive nonzero constant γ . Such kind of domains are called fundamental.

For example, the domains

1) $\overline{\Omega} = \{x \in H : ||x||_H^2 \le R^2\}$ (a ball) and

2) $\overline{\Omega} = \{x \in H : (Bx, x)_H \leq R^2\}$, where $B = \gamma E + A$, E is the unit operator, A is a compact linear operator in H (ellipsoid),

are fundamental.

We put

$$T(x) = \frac{R^2 - Q(x)}{\gamma}.$$

Obviously, the real valued function $T(x), x \in H$, possesses the properties

 $0 < T(x) \le \frac{R^2}{\gamma}$ for $x \in \Omega$; T(x) = 0 for $x \in \Gamma$; $\Delta_L T(x) = -1$.

3. The Shilov class of functions

Let \mathfrak{C} denote the Shilov class of functions [3], that is a set of functions of the form

(3)
$$F(x) = f\left((a_1, x)_H, \dots, (a_m, x)_H, \frac{\|x\|_H^2}{2}\right),$$

where the elements a_1, \ldots, a_m belong to H, $f(\xi_1, \ldots, \xi_m, \zeta)$ is a real-valued bounded continuous function of m+1 variables, defined and continuous in the domain $G \subseteq \mathbb{R}^{m+1}$, and

$$x \in \overline{\Omega} \Longrightarrow \left((a_1, x)_H, \dots, (a_m, x)_H, \frac{\|x\|_H^2}{2} \right) \in G.$$

Denote by \mathfrak{C}^* the subset of functions from \mathfrak{C} which are continuously differentiable in $\frac{\|x\|_{H}^{2}}{2}$. For any $F \in \mathfrak{C}^*$, we have [3]

(4)
$$\Delta_L F(x) = \frac{\partial f((a_1, x)_H, \dots, (a_m, x)_H, \zeta)}{\partial \zeta} \Big|_{\zeta = \frac{\|x\|_H^2}{2}}, \quad x \in H.$$

Note that in the Shilov class functions the Lévy Laplacian does not depend on the choice of a basis.

3.1. Initial problem with homogeneous boundary condition. 1. First we consider the problem

(5)
$$\frac{\partial^2 V_1(t,x)}{\partial t^2} = \Delta_L V_1(t,x) \quad (t>0),$$

(6)
$$V_1(0,x) = F(x),$$

(7)
$$V_1(t,0) = 0$$

where F(x) is a given function, and $V_1(t,x) \in C([0,\infty),H) \cap C^{2,1}((0,\infty),H)$.

Theorem 1. Let $F \in \mathfrak{C}^*$,

$$F(x) = f\Big((a_1, x)_H, \dots, (a_m, x)_H, \frac{\|x\|_H^2}{2}\Big),$$

where $f(\xi_1, \ldots, \xi_m, \zeta)$ is a bounded, continuous, twice differentiable in ζ function on \mathbb{R}^{m+1} , $a_k \in H, k = 1, \ldots, m$. Assume also $f(\xi_1, \ldots, \xi_m, 0) = 0$. Then

(8)
$$V_1(t,x) = \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} f\Big((a_1,x)_H,\dots,(a_m,x)_H,\frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2}\Big)e^{-z^2}dz$$

is a solution of problem (5)-(7).

198

Proof. Let us rewrite the function F(x) in the form $F(x) = f\left(P_a x, \frac{\|x\|_H^2}{2}\right)$, where P_a is a projection to an *m*-dimensional subspace spanned on vectors a_1, \ldots, a_m .

It follows from (8) that

(9)

$$\frac{\partial^2 V_1(t,x)}{\partial t^2} = \frac{2f_{\zeta}'(P_a x,0)\sqrt{\frac{\|x\|_H^2}{2}}}{\sqrt{\pi} t} \exp\left(\frac{-t^2}{2\|x\|_H^2}\right) - \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} f_{\zeta}'\left(P_a x, \frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2}\right) \frac{1}{2z^2} e^{-z^2} dz + \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} t^2 f_{\zeta\zeta}''\left(P_a x, \frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2}\right) \frac{1}{4z^4} e^{-z^2} dz \quad (t > 0).$$

Taking into account (4), we deduce from (8) that

$$\Delta_L V_1(t,x) = \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} f'_{\zeta} \Big(P_a x, \frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2} \Big) e^{-z^2} dz,$$

because $\Delta_L \frac{\|x\|_H^2}{2} = 1$, $\Delta_L \left(\frac{\|x\|_H^2}{2}\right)^{-1/2} = -\frac{1}{2} \left(\frac{\|x\|_H^2}{2}\right)^{-3/2}$. Applying the integration by parts formula, we derive

$$\Delta_L V_1(t,x) = -\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} f'_{\zeta} \left(P_a x, \frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2} \right) \frac{1}{2z} d\left(e^{-z^2} \right)$$

$$= \frac{2f'_{\zeta} (P_a x, 0) \sqrt{\frac{\|x\|_H^2}{2}}}{\sqrt{\pi} t} \exp\left(\frac{-t^2}{2\|x\|_H^2}\right)$$

$$- \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} f'_{\zeta} \left(P_a x, \frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2} \right) \frac{1}{2z^2} e^{-z^2} dz$$

$$+ \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_H^2}{2}}}}^{\infty} t^2 f'_{\zeta\zeta} \left(P_a x, \frac{\|x\|_H^2}{2} - \frac{t^2}{4z^2} \right) \frac{1}{4z^4} e^{-z^2} dz.$$

Substituting (9) and (10) into (5), we obtain an identity.

Setting t = 0 in (8), we obtain $V_1(0, x) = F(x)$, and setting x = 0 in (8) we obtain $V_1(t, 0) = 0$.

2. Now consider the auxiliary problem

(11)
$$\frac{\partial^2 V_2(t,x)}{\partial t^2} = \Delta_L V_2(t,x) \quad (t > 0, \ x \in \Omega),$$

(12)
$$V_2(0,x) = 0,$$

(13)
$$V_2(t,x)\Big|_{\Gamma} = h(t),$$

where $h(t) = V_1(t, x)|_{\Gamma}$, $V_1(t, x)$ is the solution of problem (5)–(7); $V_2(t, x) \in C([0, \infty), \overline{\Omega})$ $\bigcap C^{2,1}((0, \infty), \Omega).$

Theorem 2. Let the conditions of Theorem 1 are satisfied. Let $f\left(\xi_1, \ldots, \xi_m, \frac{R^2}{2}\right) = 0$. Suppose, in addition, that the Fourier sine-transformation $\hat{h}(\beta) = \sqrt{\frac{2}{\pi}} \int_0^\infty h(\tau) \sin\beta\tau \, d\tau$ of the function

$$h(t) = \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{R^2}{2}}}}^{\infty} f\Big((a_1, x)_H, \dots, (a_m, x)_H, \frac{R^2}{2} - \frac{t^2}{4z^2}\Big) e^{-z^2} dz$$

exists, and $\beta^2 \hat{h}(\beta) \exp(\frac{R^2 \beta^2}{2}) \in L_1(0,\infty)$. We put also $\overline{\Omega} = \{x \in H : \|x\|_H^2 \le R^2\}$.

Then

(14)
$$V_2(t,x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{h}(\beta) e^{T(x)\beta^2} sint\beta \, d\beta$$

is a solution of problem (11)-(13).

Proof. Since, by the assumptions of the theorem, $f\left(P_a x, \frac{R^2}{2}\right) = 0$, we have

$$h(0) = \frac{2}{\sqrt{\pi}} \int_0^\infty f\left(P_a x, \frac{R^2}{2}\right) e^{-z^2} dz = 0.$$

From (14), by direct computation, we deduce

(15)
$$\frac{\partial^2 V_2(t,x)}{\partial t^2} = -\sqrt{\frac{2}{\pi}} \int_0^\infty \beta^2 \hat{h}(\beta) e^{T(x)\beta^2} sint\beta \, d\beta$$

Taking into account that

$$\Delta_L e^{T(x)\beta^2} = \beta^2 e^{T(x)\beta^2} \Delta_L T(x) = -\beta^2 e^{T(x)\beta^2},$$

we obtain

(16)
$$\Delta_L V_2(t,x) = -\sqrt{\frac{2}{\pi}} \int_0^\infty \beta^2 \hat{h}(\beta) e^{T(x)\beta^2} sint\beta \, d\beta.$$

The substitution of (15) and (16) into (11) gives an identity.

Setting t = 0 in (14), we obtain $V_2(0, x) = 0$.

At the boundary Γ we have T(x) = 0 that yields

$$V_2(t,x)\Big|_{\Gamma} = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{h}(\beta) sint\beta \, d\beta = h(t),$$

$$\sum_{\alpha,\beta=1}^\infty f\Big(P_a x, \frac{R^2}{2} - \frac{t^2}{4z^2}\Big) e^{-z^2} dz.$$

where $h(t) = \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{R^2}}}^{\infty} f\left(P_a x, \frac{R^2}{2} - \frac{t^2}{4z^2}\right) e^{-z^2} dz.$ 3. At the end, we consider the initial-boundary value problem with homogeneous boundary condition for the wave equation with the Lévy Laplacian, namely

(1)
$$\frac{\partial^2 V(t,x)}{\partial t^2} = \Delta_L V(t,x) \quad (t > 0, \ x \in \Omega),$$

(1)
$$\frac{\partial t^2}{\partial t^2} = \Delta_L V(t, x) \quad (t > 0, x \in \mathbb{R})$$

(2)
$$V(0,x) = F(x),$$

(3)
$$V(t,x) = 0 \quad \text{on} \quad \Gamma,$$

where F(x) is a given function, and $V(t,x) \in C\left([0,\infty),\overline{\Omega}\right) \bigcap C^{2,1}\left((0,\infty),\Omega\right)$.

Theorem 3. Suppose, that $F \in \mathfrak{C}^*$,

$$F(x) = f\left((a_1, x)_H, \dots, (a_m, x)_H, \frac{\|x\|_H^2}{2}\right)$$

and the conditions of Theorems 1 and 2 are satisfied. Then

(20)
$$V(t,x) = \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f\left((a_{1},x)_{H},\ldots,(a_{m},x)_{H},\frac{\|x\|_{H}^{2}}{2} - \frac{t^{2}}{4z^{2}}\right) e^{-z^{2}} dz$$
$$-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{h}(\beta) e^{T(x)\beta^{2}} sint\beta \, d\beta,$$

200

is a solution of problem (17)-(19).

Proof. It follows from (20) and (8), (14) that

$$V(t,x) = V_1(t,x) - V_2(t,x).$$

The function V(t, x) solves (17) (since $\frac{\partial^2 V_1(t,x)}{\partial t^2} = \Delta_L V_1(t,x)$, $\frac{\partial^2 V_2(t,x)}{\partial t^2} = \Delta_L V_2(t,x)$). It satisfies the initial condition (18) as V(0,x) = F(x) - 0 = F(x), and the boundary condition (19), because of $V(t,x)\Big|_{\Gamma} = h(t) - h(t) = 0$. So the function V(t,x) given by (20) is a solution of problem (17)–(19).

3.2. Boundary problem with homogeneous initial condition. Now we shall deal with the boundary problem

- (4) $\frac{\partial^2 W(t,x)}{\partial t^2} = \Delta_L W(t,x) \quad (t > 0, \ x \in \Omega),$
- W(0,x) = 0,

(6)
$$W(t,x) = G(t,x)$$
 on Γ

with homogeneous boundary condition, where G(t,x) is a given function, and $W(t,x) \in C([0,\infty),\overline{\Omega}) \cap C^{2,1}((0,\infty),\Omega)$.

Theorem 4. Let $\overline{\Omega}$ be a fundamental domain. Suppose that the function G(t,x) is twice differentiable with respect to t and

$$G(t,x) = g\Big(t, (b_1, x)_H, \dots, (b_n, x)_H, \frac{\|x\|_H^2}{2}\Big),$$

belongs to \mathfrak{C}^* for every $t \in [0, \infty)$. Here $g(t, \xi_1, \ldots, \xi_n, \zeta)$ is a function on \mathbb{R}^{n+2} such that $g(0, \xi_1, \ldots, \xi_n, \zeta) = 0$, $b_k \in H$, $k = 1, \ldots, n$. It is assumed also that the functions $t^2g(t, \xi_1, \ldots, \xi_n, \zeta)$ and $t^2 \exp\left(\frac{\mathbb{R}^2t^2}{\gamma}\right)\hat{g}(t, \xi_1, \ldots, \xi_n, \zeta)$ are absolutely Lebesgue integrable in t over $[0, \infty)$.

Then the formula

(24)
$$W(t,x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{g}\Big(\gamma, (b_1, x)_H, \dots, (b_n, x)_H, T(x) + \frac{\|x\|_H^2}{2}\Big) e^{T(x)\gamma^2} sint\gamma \, d\gamma,$$

yields a solution of problem (21)–(23). Here $\hat{g}(\gamma, \xi_1, \dots, \xi_n, \zeta) = \sqrt{\frac{2}{\pi}} \int_0^\infty g(\tau, \xi_1, \dots, \xi_n, \zeta) \sin\gamma\tau \, d\tau.$

Proof. Let us rewrite the function G(t, x) in the form $G(t, x) = g(t, P_b x, \frac{\|x\|_H^2}{2})$, where P_b is a projection into the *n*-dimensional space spanned over vectors b_1, \ldots, b_n . Since the functions $t^k g(t, \xi_1, \ldots, \xi_n, \zeta)$, k = 0, 1, 2, are absolutely integrable, their Fourier sine-transformation in t exists.

We deduce from (24)

$$(25) \qquad \frac{\partial^2 W(t,x)}{\partial t^2} = -\sqrt{\frac{2}{\pi}} \int_0^\infty \gamma^2 \hat{g} \Big(\gamma, P_b x, T(x) + \frac{\|x\|_H^2}{2} \Big) e^{T(x)\gamma^2} sint\gamma \, d\gamma,$$
$$\Delta_L W(t,x) = -\sqrt{\frac{2}{\pi}} \int_0^\infty \gamma^2 \hat{g} \Big(\gamma, P_b x, T(x) + \frac{\|x\|_H^2}{2} \Big) e^{T(x)\gamma^2} sint\gamma \, d\gamma$$
$$(26) \qquad +\sqrt{\frac{2}{\pi}} \int_0^\infty \hat{g}_{\zeta}' \Big(\gamma, P_b x, T(x) + \frac{\|x\|_H^2}{2} \Big) e^{T(x)\gamma^2} sint\gamma \, d\gamma \Big[\Delta_L T(x) + \Delta_L \frac{\|x\|_H^2}{2} \Big]$$

$$= -\sqrt{\frac{2}{\pi}} \int_0^\infty \gamma^2 \hat{g}\Big(\gamma, P_b x, T(x) + \frac{\|x\|_H^2}{2}\Big) e^{T(x)\gamma^2} sint\gamma \, d\gamma,$$

because

$$\Delta_L e^{T(x)\gamma^2} = \gamma^2 e^{T(x)\gamma^2} \Delta_L T(x) = -\gamma^2 e^{T(x)\gamma^2}, \quad \Delta_L T(x) = -1, \quad \Delta_L \frac{\|x\|_H^2}{2} = 1.$$

Substituting (25) and (26) into (21) we derive an identity.

Setting t = 0 in (24), we obtain W(0, x) = 0.

At the boundary Γ we have T(x) = 0 and $||x||_{H}^{2} = R^{2}$, hence (24) yields

$$W(t,x)\Big|_{\Gamma} = \sqrt{\frac{2}{\pi}} \int_0^\infty \hat{g}\Big(\gamma, P_b x, \frac{\|x\|_H^2}{2}\Big) sint\gamma \, d\gamma = g\Big(t, P_b x, \frac{\|x\|_H^2}{2}\Big) = G(t,x).$$

3.3. Initial-boundary value problem. Consider the initial-boundary value problem for the wave equation with the Lévy Laplacian

(27)
$$\frac{\partial^2 U(t,x)}{\partial t^2} = \Delta_L U(t,x) \quad (t > 0, \ x \in \Omega),$$

(28)
$$U(0,x) = F(x),$$

(29)
$$U(t,x) = G(t,x) \quad \text{on} \quad \Gamma$$

where F(x), G(t,x) are given functions, and $U(t,x) \in C([0,\infty),\overline{\Omega}) \cap C^{2,1}((0,\infty),\Omega)$.

Assume that the conditions of Theorems 3 and 4 are satisfied. The Theorem 3, 4 imply the following assertion

Corollary. *The function*

$$U(t,x) = \frac{2}{\sqrt{\pi}} \int_{\frac{t}{2\sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f\left((a_{1},x)_{H},\dots,(a_{m},x)_{H},\frac{\|x\|_{H}^{2}}{2} - \frac{t^{2}}{4z^{2}}\right) e^{-z^{2}} dz$$
$$-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{h}(\beta) e^{T(x)\beta^{2}} sint\beta d\beta$$
$$+\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{g}\left(\gamma,(b_{1},x)_{H},\dots,(b_{n},x)_{H},\frac{R^{2}}{2}\right) e^{T(x)\gamma^{2}} sint\gamma d\gamma,$$

gives a solution of problem (27)-(29).

Acknowledgments. The authors gratefully acknowledge the financial support of DFG Grant 436 RUS 113/823.

References

- M. N. Feller, *The Lévy Laplacian*, Cambridge University Press, Cambridge—New York— Melbourne—Madrid—Cape Town—Singapore—Sao Paulo, 2005.
- 2. P. Lévy, Problemes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951.
- G. E. Shilov, On some questions of analysis in Hilbert space. I, Funktsional. Anal. i Prilozhen. 1 (1967), no. 2, 81–90. (Russian)

INSTITUT FÜR ANGEWANDTE MATHEMATIK, UNIVERSITÄT BONN, WEGELERSTR. 6, D-53115 BONN; SFB 611, HCM, IZKS, BONN, GERMANY; CERFIM, LOCARNO AND USI, SWITZERLAND

St. Petersburg State University for Architecture and Civil Engineering, 2-ja Krasnoarmejskaja 4, St. Petersburg, 190005, Russia

UKRNII RESURS, KYIV, UKRAINE *E-mail address*: feller@otblesk.com

Received 10/02/2009; Revised 15/01/2010

202