BOUNDARY PROBLEMS FOR THE WAVE EQUATION WITH THE LÉVY LAPLACIAN IN SHILOV'S CLASS

S. ALBEVERIO, YA. I. BELOPOLSKAYA, AND M. N. FELLER

$$
\begin{aligned}
& \text { ABSTRACT. We present solutions to some boundary value and initial-boundary value } \\
& \text { problems for the "wave" equation with the infinite dimensional Lévy Laplacian } \Delta_{L} \\
& \qquad \frac{\partial^{2} U(t, x)}{\partial t^{2}}=\Delta_{L} U(t, x) \\
& \text { in the Shilov class of functions. }
\end{aligned}
$$

1. Introduction

The theory of linear elliptic and parabolic equations with the Lévy Laplacian is now well developed (see for example [1]).

This paper is devoted to the construction of solution of the boundary value and initialboundary value problems for the equation

$$
\frac{\partial^{2} U(t, x)}{\partial t^{2}}=\Delta_{L} U(t, x)
$$

with the Lévy Laplacian Δ_{L} ("wave" equation) in fundamental domains of the Shilov functional class.

It should be noted that in the Schilov functional class the Lévy Laplacian is a "derivative" (see (4)). As a result, in this class the equation $\frac{\partial^{2} U(t, x)}{\partial t^{2}}=\Delta_{L} U(t, x)$ is reduced to the equation

$$
\frac{\partial^{2} u\left(t,\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \zeta\right)}{\partial t^{2}}=\left.\frac{\partial u\left(t,\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \zeta\right)}{\partial \zeta}\right|_{\zeta=\frac{\|x\|_{H}^{2}}{2}}
$$

2. Preliminaries

Let H be a real separable Hilbert space with inner product $(\cdot, \cdot)_{H}$ and the norm $\|\cdot\|_{H}$, and let $F(x)$ be a scalar function defined on H.

The infinite dimensional Laplacian was introduced by P. Lévy [2]. If F is twice strongly differentiable at a point x_{0} then the Lévy Laplacian of F in this point is defined (if it exists) by the formula

$$
\begin{equation*}
\Delta_{L} F\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(F^{\prime \prime}\left(x_{0}\right) f_{k}, f_{k}\right)_{H}, \tag{1}
\end{equation*}
$$

where $F^{\prime \prime}(x)$ is the Hessian of the function $F(x)$ and $\left\{f_{k}\right\}_{1}^{\infty}$ is a chosen orthonormal basis in H.

Let Ω be a bounded domain in H (that is, a bounded open set in H), $\bar{\Omega}=\Omega \cup \Gamma$, where Γ is the boundary of Ω. We suppose that

$$
\begin{equation*}
\Omega=\left\{x \in H: 0 \leq Q(x)<R^{2}\right\}, \quad \Gamma=\left\{x \in H: Q(x)=R^{2}\right\}, \tag{2}
\end{equation*}
$$

Key words and phrases. Lévy Laplacian, hyperbolic equations, wave equation, boundary problems, initial-boundary value problems.
with some $R \geq 0$, where $Q(x)$ is a twice differentiable function such that $\Delta_{L} Q(x)=\gamma$ for a positive nonzero constant γ. Such kind of domains are called fundamental.

For example, the domains

1) $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$ (a ball)
and
2) $\bar{\Omega}=\left\{x \in H:(B x, x)_{H} \leq R^{2}\right\}$, where $B=\gamma E+A, E$ is the unit operator, A is a compact linear operator in H (ellipsoid), are fundamental.

We put

$$
T(x)=\frac{R^{2}-Q(x)}{\gamma}
$$

Obviously, the real valued function $T(x), x \in H$, possesses the properties

$$
0<T(x) \leq \frac{R^{2}}{\gamma} \quad \text { for } \quad x \in \Omega ; \quad T(x)=0 \quad \text { for } \quad x \in \Gamma ; \quad \Delta_{L} T(x)=-1
$$

3. The Shilov class of functions

Let \mathfrak{C} denote the Shilov class of functions [3], that is a set of functions of the form

$$
\begin{equation*}
F(x)=f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}\right) \tag{3}
\end{equation*}
$$

where the elements a_{1}, \ldots, a_{m} belong to $H, f\left(\xi_{1}, \ldots, \xi_{m}, \zeta\right)$ is a real-valued bounded continuous function of $m+1$ variables, defined and continuous in the domain $G \subseteq R^{m+1}$, and

$$
x \in \bar{\Omega} \Longrightarrow\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}\right) \in G
$$

Denote by \mathfrak{C}^{*} the subset of functions from \mathfrak{C} which are continuously differentiable in $\frac{\|x\|_{H}^{2}}{2}$. For any $F \in \mathfrak{C}^{*}$, we have [3]

$$
\begin{equation*}
\Delta_{L} F(x)=\left.\frac{\partial f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \zeta\right)}{\partial \zeta}\right|_{\zeta=\frac{\|x\|_{H}^{2}}{2}}, \quad x \in H \tag{4}
\end{equation*}
$$

Note that in the Shilov class functions the Lévy Laplacian does not depend on the choice of a basis.
3.1. Initial problem with homogeneous boundary condition. 1. First we consider the problem

$$
\begin{gather*}
\frac{\partial^{2} V_{1}(t, x)}{\partial t^{2}}=\Delta_{L} V_{1}(t, x) \quad(t>0) \tag{5}\\
V_{1}(0, x)=F(x) \tag{6}\\
V_{1}(t, 0)=0 \tag{7}
\end{gather*}
$$

where $F(x)$ is a given function, and $V_{1}(t, x) \in C([0, \infty), H) \bigcap C^{2,1}((0, \infty), H)$.
Theorem 1. Let $F \in \mathfrak{C}^{*}$,

$$
F(x)=f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}\right)
$$

where $f\left(\xi_{1}, \ldots, \xi_{m}, \zeta\right)$ is a bounded, continuous, twice differentiable in ζ function on $R^{m+1}, a_{k} \in H, k=1, \ldots, m$. Assume also $f\left(\xi_{1}, \ldots, \xi_{m}, 0\right)=0$.

Then

$$
\begin{equation*}
V_{1}(t, x)=\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2 \sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) e^{-z^{2}} d z \tag{8}
\end{equation*}
$$

is a solution of problem (5)-(7).

Proof. Let us rewrite the function $F(x)$ in the form $F(x)=f\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}\right)$, where P_{a} is a projection to an m-dimensional subspace spanned on vectors a_{1}, \ldots, a_{m}.

It follows from (8) that

$$
\begin{align*}
\frac{\partial^{2} V_{1}(t, x)}{\partial t^{2}} & =\frac{2 f_{\zeta}^{\prime}\left(P_{a} x, 0\right) \sqrt{\frac{\|x\|_{H}^{2}}{2}}}{\sqrt{\pi} t} \exp \left(\frac{-t^{2}}{2\|x\|_{H}^{2}}\right) \\
& -\frac{2}{\sqrt{\pi}} \int_{\frac{t}{\sqrt[2]{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f_{\zeta}^{\prime}\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) \frac{1}{2 z^{2}} e^{-z^{2}} d z \tag{9}\\
& +\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2 \sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} t^{2} f_{\zeta \zeta}^{\prime \prime}\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) \frac{1}{4 z^{4}} e^{-z^{2}} d z \quad(t>0)
\end{align*}
$$

Taking into account (4), we deduce from (8) that

$$
\Delta_{L} V_{1}(t, x)=\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2 \sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f_{\zeta}^{\prime}\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) e^{-z^{2}} d z
$$

because $\Delta_{L} \frac{\|x\|_{H}^{2}}{2}=1, \Delta_{L}\left(\frac{\|x\|_{H}^{2}}{2}\right)^{-1 / 2}=-\frac{1}{2}\left(\frac{\|x\|_{H}^{2}}{2}\right)^{-3 / 2}$.
Applying the integration by parts formula, we derive

$$
\begin{align*}
\Delta_{L} V_{1}(t, x) & =-\frac{2}{\sqrt{\pi}} \int_{\frac{t}{\sqrt[2]{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f_{\zeta}^{\prime}\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) \frac{1}{2 z} d\left(e^{-z^{2}}\right) \\
& =\frac{2 f_{\zeta}^{\prime}\left(P_{a} x, 0\right) \sqrt{\frac{\|x\|_{H}^{2}}{2}}}{\sqrt{\pi} t} \exp \left(\frac{-t^{2}}{2\|x\|_{H}^{2}}\right) \\
& -\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2 \sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f_{\zeta}^{\prime}\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) \frac{1}{2 z^{2}} e^{-z^{2}} d z \tag{10}\\
& +\frac{2}{\sqrt{\pi}} \int_{\frac{t}{\sqrt{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} t^{2} f_{\zeta \zeta}^{\prime \prime}\left(P_{a} x, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) \frac{1}{4 z^{4}} e^{-z^{2}} d z
\end{align*}
$$

Substituting (9) and (10) into (5), we obtain an identity.
Setting $t=0$ in (8), we obtain $V_{1}(0, x)=F(x)$, and setting $x=0$ in (8) we obtain $V_{1}(t, 0)=0$.
2. Now consider the auxiliary problem

$$
\begin{gather*}
\frac{\partial^{2} V_{2}(t, x)}{\partial t^{2}}=\Delta_{L} V_{2}(t, x) \quad(t>0, x \in \Omega) \tag{11}\\
V_{2}(0, x)=0 \tag{12}\\
 \tag{13}\\
\left.V_{2}(t, x)\right|_{\Gamma}=h(t)
\end{gather*}
$$

where $h(t)=\left.V_{1}(t, x)\right|_{\Gamma}, V_{1}(t, x)$ is the solution of problem (5)-(7); $V_{2}(t, x) \in C([0, \infty), \bar{\Omega})$ $\bigcap C^{2,1}((0, \infty), \Omega)$.
Theorem 2. Let the conditions of Theorem 1 are satisfied. Let $f\left(\xi_{1}, \ldots, \xi_{m}, \frac{R^{2}}{2}\right)=0$. Suppose, in addition, that the Fourier sine-transformation $\hat{h}(\beta)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} h(\tau) \sin \beta \tau d \tau$
of the function

$$
h(t)=\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2 \sqrt{\frac{R^{2}}{2}}}}^{\infty} f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{R^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) e^{-z^{2}} d z
$$

exists, and $\beta^{2} \hat{h}(\beta) \exp \left(\frac{R^{2} \beta^{2}}{2}\right) \in L_{1}(0, \infty)$.
We put also $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$.
Then

$$
\begin{equation*}
V_{2}(t, x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{h}(\beta) e^{T(x) \beta^{2}} \operatorname{sint} \beta d \beta \tag{14}
\end{equation*}
$$

is a solution of problem (11)-(13).
Proof. Since, by the assumptions of the theorem, $f\left(P_{a} x, \frac{R^{2}}{2}\right)=0$, we have

$$
h(0)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} f\left(P_{a} x, \frac{R^{2}}{2}\right) e^{-z^{2}} d z=0
$$

¿From (14), by direct computation, we deduce

$$
\begin{equation*}
\frac{\partial^{2} V_{2}(t, x)}{\partial t^{2}}=-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \beta^{2} \hat{h}(\beta) e^{T(x) \beta^{2}} \operatorname{sint} \beta d \beta \tag{15}
\end{equation*}
$$

Taking into account that

$$
\Delta_{L} e^{T(x) \beta^{2}}=\beta^{2} e^{T(x) \beta^{2}} \Delta_{L} T(x)=-\beta^{2} e^{T(x) \beta^{2}}
$$

we obtain

$$
\begin{equation*}
\Delta_{L} V_{2}(t, x)=-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \beta^{2} \hat{h}(\beta) e^{T(x) \beta^{2}} \operatorname{sint} \beta d \beta \tag{16}
\end{equation*}
$$

The substitution of (15) and (16) into (11) gives an identity.
Setting $t=0$ in (14), we obtain $V_{2}(0, x)=0$.
At the boundary Γ we have $T(x)=0$ that yields

$$
\left.V_{2}(t, x)\right|_{\Gamma}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{h}(\beta) \operatorname{sint} \beta d \beta=h(t)
$$

where $h(t)=\frac{2}{\sqrt{\pi}} \int_{\frac{t}{2 \sqrt{\frac{R^{2}}{2}}}}^{\infty} f\left(P_{a} x, \frac{R^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) e^{-z^{2}} d z$.
3. At the end, we consider the initial-boundary value problem with homogeneous boundary condition for the wave equation with the Lévy Laplacian, namely

$$
\begin{gather*}
\frac{\partial^{2} V(t, x)}{\partial t^{2}}=\Delta_{L} V(t, x) \quad(t>0, x \in \Omega) \tag{1}\\
V(0, x)=F(x) \tag{2}\\
V(t, x)=0 \quad \text { on } \quad \Gamma \tag{3}
\end{gather*}
$$

where $F(x)$ is a given function, and $V(t, x) \in C([0, \infty), \bar{\Omega}) \bigcap C^{2,1}((0, \infty), \Omega)$.
Theorem 3. Suppose, that $F \in \mathfrak{C}^{*}$,

$$
F(x)=f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}\right)
$$

and the conditions of Theorems 1 and 2 are satisfied.
Then

$$
\begin{align*}
V(t, x) & =\frac{2}{\sqrt{\pi}} \int_{\frac{t}{\sqrt[2]{\frac{\|x\|_{H}^{2}}{2}}}}^{\infty} f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) e^{-z^{2}} d z \tag{20}\\
& -\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{h}(\beta) e^{T(x) \beta^{2}} \operatorname{sint} \beta d \beta
\end{align*}
$$

is a solution of problem (17)-(19).
Proof. It follows from (20) and (8), (14) that

$$
V(t, x)=V_{1}(t, x)-V_{2}(t, x)
$$

The function $V(t, x)$ solves (17) (since $\left.\frac{\partial^{2} V_{1}(t, x)}{\partial t^{2}}=\Delta_{L} V_{1}(t, x), \quad \frac{\partial^{2} V_{2}(t, x)}{\partial t^{2}}=\Delta_{L} V_{2}(t, x)\right)$. It satisfies the initial condition (18) as $V(0, x)=F(x)-0=F(x)$, and the boundary condition (19), because of $\left.V(t, x)\right|_{\Gamma}=h(t)-h(t)=0$. So the function $V(t, x)$ given by (20) is a solution of problem (17)-(19).
3.2. Boundary problem with homogeneous initial condition. Now we shall deal with the boundary problem

$$
\begin{gather*}
\frac{\partial^{2} W(t, x)}{\partial t^{2}}=\Delta_{L} W(t, x) \quad(t>0, x \in \Omega) \tag{4}\\
W(0, x)=0 \tag{5}\\
W(t, x)=G(t, x) \quad \text { on } \quad \Gamma \tag{6}
\end{gather*}
$$

with homogeneous boundary condition, where $G(t, x)$ is a given function, and $W(t, x) \in$ $C([0, \infty), \bar{\Omega}) \bigcap C^{2,1}((0, \infty), \Omega)$.

Theorem 4. Let $\bar{\Omega}$ be a fundamental domain. Suppose that the function $G(t, x)$ is twice differentiable with respect to t and

$$
G(t, x)=g\left(t,\left(b_{1}, x\right)_{H}, \ldots,\left(b_{n}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}\right)
$$

belongs to \mathfrak{C}^{*} for every $t \in[0, \infty)$. Here $g\left(t, \xi_{1}, \ldots, \xi_{n}, \zeta\right)$ is a function on R^{n+2} such that $g\left(0, \xi_{1}, \ldots, \xi_{n}, \zeta\right)=0, b_{k} \in H, k=1, \ldots, n$. It is assumed also that the functions $t^{2} g\left(t, \xi_{1}, \ldots, \xi_{n}, \zeta\right)$ and $t^{2} \exp \left(\frac{R^{2} t^{2}}{\gamma}\right) \hat{g}\left(t, \xi_{1}, \ldots, \xi_{n}, \zeta\right)$ are absolutely Lebesgue integrable in t over $[0, \infty)$.

Then the formula

$$
\begin{equation*}
W(t, x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{g}\left(\gamma,\left(b_{1}, x\right)_{H}, \ldots,\left(b_{n}, x\right)_{H}, T(x)+\frac{\|x\|_{H}^{2}}{2}\right) e^{T(x) \gamma^{2}} \operatorname{sint} \gamma d \gamma \tag{24}
\end{equation*}
$$

yields a solution of problem (21)-(23).

$$
\text { Here } \hat{g}\left(\gamma, \xi_{1}, \ldots, \xi_{n}, \zeta\right)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} g\left(\tau, \xi_{1}, \ldots, \xi_{n}, \zeta\right) \sin \gamma \tau d \tau
$$

Proof. Let us rewrite the function $G(t, x)$ in the form $G(t, x)=g\left(t, P_{b} x, \frac{\|x\|_{H}^{2}}{2}\right)$, where P_{b} is a projection into the n-dimensional space spanned over vectors b_{1}, \ldots, b_{n}. Since the functions $t^{k} g\left(t, \xi_{1}, \ldots, \xi_{n}, \zeta\right), k=0,1,2$, are absolutely integrable, their Fourier sinetransformation in t exists.

We deduce from (24)

$$
\begin{align*}
& \frac{\partial^{2} W(t, x)}{\partial t^{2}}=-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \gamma^{2} \hat{g}\left(\gamma, P_{b} x, T(x)+\frac{\|x\|_{H}^{2}}{2}\right) e^{T(x) \gamma^{2}} \operatorname{sint} \gamma d \gamma \tag{25}\\
& \Delta_{L} W(t, x)=-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \gamma^{2} \hat{g}\left(\gamma, P_{b} x, T(x)+\frac{\|x\|_{H}^{2}}{2}\right) e^{T(x) \gamma^{2}} \operatorname{sint} \gamma d \gamma \\
& +\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{g}_{\zeta}^{\prime}\left(\gamma, P_{b} x, T(x)+\frac{\|x\|_{H}^{2}}{2}\right) e^{T(x) \gamma^{2}} \sin t \gamma d \gamma\left[\Delta_{L} T(x)+\Delta_{L} \frac{\|x\|_{H}^{2}}{2}\right] \tag{26}\\
& =-\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \gamma^{2} \hat{g}\left(\gamma, P_{b} x, T(x)+\frac{\|x\|_{H}^{2}}{2}\right) e^{T(x) \gamma^{2}} \operatorname{sint} \gamma d \gamma
\end{align*}
$$

because

$$
\Delta_{L} e^{T(x) \gamma^{2}}=\gamma^{2} e^{T(x) \gamma^{2}} \Delta_{L} T(x)=-\gamma^{2} e^{T(x) \gamma^{2}}, \quad \Delta_{L} T(x)=-1, \quad \Delta_{L} \frac{\|x\|_{H}^{2}}{2}=1
$$

Substituting (25) and (26) into (21) we derive an identity.
Setting $t=0$ in (24), we obtain $W(0, x)=0$.
At the boundary Γ we have $T(x)=0$ and $\|x\|_{H}^{2}=R^{2}$, hence (24) yields

$$
\left.W(t, x)\right|_{\Gamma}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{g}\left(\gamma, P_{b} x, \frac{\|x\|_{H}^{2}}{2}\right) \operatorname{sint} \gamma d \gamma=g\left(t, P_{b} x, \frac{\|x\|_{H}^{2}}{2}\right)=G(t, x)
$$

3.3. Initial-boundary value problem. Consider the initial-boundary value problem for the wave equation with the Lévy Laplacian

$$
\begin{gather*}
\frac{\partial^{2} U(t, x)}{\partial t^{2}}=\Delta_{L} U(t, x) \quad(t>0, x \in \Omega) \tag{27}\\
U(0, x)=F(x) \tag{28}\\
U(t, x)=G(t, x) \quad \text { on } \quad \Gamma \tag{29}
\end{gather*}
$$

where $F(x), G(t, x)$ are given functions, and $U(t, x) \in C([0, \infty), \bar{\Omega}) \bigcap C^{2,1}((0, \infty), \Omega)$.
Assume that the conditions of Theorems 3 and 4 are satisfied. The Theorem 3, 4 imply the following assertion
Corollary. The function

$$
\begin{aligned}
U(t, x) & =\frac{2}{\sqrt{\pi}} \int_{\frac{t}{\sqrt[2]{\|x\|_{H}^{2}}}}^{\infty} f\left(\left(a_{1}, x\right)_{H}, \ldots,\left(a_{m}, x\right)_{H}, \frac{\|x\|_{H}^{2}}{2}-\frac{t^{2}}{4 z^{2}}\right) e^{-z^{2}} d z \\
& -\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{h}(\beta) e^{T(x) \beta^{2}} \operatorname{sint} \beta d \beta \\
& +\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{g}\left(\gamma,\left(b_{1}, x\right)_{H}, \ldots,\left(b_{n}, x\right)_{H}, \frac{R^{2}}{2}\right) e^{T(x) \gamma^{2}} \operatorname{sint} \gamma d \gamma
\end{aligned}
$$

gives a solution of problem (27)-(29).
Acknowledgments. The authors gratefully acknowledge the financial support of DFG Grant 436 RUS 113/823.

References

1. M. N. Feller, The Lévy Laplacian, Cambridge University Press, Cambridge-New York-Melbourne-Madrid-Cape Town-Singapore-Sao Paulo, 2005.
2. P. Lévy, Problemes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951.
3. G. E. Shilov, On some questions of analysis in Hilbert space. I, Funktsional. Anal. i Prilozhen. 1 (1967), no. 2, 81-90. (Russian)

Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn; SFB 611, HCM, IZKS, Bonn, Germany; CERFIM, Locarno and USI, Switzerland

St. Petersburg State University for Architecture and Civil Engineering, 2-ja Krasnoarmejskaja 4, St. Petersburg, 190005, Russia

UkrNiI RESURS, Kyiv, Ukraine
E-mail address: feller@otblesk.com

