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ON MIXING AND COMPLETELY MIXING PROPERTIES OF
POSITIVE L1-CONTRACTIONS OF FINITE REAL W∗-ALGEBRAS

A. A. RAKHIMOV AND H. AKIN

Abstract. We consider a non-commutative real analogue of Akcoglu and Suche-

ston’s result about the mixing properties of positive L1-contractions of the L1-space
associated with a measure space with probability measure. This result generalizes

an analogous result obtained for the L1-space associated with a finite (complex)

W∗-algebras.

1. Introduction

It is well known that there are several notions of mixing (i.e. weak mixing, strong
mixing, t-mixing, mildly mixing, harmonically mixing and so on) of measure preserving
transformation on probability space in ergodic theory. It is important to know how
these notions are related with each other. In the last few years, a lot of papers are
devoted to this subject (see. e.g., [1–3]). In [1], Akcoglu and Sucheston have studied the
asymptotic properties of a positive contraction T of commutative algebra, they used weak
convergence. In [3], Zaharopol and Zbaganu have introduced a commutative counterpart
of the smoothing, they used the notion of smoothing instead of weak convergence. It is
well known that the smoothing condition is less restrictive than the weak convergence
used (see, [2] for details). In [2], it has been investigated a noncommutative extension of
the result proved in [1].

In this paper, we consider a non-commutative real analogue of results in [1]. Namely,
we consider the mixing properties of positive L1-contractions of the L1-space associated
with a finite real W∗-algebras. Our aim is to obtain non-commutative real analogue of
the notions of mixing and completely mixing by means of the smoothing. We are going to
study the mixing and completely mixing properties of positive L1-contractions of finite
real W∗-algebras. Note that, the results of paper generalizes the analogous results in
[2], which are proved for the L1-space associated with a finite (complex) W∗-algebras.
In the paper we use the methods of the theory of real and complex W ∗-algebras; the
connections between the real W∗-algebras and their enveloping (complex) W∗-algebras,
in particular the connection of real factor with their enveloping W∗-algebra by means
of an involutive *-antiautomorphism. Moreover, we use also the scheme of proof of the
main results proved in the works [1], [3].

The paper is organized as follows. Section 2 contains some preliminary facts and
definitions. In section 3 we give an non-commutative real analog of Akcoglu-Sucheston
theorem (see [1]) for real L1-spaces. We hope that this result enables to study subse-
quential ergodic theorems in a non-commutative real setting (see [2–4]). We note that
our results are not valid when real W∗-algebra is semi-finite.
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2. Preliminaries

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space
H. A weakly closed *-subalgebra M with identity element 1I in B(H) is called a W∗-
algebra. A real *-subalgebra < ⊂ B(H) is called a real W∗-algebra if it is closed in
the weak operator topology and < ∩ i< = {0}. A real W∗-algebra < is called a real
factor if its center Z(<) contains only elements of the form {λ1I}, λ ∈ R. We say
that a real W∗-algebra < is of the type Ifin, I∞, II1, II∞, or IIIλ, (0 ≤ λ ≤ 1) if
the enveloping W∗-algebra M = < + i< (i.e., the least W*-algebra containing <) is
of the corresponding type with respect to the usual classification of W∗-algebras. A
linear mapping α of an algebra into itself with α(x∗) = α(x)∗ is called an involutive
*-antiautomorphism if α(xy) = α(y)α(x) and α2(x) = x. It is known that (see [5]) the
involutive *-antiautomorphism α of < + i< defined by α(a + ib) = a∗ + ib∗ (a, b ∈ <)
generates <, and the converse if α is an involutive *-antiautomorphism of a W∗-algebra
M , then the set (M,α) = {x ∈ M : α(x) = x∗} is a real W∗-algebra. Therefore we
shall identify from now on the real von Neumann algebra < with the pair (M,α). In the
further, for convenience instead of < we shall often use the form (M,α).

Throughout the paper M would be a von Neumann algebra with the unit 1I, and let
τ be a faithful normal finite trace on M . Let α be the involutive *-antiautomorphism
of M , such that τ ◦ α = τ . The set of all self-adjoint elements of (M,α) is denoted by
(M,α)s; the set of all projections in (M,α) we will denote by ∇. By (M,α)∗ we denote
a pre-dual space to (M,α). It is knows that M∗ = (M,α)∗ + i(M,α)∗ (see [6, Remark
of Proposition 6.2.1]).

The map ‖ · ‖1 : (M,α)→ [0,∞) defined by the formula ‖x‖1 = τ(|x|) is a norm. The
completion of (M,α) with respect to the norm ‖ · ‖1 is denoted by L1((M,α), τ). For the
convenience the norm ‖ · ‖1 we denote by ‖ · ‖. Using results of [6] it is easy to show that
L1(M, τ) = L1((M,α), τ) + iL1((M,α), τ), and L1((M,α), τ) is isometrically isomorphic
to (M,α)∗; moreover L1((M,α)s, τ) is a pre-dual to (M,α)s.

Let T : L1((M,α), τ) → L1((M,α), τ) be a linear operator. We say that a linear
operator T is positive if Tx ≥ 0 whenever x ≥ 0. A linear operator T is said to be a
contraction if ‖T (x)‖1 ≤ ‖x‖1 for all x ∈ L1((M,α)s, τ).

3. Mixing and completely mixing contractions

Let T : L1((M,α), τ)→ L1((M,α), τ) be a linear contraction. We can extended T to
L1(M, τ) as T (x) = T (x1 + ix2) = T (x1). Let

ρ(T ) = sup
{

lim
n→∞

‖Tn(u− v)‖
‖u− v‖

: u, v ∈ L1((M,α)s, τ), u, v ≥ 0, ‖u‖ = ‖v‖
}
.

We put ρ(T ) = ρ(T ). If ρ(T ) = 0, then T is called completely mixing. A positive
contraction T is called mixing, if for all x ∈ L1((M,α)s, τ) with τ(x) = 0 and y ∈ (M,α)
holds

lim
n→∞

τ(Tn(x)y) = 0.

Let T be a positive contraction of L1((M,α), τ), and let x ∈ L1((M,α), τ) be such
that x ≥ 0, x 6= 0. We say that T is smoothing with respect to (w.r.t.) x if for every
ε > 0 there exist δ > 0 and n0 ∈ N such that τ(pTnx) < ε for every p ∈ ∇ such that
τ(p) < δ and for every n ≥ n0.

Theorem 1. Let T : L1
(
(M,α), τ

)
→ L1

(
(M,α), τ

)
be a positive contraction. If

there is a positive element y ∈ L1
(
(M,α), τ

)
such that T is smoothing w.r.t. y, then

lim
n→∞

‖Tny‖ = 0 or there is a nonzero positive z ∈ L1
(
(M,α), τ

)
such that Tz = z.
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Proof. It is easy to see that the limit lim
n→∞

‖Tny‖ exists (which we denote by `), since T
is a contraction. Assume that ` 6= 0. Just as in the complex case we consider the map
λ : (M,α)s → R defined as

λ(x) = L
(
(τ(xTny))n∈N

)
, x ∈ (M,α)s,

where L means a Banach limit. We have

λ(1I) = L
(
(τ(Tny))n∈N

)
= lim
n→∞

‖Tny‖ = ` 6= 0,

therefore ` 6= 0. Besides, λ is a positive functional, since for any positive element x we
have

τ(xTny) = τ(x1/2Tnyx1/2) ≥ 0
for every n ∈ N. For arbitrary x ∈ (M,α) = (M,α)s+ (M,α)k, we have x = xs+xk (see
[5]) and we define λ by λ(x) = λ(xs), where (M,α)k is the Lie algebra of skew elements
of (M,α), i.e. (M,α)k = {x ∈M : α(x) = x∗ = −x}.

Let T ∗∗ : (M,α)∗∗ → (M,α)∗∗ be the second dual of T . Since

(T ∗∗λ)(x) = 〈x, T ∗∗λ〉 = 〈T ∗x, λ〉 = L
(
(τ(TnyT ∗x))n∈N

)
= L

(
(τ(xTn+1y))n∈N

)
= L

(
(τ(xTny))n∈N

)
= λ(x)

the functional λ is T ∗∗-invariant.
Let λ = λn + λs be the Takesaki decomposition of real functional λ on normal and

singular components defined in [6, Definition 6.2.3]. Since T is normal and T ∗∗λ = λ,
so using the idea of [7] it can be proved that T ∗∗λn = λn. Now we will show that λn
is nonzero. Consider a measure µ := λ|∇. It is clear that µ is an additive measure on
∇. Let us prove that it is σ-additive. To this and, it is enough to show that µ(pk) → 0
whenever pk+1 ≤ pk and pk ↘ 0, pk ∈ ∇.

Let ε > 0. From pk ↘ 0 we infer that τ(pk) → 0 as n → ∞. It follows that there
exists kε ∈ N such that τ(pk) < ε for all k ≥ kε. Since T is smoothing w.r.t. y we obtain

τ(pkTny) < ε, ∀k ≥ kε,
for every n ≥ n0. From a property of the Banach limit we get

λ(pk) = L
(
(τ(pkTny))n∈N

)
< ε for every k ≥ kε,

which implies µ(pk)→ 0 as k →∞. This means that the restriction of λn on ∇ coincides
with µ. Since

τ(p⊥Tny) > τ(Tny)− ε ≥ inf ‖Tny‖ − ε = `− ε
as ε has been arbitrary, so ` − ε > 0, and hence µ(p⊥) > 0 for all p ∈ ∇ such that
τ(p) < δ. Therefore µ 6= 0, and consequently, λn 6= 0.

¿From this we infer that there exists a positive element z ∈ L1((M,α), τ) such that

λn(x) = τ(zx), ∀ x ∈ (M,α).

The last equality and T ∗∗λn = λn yield that

τ(zx)) = 〈x, T ∗∗λn〉 = 〈T ∗x, λn〉 = τ(zT ∗x) = τ(Tzx)

for every x ∈M , which implies that Tz = z. �

Theorem 1 states that if a positive contraction T : L1
(
(M,α), τ

)
→ L1

(
(M,α), τ

)
is

smoothing then either it’s powers converge strongly to zero or it has a non-zero invariant
vector in (M,α).

Corollary. Let x ∈ L1((M,α), τ), x ≥ 0. Assume that Tnx → x∗ weakly. Then T is
smoothing w.r.t. x.

Remark. The proved Theorem 1 is a non-commutative real analog of Akcoglu and Suche-
ston’s result [1].
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Before proving the next theorem let us give the following auxiliary lemma.

Lemma. Let x ∈ L1((M,α), τ). If the inequality

(1) τ(xy) ≥ 0

is valid for every y ≥ 0, y ∈ (M,α), then x ≥ 0.

Proof. Let ∀a ∈ M with a ≥ 0. Since a = y + iz for some y, z ∈ (M,α), by [5, Corolla-
ry 1.1.4] we have y ≥ 0. According to (1) one gets

τ(xa) = τ(xy + ixz) = τ(xy) ≥ 0.

By [2, Lemma 3.4] we have x ≥ 0. �

¿From Lemma and Theorem 1 we find the following.

Theorem 2. Let T : L1
(
(M,α), τ

)
→ L1

(
(M,α), τ

)
be a positive contraction such that∣∣T (x)

∣∣ ≤ T (|x|) for every x ∈ L1
(
(M,α), τ

)
, x = x∗. Assume that there exists no nonzero

y ∈ L1
(
(M,α), τ

)
, y ≥ 0, such that Ty = y. If for z ∈ L1

(
(M,α), τ

)
the sequence

(
Tnz

)
converges weakly to some element of L1

(
(M,α), τ

)
, then lim

n→∞
‖Tnz‖ = 0. In particular,

if T is mixing, then T is completely mixing.

Proof. As in the proof of Theorem 1 we assume that lim
n→∞

‖Tnz‖ = ` > 0. Just as in the

complex case we consider the map λ : (M,α)s → R defined as

λ(x) = L
(
(τ(x

∣∣Tnz∣∣))n∈N
)

for every x ∈ (M,α)s. Using the same argument as in the proof of Theorem 1 one can
show that there exists a nonzero positive element y ∈ L1

(
(M,α), τ

)
such that

λn(x) = τ(yx), ∀ x ∈ (M,α).

Here λn is the normal part of λ.
¿From the property of T we infer

τ(Tyx) = τ(yT ∗x) = L
(
(τ(
∣∣Tnz∣∣T ∗x))n∈N

)
= L

(
(τ(T

∣∣Tnz∣∣x))n∈N
)
≥ L

(
(τ(
∣∣Tn+1z

∣∣x))n∈N
)

= τ(yx)

for all x ≥ 0. Hence, for every x ≥ 0 we have

τ
(
(Ty − y)x

)
≥ 0.

According to Lemma we infer that Ty ≥ y. Since T is a contraction one gets ‖y‖1 ≤
‖Ty‖1 ≤ ‖y‖1, i.e. ‖Ty‖1 = ‖y‖1. Hence Ty = |Ty| = |y| = y, since τ(|Ty|) = τ(|y|).
But this contradicts the assumption of the theorem. �

Remark. The proved theorem is a non-commutative real analog of [8, Ch. 8 Theorem 1.4].
Certain similar results have been obtained in [9], [10] for quantum dynamical semigroups
in von Neumann algebras.

Remark. It should be noted that Theorem 1 and 2 are not valid if a von Neumann algebra
is semi-finite.

Indeed, let B(`2) be the algebra of all linear bounded operators on Hilbert space `2.
Let {ξn}n∈N be a standard basis of `2. The matrix units of B(`2) can be defined by

ei,j(η) = (η, ξi)ξj , η ∈ `2, i, j ∈ N.
Let α be a canonical involutive *-antiautomorphism of B(`2), i.e. α(ei,j) = ej,i. A trace
on B(`2) is defined by

τ(x) =
∞∑
k=1

(xξk, ξk).
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It is clear that τ is α-invariant, i.e. τ ◦α = τ . By `r∞ we denote a maximal commutative
real subalgebra generated by elements {eii : i ∈ N}. Then an algebra defined by `∞ =
`r∞ + i`r∞ is a maximal commutative (complex) subalgebra generated by elements {eii :
i ∈ N}. Let P : `∞ → `∞ be the natural projection on `r∞, i.e. P (l + il′) = l. Define a

map s : `∞ → `∞ as follows: for every element a ∈ `∞, a =
∞∑
k=1

akekk put

s(a) =
∞∑
k=1

akek+1,k+1.

It is clear that s(`r∞) ⊂ `r∞. Define T : (B(`2), α) → (B(`2), α) as T (x) = s(P (E(x))),
x ∈ (B(`2), α), where E : B(`2)→ `∞ is the canonical conditional expectation. It is easy
to see that T is positive and τ

(
T (x)

)
≤ τ(x) for every x ∈ L1((B(`2), α), τ)∩ (B(`2), α),

x ≥ 0. Hence, T is a positive L1-contraction. But for T there is no nonzero x such that
Tx = x. Moreover, for every y ∈ L1((B(`2), α), τ) we have lim

n→∞
‖Tny‖ 6= 0.
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