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UNITARIZATION OF SCHUR REPRESENTATIONS OF A POSET
CORRESPONDING TO Ẽ8

D. YU. YAKYMENKO

Abstract. We prove that every Schur representation of a poset corresponding tofE8 can be unitarized with some character.

1. Introduction

A description of representations of quivers and posets in the category of linear spaces
is related to numerous linear algebra problems, and works in this area have become
classical, see references in [15] and elsewhere.

The problem of finding a description of representations of quivers and posets is also
being studied for the category of Hilbert spaces by introducing additional conditions on
the representations. In the category of Hilbert spaces, a description of representations
of the corresponding algebras, calculation of the dimensions, and other results are given
in [10, 14, 1] and elsewhere. In [9, 11], the authors studied locally scalar representations
of quivers (the term was changed to orthoscalar in [9]). One can also consider orthoscalar
representations of posets in the category of Hilbert spaces. In such a case, the study of
orthoscalar representations of primitive posets can be reduced to a study of orthoscalar
representations of the corresponding quivers and vice versa.

In this paper, we continue to study the relation between indecomposable linear rep-
resentations of posets and their irreducible orthoscalar Hilbert representations, see [12,
15, 3, 17]. To an irreducible orthoscalar representation there corresponds a linear repre-
sentation, but a linear representation corresponds to a set of orthoscalar representations
with different characters; this set could also be empty. A linear representation π is unita-
rizable with a character χ if there exists an orthoscalar representation π′ with χ, which is
linearly isomorphic to π, see [15]. It is known [9] that an indecomposable representation
of a poset is unitarizable with some character only if it is a Schur representation. If, for
a fixed character, a unitary representation exists, then it is unique up to unitary equiv-
alence. However, not every Schur representation can be unitarized with some character,
see a counterexample in [18].

It was proved in [3] that all Schur representations of primitive finite type posets can
be unitarized with some characters, and a description of such characters is given. It was
proved that all Schur representations of D̃4 can be unitarized [12], and a description of
the characters that admit a unitarization is obtained in [15]. This was carried out for the
poset corresponding to Ẽ6 in [17], and for the poset corresponding to Ẽ7 in [18], except
for giving a description of the characters.

In this paper, we show that all Schur representations of a poset corresponding to Ẽ8

can be unitarized with some characters.
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2. Auxiliary results

2.1. Collections of linear subspaces. We will be considering finite dimensional linear
spaces over C. Linear spaces, together with a system of subspaces, naturally make an
additive category. To be more precise, objects of the category Sysn are ordered col-
lections (V ;V1, . . . , Vn), where Vi are subspaces of V . Morphisms from (V ;V1, . . . , Vn)
to (W ;W1, . . . ,Wn) are linear mappings φ : V → W such that φ(Vi) ⊆ Wi. An iso-
morphism is a morphism that admits an inverse. An endomorphism is a morphism of
an object into itself. Objects are called isomorphic or equivalent if there is an isomor-
phism between them. A direct sum of the objects (V ;V1, . . . , Vn) and (W ;W1, . . . ,Wn)
is (V ⊕W ;V1 ⊕W1, . . . , Vn ⊕Wn). An object is called indecomposable if it is not iso-
morphic to a sum of nonzero objects. An object is called Schur if it only has trivial
endomorphisms. A Schur object is indecomposable but not every indecomposable object
is Schur.

The problem of classification of indecomposable nonequivalent objects is important
and has been extensively studied. For n 6 3 there is a finite number of such objects, for
n = 4 there are infinitely many of them but they admit a classification, see [2] and the
references therein. If n > 5, the classification problem is wild.

2.2. Collections of Hilbert spaces. Let us now look at collections of Hilbert spaces.
Consider the category SysHn as a subcategory of Sysn. The objects are collections
(V ;V1, . . . , Vn) such that V is endowed with a inner product. Morphisms from (V ;V1, . . . ,
Vn) to (W ;W1, . . . ,Wn) are the ones for which φ(Vi) ⊆ Wi and also φ∗(Wi) ⊆ Vi. One
can show that two objects will be isomorphic if and only if there is a unitary operator φ
such that φ(Vi) = Wi. A direct product in the category is the orthogonal sum. It is clear
that orthogonal decomposability implies linear decomposability but not vice versa. Note
that, for this category, the Schur property is equivalent for a collection of orthogonal
projections to be irreducible.

2.3. Orthoscalarity. The category SysHn contains fewer morphisms so there are more
equivalence classes and the description problem is more difficult. Indeed, if n = 3, the
problem of describing indecomposable objects is already wild. However, the descrip-
tion problem becomes meaningful if one introduces additional conditions. A collection
(V ;V1, . . . , Vn) in SysHn will be called orthoscalar with a character χ = (α0;α1, . . . , αn),
αi > 0, if

α1P1 + · · ·+ αnPn = α0I,

where Pi are orthogonal projections onto the subspaces Vi.
All such collections make a category SysHχ,n that is a subcategory of SysHn. For

this category, the problem of describing (unitarily) nonequivalent (orthogonally) inde-
composable objects is like in the linear case. If n 6 3, the number of such objects if finite
for any fixed character χ. If n = 4, there exist characters for which the number of the
objects is infinite but one can give a description of them for any such character. If n = 5
there are characters for which the description problem is wild.

It was shown in [12] that any Schur quadruple of linear spaces is linearly isomorphic
to an orthoscalar quadruple with a character of the form χ = (λ; 1, 1, 1, 1).

2.4. Unitarization of a collection of linear subspaces. The category SysHn is a
subcategory of Sysn, and to any orthoscalar collection there naturally corresponds a
linear one. However, the converse correspondence is not single-valued. A object π =
(V ;V1, . . . , Vn) in Sysn will be called unitarizable with a character χ = (α0;α1, . . . , αn)
if there exists an object π′ in SysHχ,n, which is orthoscalar with a character χ, such
that π ' π′ in Sysn. In other words, V can be endowed with an inner product such that
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the collection π becomes orthoscalar with the character χ. There are two questions that
arise.

(1) Which collections can be unitarized with some character ?
(2) What are the characters for which a given collection can be unitarized ?

It is known that an (orthogonally) indecomposable orthoscalar collection of subspaces
must have the Schur property in the category of linear spaces [9]. Hence, an indecompos-
able collection can be unitarized with some character only if it has the Schur property.

For n ≤ 4, answers to the above questions are obtained in [15].

2.5. Representations of posets. Let N be a finite poset consisting of |N | = n el-
ements. One can consider the category SysN of linear representations of this poset,
namely, SysN is a complete subcategory of Sysn, the objects of which are collections of
subspaces, (V ;V1, . . . , Vn), such that Vi ⊆ Vj if i ≺ j.

The problem of classifying indecomposable nonequivalent objects in this category has
been extensively studied, see [13, 5] and others. There is a list of posets which have only
a finite number of indecomposable nonequivalent representations, and a list of posets
with an infinite number of representations that admit a description.

Similarly to the linear case, one can consider Hilbert representations of posets, in
particular, orthoscalar representations, i.e., the categories SysHN and SysHχ,N . In such
a case, one obtains results for a classification of poset representations comparable to those
obtained for the linear case. Some results for primitive finite type posets are obtained
in [3].

2.6. Stability of a collection of linear subspaces. Let π = (V ;V1, . . . , Vn) be a
collection in Sysn. The collection π will be called semistable with a character χ =
(α0;α1, . . . , αn) if

α1 dimVi + · · ·+ αn dimVn = α0 dimV,

α1 dim(Vi ∩ F ) + · · ·+ αn dim(Vn ∩ F ) 6 α0 dimF,

for any subspace F ⊂ V , and we call it stable if all the inequalities are strict.
A collection π ∩ F = (F ;V1 ∩ F, . . . , Vn ∩ F ) is called a subcollection of the collection

π, dim(π ∩ F ) is called a subdimension of π.
There is a criterion for unitarization, see [6, 16] and a comment in [4].

Theorem. A collection π = (V ;V1, . . . , Vn) in Sysn with Schur property is unitarizable
with χ if and only if π = (V ;V1, . . . , Vn) is stable with χ.

2.7. A description of representations of the poset that corresponds to Ẽ8. The
results given in this section can be found, e.g., in [2], see also the bibliography in [2].

Let π = (P ;X;Y3, Y4;Z5, Z6, Z7, Z8, Z9) be a representation of the poset that corre-
sponds to Ẽ8, that is, P is a finite dimensional linear space and X ⊂ P , Y4 ⊂ Y3 ⊂ P ,
Z9 ⊂ Z8 ⊂ Z7 ⊂ Z6 ⊂ Z5 ⊂ P . If π is an indecomposable collection, then the value of
the quadratic Tits form of the dimension of π equals either 0 or 1. If it equals 1, the
dimension of π is called a real root, and such collections π are called a discrete series.
There is only one indecomposable representation with such a dimension. Schur represen-
tations can be obtained in this case by using the simplest Coxeter functors. Existence of
a unitarization with some character follows in this case directly from results in [8].

If the value of the Tits form equals 0, then the dimension of π is called an imaginary
root, and such collections π are called a continuous series. In such a case, the dimension
of π can only have the values σk = (6k; 3k; 4k, 2k; 5k, 4k, 3k, 2k, k), k ∈ N. Here, an
indecomposable collection of dimension σk will have the Schur property only if k = 1. A
description of all Schur representations, in this case, can be obtained, see, e.g., [2], and
is given by the following:
Γ(1;−λ) = (< e123456 >;< e1 + e5, e2 + e6, e4 >;< e1234 >,< e2 + e3, e4 + e2 >;
< e12356 >,< e1356 >,< e3 + λe1, e56 >,< e56 >,< e5 + e6 >), λ ∈ C, λ 6= 0,−1;
Γ1(1; 0) = (< e123456 >;< e1 +e5, e2 +e6, e4 >;< e1234 >,< e2 +e3, e4 +e2 >; < e12356 >
,< e1356 >,< e3 + e1, e56 >,< e56 >,< e5 >);
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Γ2(1; 0) = (< e123456 >;< e1 + e5, e2 + e6, e4 >;< e1234 >,< e2, e4 + e3 >; < e12356 >,<
e1356 >,< e3 + e1, e56 >,< e56 >,< e5 + e6 >);
Γ3(1; 0) = (< e123456 >;< e1 +e5, e2 +e6, e4 >;< e1234 >,< e2 +e3, e4 +e2 >; < e12356 >
,< e1356 >,< e3, e56 >,< e56 >,< e5 + e6 >);
Γ1(1; 1) = (< e123456 >;< e1 +e5, e2 +e6, e4 >;< e1234 >,< e2 +e3, e4 +e2 >; < e12356 >
,< e1356 >,< e3 − e1, e56 >,< e56 >,< e5 + e6 >);
Γ2(1; 1) = (< e123456 >;< e2 + e5, 2e3 + e6, e3 − e1 >;< e1234 >,< e2 + e3, e4 + e2 >;
< e12456 >,< e456, e1 + e2 >,< e456 >,< e56 >,< e6 >);
Γ1(1;∞) = (< e123456 >;< e1 + e5, e2 + e6, e4 >;< e1234 >,< e2 + e3, e4 + e2 >;
< e12356 >,< e1356 >,< e3 + e1, e56 >,< e56 >,< e6 >);
Γ2(1;∞) = (< e123456 >;< e1 + e5, e2 + e6, e4 >;< e1234 >,< e3, e4 + e2 >; < e12356 >
,< e1356 >,< e3 + e1, e56 >,< e56 >,< e5 + e6 >);
Γ3(1;∞) = (< e123456 >;< e1 + e5, e2 + e6, e4 >;< e1234 >,< e2 + e3, e4 + e2 >;
< e12356 >,< e1356 >,< e1, e56 >,< e56 >,< e5 + e6 >);
Γ4(1;∞) = (< e123456 >;< e2 + e5, e3 + e6, e1 >;< e1234 >,< e2 + e3, e4 + e2 >;
< e12456 >,< e456, e1 + e2 >,< e456 >,< e56 >,< e6 >).

Here, for brevity, we denote the collection ei, ej , ek by eijk.

3. Unitarization of the continuous series of Schur representations of Ẽ8.

The following theorem is the main result of this paper.

Theorem 3.1. Any Schur representation of the continuous series of the poset that cor-
responds to Ẽ8 can be unitarized with some character.

A proof of this theorem will be based on the following Propositions 3.2 and 3.3.

Proposition 3.2. Let π = (V ;V1, . . . , Vn) be a Schur collection of subspaces of a linear
space, Vi 6= 0, and assume that it can be unitarized with some character. Then for all
Vn+1 ⊂ V , the collection of subspaces π′ = (V ;V1, . . . , Vn, Vn+1) can also be unitarized
with some character.

Proof. Denote by σi = dimVi, i = 1, n+ 1, σ0 = dimV . Let π = (V ;V1, . . . , Vn)
be unitarizable with a character χ = (1;α1, . . . , αn). Then π is stable with χ and,
hence, α1σ1 + · · · + αnσn = σ0 and α1d1 + · · · + αndn < d0 for all subdimensions
(d0; d1, . . . dn) of the collection π. Take βi = αi, i = 2, n, β1 = α1 − βn+1

σn+1
σ1

. Let us
show that if βn+1 is taken sufficiently small so that βn+1 < α1

σ1
σn+1

since β1 > 0, then
π′ = (V ;V1, . . . , Vn, Vn+1) will be unitarizable with the character (1;β1, . . . , βn+1). For
(1;β1, . . . , βn+1) to be unitarizable, it is necessary and sufficient that π′ be stable with
this character, that is, that β1σ1 + · · · + βn+1σn+1 = σ0 would hold for some choice of
the numbers βi, and that, for any subdimension (d0; d1, . . . , dn+1) of the collection π′,
we would have β1d1 + · · ·+ βn+1dn+1 < d0.

If D = {(dF0 ; dF1 , . . . , d
F
n ) | F ⊂ V } are all subdimensions of π, then possible subdi-

mensions of π′ will only be⋃
F⊂V
{(dF0 ; dF1 , . . . , d

F
n , 0), (dF0 ; dF1 , . . . , d

F
n , 1), . . . , (dF0 ; dF1 , . . . , d

F
n , σn+1)}.

In the worst case, these possible subdimensions will make all subdimensions of π′, that
is, βi satisfy the inequalities β1d1 + · · · + βndn + βn+1σn+1 < d0 for all d ∈ D. This
gives the conditions (α1 − βn+1

σn+1
σ1

)d1 + α2d2 + · · · + αndn + βn+1σn+1 < d0 that are
verified for d1 = σ1 and are equivalent to βn+1 < (d0 −

∑n
i=1 αidi)/(σn+1(1 − d1

σ1
)) for

d1 < σ1. Hence, if βn+1 < α1
σ1
σn+1

and βn+1 < (d0 −
∑n
i=1 αidi)/(σn+1(1 − d1

σ1
)) for

any d ∈ D, d1 < σ1, then for π′ there must exist a unitarization with the character
(1;β1, . . . , βn+1). �
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Remark. A result similar to the one stated in Proposition 3.2 was independently obtained
in [4].

Proposition 3.3. One can remove one subspace from any Schur representation of the
continuous series of Ẽ8 in such a way that the obtained collection of subspaces will still
have the Schur property.

For a proof of this proposition, we will need the following lemma.

Lemma 3.4. Let V be a finite dimensional vector space, dimV = n, and A be an
algebra of operators on this space. Let {< v1 >,< v2 >, . . . , < vk >} be a collection of
one-dimensional subspaces invariant with respect to A such that the collection of vectors
{v1, v2, . . . , vk−1} is linearly independent and {v1, v2, . . . , vk} is linearly dependent. Then
any subspace W of the space < v1, v2, . . . , vk > is invariant with respect to A, and one-
dimensional subspaces will have the same eigen value for any fixed φ ∈ A.

Proof. It follows from the conditions that V has a basis {e1, . . . , en} such that {< v1 >
,< v2 >, . . . , < vk >} = {< e1 >,< e2 >, . . . , < ek−1 >,< e1 + e2 + · · ·+ ek−1 >}. This
easily implies that ei must have the same eigen value for all i = 1, k − 1 and any fixed
φ ∈ A. Hence, any subspace W of the space < e1, e2, . . . , ek−1 > will be invariant, and
one-dimensional subspaces will have the same eigen value as ei. �

Remark. For the algebra A, the one-dimensional subspaces < v1 >,< v2 >, . . . , < vk >
will be called connected if any subspace W of the space < v1, v2, . . . , vk > is invariant
with respect to A (thus one-dimensional subspaces will have the same eigen value for any
fixed φ ∈ A). Note that the relationship of connectedness is “transitive” in some sense,
that is, if < v1 >,< v2 >, . . . , < vk > are connected and < w1 >,< w2 >, . . . , < wl >
are connected with < v1, v2, . . . , vk > ∩ < w1, w2, . . . , wl >6= ∅, then < v1 >,< v2 >
, . . . , < vk >,< w1 >,< w2 >, . . . , < wl > are connected.

Proof of Proposition 3.3. We use the description of representations given in Section 2.7.
1. For Γ(1;−λ), λ ∈ C, λ 6= 0,−1, Γ2(1; 0), Γ3(1; 0), Γ1(1; 1), Γ3(1;∞), we can remove

the subspace Z7 (note that we get in this case the same system of subspaces when
removing Z7).

Indeed, let us show that the algebra of endomorphisms A of the obtained system of
subspaces remains trivial. Recall that if the subspaces Z1 and Z2 are invariant with
respect to an algebra of operators, then Z1 ∩ Z2 and Z1 + Z2 will also be invariant.

In this case, the following subspaces will be invariant with respect to A:
Z5 ∩X =< e1 + e5, e2 + e6 >,
X ∩ Y3 =< e4 >,
Y3 ∩ Z5 =< e123 >,
< e123 > ∩Z6 =< e13 >,
< e123 > ∩Y4 =< e2 + e3 >,
(X + Z8) ∩ Y4 =< e4 + e2 >,
< e4 > + < e4 + e2 >=< e42 >,
< e42 > ∩ < e123 >=< e2 >.
Since < e4 + e2 >,< e4 >,< e2 > are invariant, by Lemma 3.4, < e4 > and < e2 >

are connected.
Y4 ∩ (< e13 > + < e4 >) =< e4 − e3 >,
< e4 > + < e4 − e3 >=< e43 >,
< e43 > ∩ < e123 >=< e3 >.
Since < e4 − e3 >,< e4 >,< e3 > are invariant, < e4 > and < e3 > are connected.
(< e2 > +Z8) ∩X =< e2 + e6 >,
(< e2 + e6 > + < e2 >) ∩ Z8 =< e6 >.
Since < e2 + e6 >,< e2 >,< e6 > are invariant, < e2 > and < e6 > are connected.
Z6 ∩X =< e1 + e5 >,
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< e1 + e5 > +Z8 =< e156 >,
< e156 > ∩ < e13 >=< e1 >,
< e1 > + < e1 + e5 >=< e15 >,
< e15 > ∩Z8 =< e5 >.
Since < e1 + e5 >,< e1 >,< e5 > are invariant, < e1 > and < e5 > are connected.
Since < e5 + e6 >,< e5 >,< e6 > are invariant, < e5 > and < e6 > are connected.
Hence, < e1 >,< e2 >,< e3 >,< e4 >,< e5 >,< e6 > are connected and thus A is

trivial.
2. For Γ1(1; 0), Γ1(1;∞), we can remove Z9.
Similarly to the previous case, we see that < e4 >,< e2 >,< e3 >,< e6 > are

connected, and < e1 >,< e5 > are also connected.
Since Z7 ∩ (< e3 > + < e1 >) =< e3 + e1 > is invariant, we see that < e1 > and

< e3 > are also connected. Hence, < e1 >,< e2 >,< e3 >,< e4 >,< e5 >,< e6 > are
connected, so the algebra of endomorphisms is trivial.

3. For Γ2(1;∞), we can remove Z6.
The algebra of endomorphisms, A, of the obtained system leaves the following sub-

spaces invariant:
Z5 ∩X =< e1 + e5, e2 + e6 >,
X ∩ Y3 =< e4 >,
Y3 ∩ Z5 =< e123 >,
< e123 > ∩Y4 =< e3 >,
(X + Z8) ∩ Y4 =< e4 + e2 >,
< e4 > + < e4 + e2 >=< e42 >,
< e42 > ∩ < e123 >=< e2 >.
Since < e4 + e2 >,< e4 >,< e2 > are invariant, < e4 > and < e2 > are connected.
(< e2 > +Z8) ∩X =< e2 + e6 >,
(< e2 + e6 > + < e2 >) ∩ Z8 =< e6 >.
Since < e2 + e6 >,< e2 >,< e6 > are invariant, < e2 > and < e6 > are connected.
Z7∩ < e123 >=< e1 + e3 >,
< e1 + e3 > + < e3 >=< e13 >,
(< e13 > +Z8) ∩X =< e1 + e5 >,
< e1 + e5 > +Z8 =< e156 >,
< e156 > ∩ < e13 >=< e1 >,
< e1 > + < e1 + e5 >=< e15 >,
< e15 > ∩Z8 =< e5 >.
Since < e1 + e5 >,< e1 >,< e5 > are invariant, < e1 > and < e5 > are connected.
Since < e5 + e6 >,< e5 >,< e6 > are invariant, < e5 > and < e6 > are connected.
Invariance of the subspaces < e1 +e3 >,< e1 >,< e3 > shows that < e1 > and < e3 >

are connected.
Hence, < e1 >,< e2 >,< e3 >,< e4 >,< e5 >,< e6 > are connected, whence A is

trivial.
4. For Γ4(1;∞), we can remove Z5.
The algebra A of endomorphisms of the obtained system has the following invariant

subspaces:
X ∩ Y4 =< e1 >, Z6+ < e1 >=< e12456 >,

that is, Z5 is invariant. This means that the algebra of endomorphisms is trivial, since
the system Γ4(1;∞), together with Z5, has trivial algebra of endomorphisms. �

Remark. Proposition 3.3 can be proved in another way. Since, after removing a subspace,
we get a collection of subspaces that corresponds to a representation of the poset E8,
instead of proving that the obtained collection has the Schur property, we could prove that
this collection is equivalent to one of Schur representations of E8 using the description
of representations of E8, see, e.g., [5].
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Proof. Proof of Theorem 3.1. Since any Schur representation of the poset E8 can be uni-
tarized with some character, see [3], this theorem is a direct corollary of Propositions 3.2
and 3.3. �

Remark. In the same way as Ẽ6 was considered in [17], one can try to describe the char-
acters that allow a unitarization of representations for the posets Ẽ7 and Ẽ8. However,
the complexity of the calculations of admissible characters increases significantly in these
cases.

Acknowledgments. The author is grateful to Yu. S. Samǒılenko for formulating the prob-
lem and giving valuable advices.
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10. S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samǒılenko, On sums of orthogonal projections, Funk-

tsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35.
11. S. A. Kruglyak, A. V. Roiter, Locally scalar representations of graphs in the category of Hilbert

spaces, Funktsional. Anal. i Prilozhen. 39 (2005), no. 2, 13–30.

12. Yu. P. Moskaleva and Yu. S. Samoilenko, Systems of n subspaces and representations of ∗-
algebras generated by projections, Methods Funct. Anal. Topology 12 (2006), no. 1, 57–73.

13. L. A. Nazarova, A. V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 5–31.

14. V. L. Ostrovskyi, Yu. S. Samoilenko On spectral theorems for families of linearly connected

selfadjoint operators with prescribed spectra associated with extended Dynkin graphs, Ukrain.
Mat. Zh. 58 (2006), no. 11, 1556–1570. (Ukrainian)

15. Yu. S. Samoilenko, D. Yu. Yakymenko On n-tuples of subspaces in linear and unitary spaces,
Methods Funct. Anal. Topology 15 (2009), no. 1, 383–396.

16. Yi Hu Stable configurations of linear subspaces and quotient coherent sheaves, Pure and Applied
Mathematics Quartely 1 (2005), no. 1, 127–164.

17. D. Yu. Yakimenko Unitarization of representations of a partially ordered set associated with a

graph fE6, Ukrain. Mat. Zh. 61 (2009), no. 10, 1424–1433. (Russian)
18. D. Yu. Yakimenko Unitarization of representations of the partially ordered set corresponding

to the graph fE7, Ukrain. Mat. Zh. (to appear).

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,
Kyiv, 01601, Ukraine

E-mail address: dandan.ua@gmail.com

Received 14/05/2010


