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A DESCRIPTION OF ALL SOLUTIONS OF THE MATRIX
HAMBURGER MOMENT PROBLEM IN A GENERAL CASE

S. M. ZAGORODNYUK

ABSTRACT. We describe all solutions of the matrix Hamburger moment problem in a
general case (no conditions besides solvability are assumed). We use the fundamental
results of A. V. Shtraus on the generalized resolvents of symmetric operators. All
solutions of the truncated matrix Hamburger moment problem with an odd number
of given moments are described in an ”almost nondegenerate” case. Some conditions
of solvability for the scalar truncated Hamburger moment problem with an even
number of given moments are given.

1. INTRODUCTION

The main aim of this investigation is to obtain a description of all solutions of
the matrix Hamburger moment problem. Recall that the matrix Hamburger moment
problem consists of finding a left-continuous non-decreasing matrix function M (z) =
(mkyl(x)),lxl;lo on R, M(—o0) =0, such that

(1) / 2"dM(z) =S, n€Zy,
R

where {5,,}22, is a given sequence of Hermitian (N x N) complex matrices, N € N.

Sequences {5, }22, for which this problem has a solution are called moment sequences.
This problem was introduced in 1949 by M. G. Krein [1]. He described all solutions in
the case when the corresponding J-matrix defines a symmetric operator with maximal
deficiency numbers. This result appeared without proof in [2]. Yu. M. Berezansky in
1965 proved the main fact in this theory of M. G. Krein: the convergence of the series
from the polynomials of the first kind (even for the operator moment problem) [3, Ch. 7,
Section 2]. Using V. P. Potapov’s J-theory, in 1983 I. V. Kovalishina described solutions
of the matrix Hamburger moment problem in the completely indeterminate case [4] (The
completely indeterminate case meant that the limit radii of the matrix Weyl discs had full
ranks). Using properties of matrix orthogonal polynomials, in 2001 P. Lopez-Rodriguez
obtained a parameterization of solutions in the completely indeterminate case [5] (The
completely indeterminate case meant that the corresponding J-matrix generated a sym-
metric operator with maximal deficiency numbers). In 2004, Yu. M. Dyukarev introduced
a notion of an abstract limit interpolation problem and described solutions of the com-
pletely indeterminate limit interpolation problem [6]. As one of applications, he obtained
a description of solutions of the matrix Hamburger moment problem in the completely
indeterminate case (This case meant that the limit radii of the matrix Weyl discs had
full ranks).

In the scalar case, a description of all solutions of the moment problem (1) can be
found, e.g., in [7], [3] for the nondegenerate case, and in [8] for the degenerate case.
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Recall that the condition of solvability for the matrix Hamburger moment problem is
that for arbitrary complex vectors &; = (&,0,&5,15----&j,n—1), J =0,1,2,..., it holds ([1,
p. 52]):

n
(2) > GSié =0, n=0,1,2,....
3,k=0
Let us introduce the following matrices
So Sh - S
Sl 52 e Sn+1
Sn Sn+1 e S2n

It is not hard to verify that condition (2) is equivalent to the following inequalities
(4) r,>0, neZ;.

In 1954, A. V. Shtraus described all generalized resolvents of a densely defined symmetric
operator with an arbitrary deficiency index [9]. In 1970, he described all generalized
resolvents for an arbitrary, not necessarily densely defined symmetric operator [10]. We
shall use these fundamental results to obtain a description of all solutions of the matrix
Hamburger moment problem in the case when condition (4) is true.

We shall also study the truncated matrix Hamburger moment problem. The problem
is to find a left-continuous non-decreasing matrix function M (x) = (mk,l(x))kN, i on R,
M (—o00) = 0, such that

(5) /x”dM(x) _ S, n=01....2
R

where {5,124 is a given sequence of Hermitian (N x N) complex matrices, d € Z,,
N eN.

The conditions of solvability of the moment problem (5) were given by T. Ando
in 1970 [11]. The nondegenerate case of the truncated moment problem (5) is the case
when the following condition takes place:

(6) I'y >0,

where T'y is defined as in (3). In 1968, V. G. Ershov obtained a description of all
solutions of the truncated matrix Hamburger moment problem (5) in the nondegenerate
case, using an operator approach [12]. In 1989, H. Dym described all solutions of the
moment problem (5) in the nondegenerate case, using the reproducing kernel Hilbert
spaces approach [13]. In 1997, V. M. Adamyan and I. M. Tkachenko obtained solutions
of the truncated moment problem (5) both in degenerate and nondegenerate cases, using
an operator approach [14]. In 1998, G.-N. Chen and Y.-J. Hu obtained solutions of
the truncated moment problem (5) both in degenerate and nondegenerate cases, using
a generalization of the Schur algorithm and matrix continued fractions [15]. We shall
study the moment problem (5) under the following conditions

(7) Fd Z O, Ker Fd,1 g Ker fdfh

where fd,l = (Si+j+2)?,;io- These conditions are necessary and sufficient for the solv-
ability of the moment problem (5). Using A. V. Shtraus’s results we describe all solutions
of the truncated moment problem (5) (under conditions (7)).

Finally, we consider the scalar truncated Hamburger moment problem with even num-
ber of given moments. The problem is to find a left-continuous non-decreasing function
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o(z) on R, o(—0c0) = 0, such that

(8) /x"da(m):sn, n=20,1,...,2d +1,
R

where {s,}2?%! is a given sequence of real numbers, d € Z,. Algebraic conditions of
solvability of this moment problem were given in [16, Theorem 3.1]. We shall give a
simple condition of solvability for the truncated scalar Hamburger moment problem (7).

For additional references on matrix Hamburger moment problems (including trun-
cated) we refer to a historical review in [17].
Notations. As usual, we denote by R, C, N, Z, Z, the sets of real, complex, positive
integer, integer, non-negative integer numbers, respectively. The space of n-dimensional
complex vectors a = (ag,a1,...,a,-1), will be denoted by C*, n e N; Cy = {z € C:
Imz > 0}. If a € C" then a¢* means the complex conjugate vector. By P we denote
a set of all complex polynomials and by Py we mean all complex polynomials with
degrees less or equal to d, d € Z,, (including the zero polynomial). Let M (x) be a left-
continuous non-decreasing matrix function M (x) = (mk,l(x))kN’l;lO on R, M(—o0) =0,
and Tar(z) == Sp—y mpk(z); U(z) = (dmp/drar)y . We denote by L2(M) a set (of
classes of equivalence) of vector functions f : R — CV, f = (fo, f1,..., fn_1), such that
(see, e.g., [18])

0 = [ 1@)¥(@)f @) (a) < .
The space L2(M) is a Hilbert space with the scalar product

(f,9) L2y = /Rf(m)\l’(x)g*(x)dTM(x)v f.g € L*(M).

By 1% we denote a space of infinite complex vectors u = (ug, u1, .. .), such that |lul|% =
> oreolugl? < oco. The space [? is a Hilbert space with the scalar product (u,v);z =
> e o WkTR, U,V € I2. A set of elements u = (ug,uy,...) from [2, such that all but finite
number wuy, are zero will be denoted by /2. Elements of 2 are called finite vectors.

For a separable Hilbert space H we denote by (-,-)g and || - || g the scalar product and
the norm in H, respectively. The indices may be omitted in obvious cases.

For a linear operator A in H we denote by D(A) its domain, by R(A) its range, and
by A* we denote its adjoint if it exists. If A is bounded, then ||A|| stands for its operator
norm. By Ker A we mean thee null subspace of A. For a set of elements {x, }neca in H,
we denote by Lin{z, },ca and span{z, },ca the linear span and the closed linear span
(in the norm of H), respectively, where A is an arbitrary set of indices. For a set M C H
we denote by M the closure of M with respect to the norm of H. By Ey we denote the
identity operator in H, i.e. Egx =z, x € H. If H; is a subspace of H, by Py, = PI{I{l
we denote the operator of the orthogonal projection on Hy in H.

2. THE MATRIX HAMBURGER MOMENT PROBLEM: SOLVABILITY AND A DESCRIPTION
OF SOLUTIONS

Recall that an infinite complex matrix K = (K, ;)2 is called a positive definite

n,m=0
kernel if

(9) > Knménbm >0,

n,m=0

for all finite vectors (&,)%2, of complex numbers, see [3]. In other words, K is a positive
definite kernel if

(10) uKu* = (ul,u)p >0, u€l?
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where uK is defined by the usual matrix multiplication.
We shall use the following important fact (e.g., [19, p. 215]):

Theorem 1. a) Let K = (Ky m)p—o be a positive definite kernel. Then there exist a
separable Hilbert space H with a scalar product (-,-) and a sequence {x,}2, in H, such
that

(11) Kn7m = (x”?‘IM)? n,me Z-‘ra

and span{xy nez, = H.

b) Let R = (Rpm)pm—o = 0 be a positive semi-definite complex ((r + 1) x (r + 1))
matriz, v € Zy. Then there exist a finite-dimensional Hilbert space Hy with a scalar
product (-,-)o and a sequence {yn}n_o in Hy, such that

(12) Rym = Yn,Ym), n,m=0,1,...,r
and span{y, }I_, = Hp.

Proof. a) Consider an arbitrary infinite-dimensional linear vector space V' (for example a
space of complex sequences (up )nez, , Un € C). Let X = {x,}72, be an arbitrary infinite
sequence of linear independent elements in V. Let L = Lin{z,, }nez, be the linear span
of elements of X. Introduce the following functional:

(13) [amy}: Z Kn,manmv

n,m=0

for x,y € L,

oo oo
T = Zanxn, Y= Z bnTm, Gn,b, € C.

n=0 m=0
The space V with [-,:] will be a quasi-Hilbert space. Factorizing and making the com-
pletion we obtain the required space H (see [3, p. 10-11]).
b) In this case we proceed in an analogous manner. O

Consider the matrix Hamburger moment problem (1). If we choose an arbitrary
element f = (fo, f1,....fv-1), fe € P, k=0,1,...,N —1, and calculate [, fdM f*, one
can easily deduce the necessity of conditions (2),(4) for the solvability of the moment
problem.

On the other hand, suppose that the moment problem (1) is given and condition (4)
holds true. Set

So S ... S,

Sl 52 .. Sn_l,_l
(14) I'=(Ske)—0=| : T

Sy Spy1 ... Son

Comparing relations (4) and (10) we conclude that the kernel I' = (', )55, — 18 positive
definite. Let

Sn = (sz,l)]k\fl_zlm ne Z-‘r'
Notice that
(15) Tonijintn =800, 0<jn<N-1, rtecZ,.
From (15) it follows that

(16) Totnpy =Taptn, a,b€Zy.
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In fact,ifa=rN+j,b=tN+n,0<j,n<N—1,rteZy, wecan write

_ _ Jmn _ _
Cornpg =Tirg) N4 tN+n = 850411 = DN e+ 1) N4n = DapiN-

By Theorem 1 there exist a Hilbert space H and a sequence {x,}52, in H, such that
span{zy, fnez, = H, and

(17) (@n, Tm)o =Tnm, n,méeZy.

Set L := Lin{x,, }nez, . Choose an arbitrary x € L. Let x = >0 arZi, £ = Y po g Bri,
where ay, O € C, and all but finite number of coefficients «y, [i are zero. Using (17),
(16) we can write

o0 oo o0 o0
( E OékkarNﬂ?l) = E ap(Teen, 1) = E oplpyng = g ol 14N
k=0 - - k=0

= Zak (T, T14N) (Zakxk,fwrzv) = (z,z14n), lE€Zy.

In an analogous manner we obtain that

(Zﬁkxmmwz) = (z,24n), €2y,

k=0

and therefore
(Zakmk+1\r,$z) = (Zﬁkmk+Na$l)a l€Zy.
k=0 k=0

Since L = H, we obtain that

(18) D win =Y Brwrin-
k=0 k=0
Set
(19) Ax:Zakx;HN, v e L, x:Zakxk.
k=0

In particular, we have
(20) Axy = TN, kEZ4.

The above considerations show that this definition is correct. Choose arbitrary z,y € L,
T= 1o QkTh, Y = D neo Ynln, and write

o0 o0
(Az,y) (Zak$k+N,Z’YnIn) = Z T (Tht N, Tp) = Z aETn Tk, TntN)
k,n=0 k,n=0

= (Zakxk,Zann+N) = (z, Ay).
k=0 n=0

Thus, the operator A is a linear symmetric operator in H with the domain D(A) = L.
Let A D A be an arbitrary self-adjoint extension of A in a Hilbert space HDH ,
and {EA} acr be its left-continuous orthogonal resolution of unity. Choose an arbitrary
a€ly,a=rN+j reZs, 0<j<N—1. Notice that

T
LTg = TyrN4j = A.’l?(r,‘,l)]\H,j =---=A Zj.
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Then choose an arbitrary b € Zy, b =tN +n,t € Z,, 0 <n < N — 1. Using (15) we
can Write

7"+t T‘N—‘rj tN+n — IrN+j7l'tN+n)H = (ArxijtIn)H = (Zrmjagtxn)ﬁ

/)\ dEij,/A dEAzn _ :/A”td(ij,xn)ﬁ
R

_ / )\’”“td(PgE,\o:j, xn)
R H

;From the latter relation we get

(21) Syt = / XM (N), it € Ly,
R

— . N-1
where M (\) == ((PgEij, ;En>H)j Ly If we set ¢ = 0 in relation (15), we obtain that

the matrix function M (\) is a solution of the matrix Hamburger moment problem (1)
(From the properties of the orthogonal resolution of unity it easily follows that M (A) is
left-continuous non-decreasing and M (—oc) = 0).

Thus, we obtained another proof of the solvability criterion for the matrix Hamburger
moment problem (1).

Let A be an arbitrary self-adjoint extension of A in a Hilbert space H. Let Rz(ﬁ)
be the resolvent of A and {E,\} Aer be an orthogonal left-continuous resolution of unity
of A. Recall that the operator-valued function R. = PHR, (A) is called a generalized

resolvent of A, 2 € C\R. The function Ey = Pj{ E)\, A € R, is a spectral function of
a symmetric operator A. There exists a one-to-one correspondence between generalized
resolvents and spectral functions established by the following relation ([20]):

(22) R.f,g H—/—dEAﬁ 9m, fg€H, =zecC\R

Formula (21) shows that spectral functions of A produce solutions of the matrix Ham-

burger moment problem (1). Can an arbitrary solution of (1) be produced in such a way?
Choose an arbitrary solution M (z) = (fk,(x))y;_ of the matrix Hamburger moment

problem (1). Consider the space L> (J\//I ) and let @ be the operator of multiplication by
an independent variable in L2(]\//.7 ). The operator @ is self-adjoint and its resolution of
unity is (see [18])
(23) Ey — Eqo = E([a,)) : h(x) = X{a,p) () (),
where X[q4)(z) is the characteristic function of an interval [a,b), —oo < a < b < o0,
Set €}, = (ek,o,ehl,...,ek,N_l), ek =0, 0<Fj<N—-1fork=0,1,..., N-1. A
set of (classes of equivalence of) functions f € L? (M\ ) such that (the corresponding class
includes) f = (fo,fl, ..y fn-1), [ € P, we denote by ]P’Q(J/W\) and call a set of vector
polynomials in L?(M ) Set LQ(M) P2 (]\/4\)

For an arbitrary f € P2(M ) there exists a unique representation of the following form:

N—-1

(24) flx) = Z Zak,jxjé'k, (0 k1, ) €13
k=0 j=0

Let g € Pz(]\//f ) have a representation
N—-1 o

(25) 9(x) =" Bieater,  (Bo,Buas..-) € 1.

=0 r=0
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We can write

(f:9) 1237 = Z ) ak,ﬂﬁlT/$j+Téde\($)é7

k,1=0 j,r=0
(26) "

N—-1 oo N—-1 oo

=2 > ak’jﬁ”/xﬂ”dmkl( =2 D okBursiie

k=0 j,r=0 Je,1=0 j,r=0
On the other hand, we can write

oo N—1 oo N—-1 N-1 oo
(Z > akrinie Y Y 5l,r$rN+l)H => Z Ok, B (T Ntk TrN41) H
7=0 k=0 r=0 [=0 k,1=0 j,r=0
(27)
N—-1 o N—-1 oo
> kBl iNekenit = Y Y ki Brssty
k,1=0j,r=0 k,1=0j,r=0
(From relations (26), (27) it follows that
co N-—1 co N-—1
(28) (f7 g)[}(j}f) = <Z a ,3$3N+kaz ﬁl,rer+l)H
j=0 k=0 r=0 =0
Set
oo N—1
(29) Vf = Z Oé/c)j.%‘j]\ur]€7
j=0 k=0

for f(z) € ]PQ(M\)» f(z) = 2] o1 Z] 0 Q7 '@y (k0,1 - -) €13

If f, g have representations (24),(25), and || f — gHL2(JV[ = 0, then from (28) it follows
that

IVf=Vylt =V -9 V(F—9Du = —9.f =9 rar = If =975 =0

Thus, V is a correctly defined operator from JP’Q(]/\/[\ ) to H. Relation (28) shows that V/
is an isometric transformation from P?(M) onto L. By continuity we extend it to an
isometric transformation from LZ(M) onto H. In particular, we note that

(30) Valey = vinyn, jE€Zy, 0<k<N-—1,
Set L%(M\) = LQ(JT/[\) o L%(]\/J\), and U :=V & EL%(]T/T)' The operator U is an isometric
transformation from L?(M) onto H & L3(M) =: H. Set

A:=UQU™".

The operator Ais a self-adjoint operator in H. Let {EA} rer be its left-continuous
orthogonal resolution of unity. Notice that

UQU 'ajnii =VQV 'ajngr = VQal &, = Val ey = (11 vak

=TjNtk+N = ATjnir, jE€Zy, 0<E<SN -1

By linearity we get
UQU 'z = Az, x €L = D(A),
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and therefore A D A. Choose an arbitrary z € C\R and write
/Ld(ﬁ)\xk l“)’* = </ Ldﬁ,\mk .13)
RA—2 »I/H RA—2 ") G
-1 1 n -1
- (U /REdEwk,U xj)Lz(m
- (/ 1 wEwve %) - (/ L ime %)
RA— 2 ARG ) a7 e A—z RS e

1 - - .
- / d(Exek, ) oy, 0<k, j<N-L
R

A—2z
Using (23) we can write
(Ex€k, €5) 12 (a7) = Mg (V),

and therefore

1 i 1
@) | szl B = [

R)\_Z

dingj(\), 0<k, j<N-L

By the Stieltjes-Perron inversion formula (see, e.g., [7]) we conclude that
(33) e j(\) = (PH Exvr, 25) 0.

Consequently, an answer on the above question is affirmative.

Let us show that the deficiency index of A is equal to (m,n), 0 < m,n < N. Choose
an arbitrary u € L, u = >~ ckk, ¢ € C. Suppose that ¢, =0, k > N+ R+ 1, for
some R € Z, . Consider the following system of linear equations:

(34) —de:Ck, k:O,l,...,N—l,

(35) dy—n —z2dy =cx, k=N,N+1,N+2, ...,

where {dj}rez, are unknown complex numbers, z € C\R is a fixed parameter. Set
dp,=0, k>R+1,

(36) .

dj:CN+]‘+ZdN+j, ]:R7R—1,R—2,...,0.

For such numbers {dj}rez, , all equations in (35) are satisfied. Only equations (34) are
not satisfied. Set v = Z,?;O drry, v € L. Notice that

(o]

(A=zEg)v =" (dy-n — zdy)zp,
k=0
where d_1 =d_s = --- =d_n = 0. By the construction of d; we have
) N—-1
(A — ZEH)U —u= Z(dk,N — de — ck)xk = Z (—de — Ck)l'k,
k=0 k=0

(37) N1
u=(A—zEg)v+ Z(zdk +ck)xg, we€ L.
k=0

Set H, := (A — 2Ey)L = (A — 2Ey)D(A), and
(38) Yo =xp — Pf x, k=0,1,...,N—1.

Set Hy := span{yk}g:_ol. Notice that the dimension of Hj is less or equal to N, and
Hy L H,. From (37) it follows that u € L can be represented in the following form:

(39) u=uy +us, uy € H, us€ Hy.
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Therefore we get L C H, & Hy; H C H, & Hy, and finally H = H, ® Hy. Thus, Hy is
the corresponding deficiency subspace. So, the deficiency numbers of A are less or equal
to N.

Theorem 2. Let a matriz Hamburger moment problem (1) be given and condition (4) is
true. Let an operator A be constructed for the moment problem as in (19). All solutions
of the moment problem have the following form

(40) M) = (mi;(N)is2or mei(N) = (Baae, 25)

where By is a spectral function of the operator A. Moreover, the correspondence between
all spectral functions of A and all solutions of the moment problem is one-to-one.

Proof. Tt remains to prove that different spectral functions of the operator A produce
different solutions of the moment problem (1). Suppose to the contrary that two different
spectral functions produce the same solution of the moment problem. That means that
there exist two self-adjoint extensions A; O A, in Hilbert spaces H; 2 H, such that

(41) P{VEy s # Pi*Ey 5,

(42) (P Ersae,zj)m = (PP Eypae,x)n, 0<kj<N-1, A€eR,

where {E, »}rer are orthogonal left-continuous resolutions of unity of operators A,
n=1,2. Set Ly := Lin{xy }r—o nv—1. By linearity we get

(43) (PII;IIEL/\Z‘;Z/)H = (PIfIIzEQ,any)Hv T,y €< LN7 AeR.

Denote by R,, » the resolvent of A,,, and set R, \ := PI{I{” R\, n=1,2. From (43), (22)
it follows that

(44) Rz, y)u = (Ropz,y)w, x,y € Ly, Ae€C\R.
Choose an arbitrary z € C\R and consider the space H, defined as above. Since

Rij(A — ZEH)JZ = (A] — ZEHj)_l(Aj — ZEH])J? =T, rel = D(A),

we get
(45) Ri,u=Rs,ue€ H wuecH,,
(46) Ri.u=Ro,u, uecH, ze&C\R

We can write

(47) Rz, w)g = (Rp 2z, u)m, = (¢, Ruzu)m, = (T, Ry zu)H,
r€Ly, u€Hz, n=1,2,

and therefore we get

(48) (Ri.z,u)g = (Re 2z, u)u, x €Ly, u€Hsz

By (37) an arbitrary element y € L can be represented as y = yz+ ¢/, yz € Hz, v € L.
Using (44) and (48) we get

Rz, 9)g = Riz,y7+ v )n = Roz,yz+ v )w = Rez,y)w, €Ly, y€EL
Since L = H, we obtain

(49) Ri.x=Ro,z, z€Ly, z€cC\R

For an arbitrary x € L, x = x, + 2', x, € H,, ' € Ly, using relations (46),(49) we
obtain

(50) Ri.x =Ry .(x,+2')=Ro,(z.+2)=Ro.z, z€L, z€C\R,
and
(51) Ri.z=Ry.z, ze€H, zcC\R.
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By (22) that means that the spectral functions coincide and we obtain a contradiction.
O

Recall some known facts from [9] which we shall need here. Let B be a closed
symmetric operator in a Hilbert space H, with the domain D(B), D(B) = H. Set
Ap(A) = (B —AEg)D(B), and Ny = N\(B) = Ho Ag(\), A € C\R.

Consider an arbitrary bounded linear operator C', which maps N; into N_;. For

we set
(53) Bcg = Bf +iCy + iv.

Since an intersection of D(A), N; and N_; consists only of the zero element, this definition
is correct. Notice that B¢ is a part of the operator B*. The operator B¢ is called a
quasiself-adjoint extension of the operator B, defined by the operator C.

The following theorem is true, see [9, Theorem 7]:

Theorem 3. Let B be a closed symmetric operator in a Hilbert space H with the domain
D(B), D(B) = H. All generalized resolvents of the operator B have the following form:

R. — (BF()\)—)\EH)il, ImA >0
AT Bpegy ~ AEr)Tl ImA <O

(54)

where F(X) is an analytic in Cy operator-valued function, which values are contractions
which map Ni(B) into N_;(B) (||[F(A\)|| £ 1), and Bp(y) is the quasiself-adjoint extension
of B defined by F(\).

On the other hand, for any operator function F(\) having the above properties there
corresponds by relation (54) a generalized resolvent of B.

By virtue of Theorems 2 and 3 we get a description of all solutions of the matrix
Hamburger moment problem (1).

Theorem 4. Let a matric Hamburger moment problem (1) be given and condition (4)
is true. Consider a sequence {x, 5, in a Hilbert space H such that relation (17) holds
and span{zy fnez,. = H. Let A be a linear operator with D(A) = Lin{x, }nez, , defined
by equalities

A.Z‘kzkarN, k€Z+.
All solutions of the moment problem have the following form

(55) M(z) = (mu;(2))5 520,
where my, ; satisfy the following relation
1
(56) dmy. j(x) = (Apxy — ABr) 'ap, 2))u, A eCy,
RT— )\

where F(\) is an analytic in C4 operator-valued function, which values are contractions
which map N;(A) into N_i(A) (|F(N)|| < 1), and Ap(y) is the quasiself-adjoint extension
of A defined by F()\).

On the other hand, to any operator function F(X\) having the above properties there
corresponds by relation (56) a solution of the matriz Hamburger moment problem. More-
over, the correspondence between all operator functions having the above properties and
all solutions of the moment problem, established by relation (56), is one-to-one.

Proof. It remains to check the last statement of the theorem. Note that different func-
tions F1(A), Fo(\), with the above properties generate different generalized resolvents
Ri(N), Ra(X) of A (see [9, Remark 2, p. 85]). Let E1()), Eo(A), be the corresponding
spectral functions of A. Suppose to the contrary that functions F; (), Fa(X), correspond
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to the same solution M (z) = (my ; (m))ivj;lo of the moment problem. By (56) this means
that

1
657) | s (e) = (Ra o) = (Ra(Now, )i
BT —
By the Stieltjes-Perron inversion formula we get
(58) my;(x) = (Bx (Mg, 25)m = (Ex(A)ak, 2;)n.
We obtain that different spectral functions of A generate the same solution of the moment
problem. This contradicts to Theorem 2. O

3. THE TRUNCATED MATRIX HAMBURGER MOMENT PROBLEM

Let a moment problem (5) be given with d € N, and the first condition in (7) is true.
Let T'g = (yg’m)dN 1. By Theorem 1 there exist a finite-dimensional Hilbert space H

n,m=0
and a sequence {xn}iﬁ(‘fN_l in H, such that

(59) Ve = @, 2m), n,m=0,1,...,dN+N—1,
and span{z,, }*N V"1 = H. Notice that
(60) Vontjinan =500, 0<jin<N-1, 0<rt<d

From (60) it follows that
(61) v vy =4psin, a=7rN+j, b=tN+n, 0<jn<N-1, 0<rt<d-L
In fact, we can write
d _d _gmn _ d _d
Ya+Nb = Vr+1)N+jtN+n = Sr4t+1 = TrN+j,(t+1)N+n — Ta,b+N-

Denote L, = Lin{aL'n}d]\F1 L= Lin{ﬁCn}ZZJNil-

n=0 >
Set
dN—1 dN—1
(62) Ax = Z QpTreN, X € L, x= Z QLTE.
k=0 k=0
In particular, we have
(63) Az =zpyen, 0<k<dN -1

Proposition 1. The operator A is correctly defined if and only if the second condition
in (7) holds.

Proof. Necessity. Since A is correctly defined, from the equality

dN—1
(64) > Gy =0,
k=0
with some complex numbers &, it should follow the equality
dN—1
(65) Z §k$k+N =0.
k=0

On the other hand, the equality (64) is equivalent to the equalities
dN—1 dN—1

(66) Z gk(zkaxl) = Z ﬁk’Yd;k,l :Ov lzo7lv7dN_ 1.
k=0 k=0

Analogously, the equality (65) is equivalent to the equalities
dN—1 dN—1

(67) > Glwein,wyn) = > GYakiniin =0, 1=0,1,...,dN —1.
k=0 k=0
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If we shall use the matrix notations, the equality

(68) (&0, €15 ons Eanv—1) (Yask) =0 = 0,
implies the equality
(69) (€05 €15 oo Ean—1) (Vask s 14 N) =g = 0.

Thus, the second relation in (7) is true.

Sufficiency. If the first relation in (7) is true, then relation (68) implies relation (69).
Therefore relation (66) implies relation (67) and, finally, relation relation (64) implies
relation (65). The last property means that the operator A is defined correctly. ([l

We assume that the second condition in (7) is true. Choose arbitrary x,y € L,
_ —dN-1 _ —dN-1
=0 OkTk, Y=Y . o YnTn,and write
dN-1 dN—1 dN-1 dN—1

(Az,y) ( Z URTh4N, Z vnafn) = Y aTa(@hin, Tn) = Y kVa @k, Tnyn)

k,n=0 k,n=0
dN—1 dN -1

= ( Z ARTl, Z 'Ynzn-&-N> = (CC,Ay)
k=0 n=0

Thus, an operator A is a linear symmetric operator in H with the domain D(A) = L,.
It is not necessary that A is densely defined. N

_Let A D A be an arbitrary self-adjoint extension of A in a Hilbert space H 2 H, and
{Ex}xer be its left-continuous orthogonal resolution of unity. Existence of a self-adjoint
extension of a non-densely defined symmetric operator was established by M.A. Kras-
noselskiy (e.g. [9]). Choose an arbitrary ¢, 0 <a <dN+ N -1, a=rN+7,0<r <d,
0 <j < N — 1. Notice that

To = TrNtj = Azr_yNyj == Az
Then choose an arbitrary b, 0 <b< AN+ N—-1,b=tN+n,0<t<d,0<n<N-1.
Using (59) we can write
anft = ’YgN+j,tN+n = er+vatN+n H = (A x],A xn)H = (A zyaA In)H

//\ dE)\JS],/AdE)\Z‘n _ //\rthd(E,\a:],xn)ﬁ

= / )\THd(P,IfE,\xj, xn)
R H

;From the last relation we obtain

(70) vy = / NHANI(N), 0<rt<d,
R
N-1

where M()) = ((P}?Eij,xn)H)j n_—O. From relation (15) we derive that the matrix

function M (M) is a solution of the matrix Hamburger moment problem (5) (Properties
of the orthogonal resolution of unity provide that M () is left-continuous non-decreasing
and M (—o0) = 0).

On the other hand, choose an arbitrary solution M (x) = (ﬁlk,l(x))]k\{l;lo of the trun-
cated matrix Hamburger moment problem (5). Consider the space L? (]T/[\ ) and let @ be

the operator of multiplication by an independent variable in L?(M). The operator @ is
self-adjoint and its resolution of unity is given by (23).
Let €k, k =0,1,... N —1, be defined as after (23). A set of (classes of equivalence of)

functions f € L? (]/\4\) such that (the corresponding class includes) f = (fo, f1,---» fN-1)s
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f € Py, we denote by P? (M) and call a set of vector polynomials in L?(M ) of degree less
or equal to d. Set L7 o(M ) P2(M )
For an arbitrary f € P? (M ) there exists a unique representation of the following form:

N—-1 d

(71) f@)=>"> ar;a’é, ap;eC.
k=0 j=0
Let g € IP%(M\ ) has a representation

N-1

d
> Biaté, BireC.

=0 r=0

As it was done in the case of the full matrix Hamburger moment problem after (23), we
obtain that

d N-1 d N-1
(72) (fa LQ(M) (Z « ,ijN—l—kyZ Bl rer-Q—l)
§=0 k=0 r=0 1=0
Set
d N-1
(73) VE=Y>" arjainik
§=0 k=0
for f(z) = ,ICV;Ol Z?:o g, j 1€y, (0, 1,...) € 3. jFrom relation (72) it easily

follows that V' is a correctly defined operator from ]P’fl(l\//f ) to H. Relation (72) shows
that V is an isometric transformation from P2(M) onto L. By continuity we extend it
to an isometric transformation from L§7O(M ) onto H. In particular, we note that

(74) Valé, = axjnek, 0<j<d, 0<k<N-1
Set L7, (M) := L*(M)© L3 o(M), and U := V@ELZJ(J/VI\)'
transformation from LQ(Z\/Z) onto H & Lfl,l(l\/j) =: H. Set

The operator U is an isometric

A:=UQU™".

The operator Ais a self-adjoint operator in H. Let {E)\} rer be its left-continuous
orthogonal resolution of unity. Notice that

UQU 'wjnik = VRV 'ajngy = VQal &y = Val T ey = 211Nk = TjNthin
:A.’EjN+k, Ogjgd—]., 0§]€§N—1

By linearity we get
UQU 'z = Az, =z € L, = D(A),

and therefore A D A. Choose an arbitrary z € C\R and write

/%d(E)\xk,xj)H </R)\%dﬁ>\xk,xj)ﬁ
( /7dE>\xk,U xj)L?(M\)
(/—dU LB\UG,, & )w@ - (A%ZdEAék,gj)LQ(ﬂ)

(BN €) oy Ok j <N -1

(75)

R)\
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Using (23) we can write
(EAgk, é}')Lz(ﬁ) = ﬁz;w-()\),

and therefore

1 5o~ 1
(76) / d(PH Exzy, ) :/ dmgj(A), 0<k,j<N-L1
]R)\_Z R)\_Z

By the Stieltjes-Perron inversion formula we conclude that
(77) g, j(\) = (PH Exer, 2))

Consequently, all solutions of the truncated moment problem are generated by spectral
functions of A. For the definitions of a spectral function and a generalized resolvent for
a non-densely defined symmetric operator we refer to [9)].

Let us show that the deficiency index of A is equal to (m,n), 0 < m,n < N. Choose

an arbitrary u € L, u = ZZO*N* cx Tk, cx € C. Consider the following system of linear
equations:

(78) 7de:Ck, kiO,l,...,N*l,

(79) dpy_n—z2dp,=cx, k=N,N+1,...,dN+ N —1,

where {dk}dN FN=1 are unknown complex numbers, z € C\R is a fixed parameter. Set
%0 dy =0, k=dN,dN+1,...,dN+ N —1,
(80) dy—ny =zdg +cx, k=dN+N—-1,dN+N—-2,...,N.

For such numbers {dj}xez, , all equations in (79) are satisﬁed Equations (78) are not

necessarily satisfied. Set v = ZZJNA drxy = Z 0 dkxk Notice that v € L, =
D(A). We can write
dN+N-1
(A — ZEH)U = Z (dk—N — de)xk,
k=0
where d_1 =d_s = ... = d_xN = 0. By the construction of d; we have
dN+N-1 N-1
(A—zEg)v—u= Z (dp—n — 2zd, — cx)x Z —zd), — )Tk,
k=0 k=0
(81) No1
u=(A—zEg)v+ Z (zdg + )z, u€ L.
k=0

Set H, :== (A— 2Eg)L = (A — 2Ey)D(A). Repeating arguments after relation (37) we
obtain that the deficiency numbers of A are less or equal to N.

Theorem 5. Let a truncated matriz Hamburger moment problem (5) with d € N be given
and conditions (7) are true. Let the operator A be constructed for the moment problem
as in (62). All solutions of the moment problem have the following form

(82) M) = (my;(M)is20r Mk (A) = (Bazw, z;)m,

where Ey is a spectral function of the operator A. Moreover, the correspondence between
all spectral functions of A and all solutions of the moment problem is one-to-one.

Proof. Only the last statement of the theorem was not proved yet. Its proof repeats the
corresponding proof of Theorem 2. O
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We need some known facts from [10]. Let B be a closed symmetric operator in
a Hilbert space H with the domain D(B), which is not necessarily dense in H. Set
AB(/\) = (B — /\I?H)l)(B)7 and Ny = N)\(B) =Ho AB()\), AE (C\R

Define an operator X;: N; — N_; in the following way:

ity € N;, o e N_; and ¢ — ) € D(B).
The operator X; can be defined also in the following way:

(84) D(X;) = Py (H & D(B)),

(85) X;P{h="P{ h, heHeD(B).
The operator X; is called forbidden with respect to the operator B.

An operator V: N; — N_;, is called admissible with respect to the operator B, if
inclusion Vi) — 1 € D(B) is possible only if ¢ = 0. It is equivalent to the condition that
the relation Vi = X, is possible only if ¢ = 0.

The formulas

(86) D(G) = D(B) + (V = Ex)D(V),

(87) G(f+Vy—y)=Bf+iVy+iyp, feD(B), ¢ e€DV),

establish a one-to-one correspondence between a set of all admissible with respect to B
isometric operators V, D(V) C N;, R(V) C N_;, and a set of all symmetric extensions G
of the operator B. The operator G is self-adjoint if and only if D(G) = N;, R(G) = N_,.

Denote by K(B;Ci;N;, N_;) a class of analytic operator-valued functions F(\) in
C., whose values are contractions which map N; into N_;, |[F(\)|| < 1.

Set C§ = {# € C4 : e <argz < m—¢}, 0 < e < F. A function F €
K(B;Cy;N;, N_;) is called admissible with respect to the operator B if relations
(88) AGC%I,H}\—mo FA)y = Xy,
(89) limy e | amoo (AR = IEN)I)) < o0
imply ¥ = 0.

The class of all functions from K (B;C,; N;, N_;) which are admissible with respect
to B we denote by K,(B;C,;N;, N_;). Notice that in the case D(B) = H we have
Ko(B;Cy; Niy N—j) = K(B;Cys Niy N_y).

Let F(\) € Ky (B;Cy; N;; N_;). In this case the operator F()\) is admissible with
respect to B [10]. By Bp(y) we mean an operator G defined as in (86) with V' = F'(A).

The following theorem holds true, see [10, Theorem 12].

Theorem 6. Let B be a closed symmetric operator in a Hilbert space H with the domain
D(B) C H. The formula

Bry — AEg)™!, ImA >0
R)\:{(F(A) m)”, ImA>

(90) (Bp-(xy = AEm)~1, ImA<0 -

establishes a one-to-one correspondence between the set of all generalized resolvents of B
and the class Kq(B;Cq; N;jy N_;).

Using Theorems 5 and 6 we get a description of all solutions of the truncated matrix
Hamburger moment problem.
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Theorem 7. Let a truncated matriz Hamburger moment problem (5) with d € N be
given and conditions (7) are true. Consider a sequence {x, }*NdN =1 in a Hilbert space
H such that (59) holds and span{xn}‘flﬁa'N_l = H. Let A be a linear operator with
D(A) = Lin{z,, }N 1, defined by equalities

A(EkzithrN, OSdeN—].
All solutions of the truncated moment problem have the following form
(91) M (x) = (muj ()5 ;2o

where my, ; satisfy the following relation

1
(92) /R - )\dmk,j(x) = ((AF()\) — /\EH)71171€,IJ’)H, AE C+,

where F(A) € K,(A;Cy; N;, N_;). Here by Ap(n) we mean the operator with the domain
D(Ar)) = D(A) + (F(A) — En)D(F (X)),
and

Ary(f + FNY =) = Af +iF(Ny + iy, f € D(A), ¢ € D(F(X).

On the other hand, to any operator function F(\) € K,(A;C4; Ny, N_;) it corresponds by
relation (92) a solution of the truncated matriz Hamburger moment problem. Moreover,
the correspondence between K,(A; Cy; Ny, N_;) and all solutions of the truncated moment
problem, established by relation (92), is one-to-one.

Proof. To check the last statement of the theorem it is enough to repeat the arguments
from the proof of Theorem 4. ([l

Remark. We describe solutions of the moment problem (5) under conditions (7). Observe
that these conditions are not only sufficient for the solvability of the moment problem,
but they are necessary. In fact, let ]\/Z(x) = (ﬁ%k,l(x)),i\{l_zlo be a solution of the truncated
matrix Hamburger moment problem (5). The necessity of the first condition in (7) is
obvious. By Theorem 1 we can construct a Hilbert space H and a sequence {xn}iﬁg N-1
in H, such that

(93) Vo = (@0, m), n,m=0,1,...,dN+N -1,

and span{xn}iﬁg]vfl = H. Repeating the construction and arguments after (70), we
shall construct an operator A O A. Thus, the operator A is defined correctly. By
Proposition 1 we conclude that the second relation in (7) holds. (Similar reasoning can

be found in [21]).

4. SOLVABILITY OF THE SCALAR TRUNCATED MOMENT PROBLEM WITH EVEN NUMBER
OF GIVEN MOMENTS

Let a moment problem (8) be given. Set

S0 S1 Sn
S1 52 Sn+1

(94) I, = . . . . , n=0,1,...,d.
Sn Spn4+1 - Son

Let o(x) be a solution of the moment problem. If we choose an arbitrary polynomial
p(x) € Pg, and calculate [, |p(x)|*do(z) > 0, we can easily see that

(95) Iy>0,
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and therefore all matrices I',, 0 < n < d, are real positive semi-definite. Thus, condi-
tion (95) is necessary for the solvability of the moment problem.

Suppose now that a moment problem (8) is given and condition (95) is true. If
Ty = sp = 0, then there exists a unique solution o(x) = 0, if 1 = s3 = ... = Sa441 = 0,
or there are no solutions in the opposite case.

Assume that T'g = s > 0. Set

r:=max{n: 0<n<d, detl’,, >0}, 1<r<d.

a) Case r =d. In this case T'y > 0. We can define a real number ss449 such that

So S1 [P Sd+1
S1 S92 e Sd+2

(96) det Fd+1 > 0, Fd+1 =
Sd+1  Sd+2 ... S2d+2

To show that, expand the latter determinant by the elements of the last row and choose
Sa4+2 sufficiently large. Thus, in this case, by results of V.G. Ershov and H. Dym (see the
Introduction) and also by results in [7] on the truncated Hamburger moment problem,
it follows that the moment problem (8) has a solution.

b) Case r < d. In this case we have

(97) I, >0, detTyyp = 0.
Let ¢= (co,¢1,---,Cr11) be a non-zero real vector such that
(98) FT+1E* = 07 Cr41 = 1.

Consider a non-zero real polynomial p(z) = ZZZE cpz®, of degree exactly r + 1.
If there exists a solution o(z), then

r+1

(99) /p2(x)da(x) = Z CkCnSk+n = 0.

R k,n=0
This implies that o(x) has points of increase only in zeros of p(z), which we shall denote
by zo,21,...,2,. Roots of the polynomial p(x) in this case are real and distinct (or
we could replace p(z) by a polynomial of a less degree such that (99) held, this contra-
dicts (97)). Thus, o(z) is a piecewise constant function, o(—o0) = 0, with jumps in a
real distinct points {xx}},_,. Denote the jump of o at z3, by pg, 0 < k < r. The moment
equalities (8) are equivalent to

(100) Zxﬁukzsn, n=20,1,...,r,
k=0

T
(101) ZQTZMk:Sna n=r+1,r+2,...,2r+1.
k=0

The linear system of equations (100) has a non-zero Vandermonde’s determinant, and
has a unique solution. This solution should satisfy relations (101).

Theorem 8. Let a truncated Hamburger moment problem (8) be given. It has a solution

if and only if

a) sp=0,k=0,1,...,2d 4+ 1; or

b) Ty >0; or

¢)1 <r <d, where r := max{n : 0 <n < d, detT',, > 0}; the polynomial p(x) =
Zié c,xk, where ¢y, are complex numbers satisfying (98), has real distinct zeros {xy }5_y;

and the unique solution of linear system (100) consists of non-negative numbers puy > 0,

k=0,1,...,r, which satisfy relations (101).
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In cases a) and c) the solution is unique.

Proof. The necessity follows from the above considerations. The sufficiency of condi-

tion b) was shown. The sufficiency of conditions a) and ¢) is obvious. O
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