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SINGULARLY PERTURBED NORMAL OPERATORS
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This paper is dedicated to the memory of Israel Gohberg.

Abstract. We give an effective description of finite rank singular perturbations of

a normal operator by using the concepts we introduce of an admissible subspace

and corresponding admissible operators. We give a description of rank one singular
perturbations in terms of a scale of Hilbert spaces, which is constructed from the

unperturbed operator.

LetH be a separable Hilbert space. Denote by A a linear operator with a domain D(A)
dense in H. A closed operator A is normal if A∗A = AA∗. In such a case, D(A∗) = D(A)
and ‖A∗x‖ = ‖Ax‖ [1], which is equivalent to the equality

(1) (Ax,Ay) = (A∗x,A∗y), x, y ∈ D(A) = D(A∗),

since the bilinear forms (Ax,Ay) and (A∗x,A∗y) are uniquely determined by the corre-
sponding quadratic forms. Self-adjoint operators and unitary operators are examples of
a normal operator. If L is any self-adjoint operator, then the operator A = aL + bI is
normal for arbitrary complex numbers a and b, and we will call such a normal operator
a linear function of the self-adjoint operator. An analogue of a symmetric operator is a
formally normal operator N with dense domain D(N) in H. The operator N is called for-
mally normal if D(N∗) ⊃ D(N) and ‖N∗x‖ = ‖Nx‖, x ∈ D(N). If the formally normal
operator has a normal extension, then we call such an operator prenormal. Comparing
with a complete theory of self-adjoint extensions of a symmetric operator, the theory of
normal extensions of a formally normal operator has been worked out to a lesser degree
of completion [2]–[6]. In this work we use the approach from [7] and investigate normal
operators Ã that are singularly perturbed with respect to a given normal operator A
in the sense that the set D ⊂ D(Ã) ∩ D(A) on which the operator Ã coincides with A

is dense in H and Ã 6= A. In such a case, the operators Ã and A have the common
prenormal part N = Ã �D= A �D= Ã ∧ A, and the operators Ã and A are different
normal extensions of the operator N . If D(A) = D+̇R, where R is an n-dimensional
subspace of H, then we say that the operator Ã is a singular perturbation of rank n with
respect to A.

Let us note that it is interesting not only to describe all finite rank singular pertur-
bations of a normal operator but also to find efficient conditions that would imply that
no normal singular perturbation exists. For example, a formally normal operator N
whose real and imaginary parts are symmetric operators with deficiency indices equal
to (0, 0) or (1, 1) can be connected with the complex moment problem [8]. If a normal
operator A is an extension of an operator N , then its spectral measure gives an integral
representations of the moment sequence. Conditions under which the normal operator A
does not have a singular perturbation of rank n ≤ 2 are sufficient for uniqueness of the
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normal extension of N and, consequently, for uniqueness of the integral representation
of the moment sequence. Let us also make a remark on an interesting application to in-
tegration of nonlinear evolution equations by the method of the inverse spectral problem
of a normal block Jacobi type matrix [9], in addition to the complex moment problem
[10]–[11].

10. Suppose the normal operator A has at least one regular point z, i.e., the operator
(A− zI)−1 exists and is bounded. Since the operator A− zI is also normal, without loss
of generality we suppose everywhere in the sequel that the non-perturbed operator A has
bounded inverse. It gives a possibility to assume, in the representation D(A) = D+̇R,
that AD ⊥ AR, and put R = A−1(H	AD), and due to (1) to also have A∗D ⊥ A∗R.

Lemma 1. Let a normal operator Ã be a finite rank singular perturbation of a normal
operator A. Then 1) AR ∩D(A) = {0}; 2) Ã∗ �D= A∗ �D; 3) There exist unique linear
operators T and T∗ in the subspace R such that

(2) D(Ã) = D+̇(A∗ + T )R = D+̇(A+ T∗)R,

and the operators Ã and Ã∗ act as follows:

(3) Ã(x0 + (A∗ + T )r) = Ax0 +ATr, Ã∗(x0 + (A+ T∗)r) = A∗x0 +A∗T∗r,

where x0 ∈ D and r ∈ R. The operators T and T∗ satisfy the relations AT∗A−1 =
(ATA−1)∗, A∗T∗(A∗)−1 = (A∗T (A∗)−1)∗ on the subspaces N = AR and M = A∗R,
respectively.

Proof. The conditions 1) and 2) follow from (1) and from density of the set D in H. If
for some vector we had r ∈ R, r 6= 0, Ar ∈ D(A) = D(A∗), then we would obtain that
the vector A∗(Ar) 6= 0 would be orthogonal to D, (ϕ,A∗(Ar)) = (Aϕ,Ar) = 0. But this
is impossible, since the set D is dense in H.

Since D(Ã∗) = D(A) ⊃ D and Ã �D= A �D, for an arbitrary ϕ,ψ ∈ D, 0 = (ϕ, Ãψ −
Aψ) = (Ã∗ϕ−A∗ϕ,ψ), and using density of D in H we have Ã∗ϕ = A∗ϕ.

Let x̃ ∈ D(Ã) and x = A−1Ãx̃ = x0 +r, where x0 ∈ D and r ∈ R. Since Ãx̃−Ax = 0,
for arbitrary ϕ ∈ D, 0 = (Ãx̃ − Ax,ϕ) = (x̃ − x,A∗ϕ). Hence, x̃ − x ⊥ A∗D and,
consequently, there exists an element ρ ∈ R such that x̃ = x+A∗ρ. Taking into account
that x = x0 + r and using the element x̃ ∈ D(Ã) we construct two elements r, ρ ∈ R
connected via the linear operator T in R, r = Tρ.

The action of the operator Ã on the elements x̃ = x0 +Tr+A∗r is determined by the
action of the operator A on the element x = x0 + Tr, which gives (3) for the operator
Ã. Analogously we prove (2)–(3) for the operator Ã∗. Since (Ãx, y) = (x, Ã∗y), using
(2) we put x = Tr +A∗r, y = T∗ρ+Aρ, where r, ρ ∈ R, and taking into account (3) we
obtain (ATr,Aρ) = (A∗r,A∗T∗ρ). Then using (1) we obtain the relations for operators
T∗ and T . �

Lemma 2. Let a normal operator Ã be a singular perturbation of rank one with respect
to the normal operator A. Then there exist real numbers θ and ξ, −π2 < θ ≤ π

2 , ξ ∈ R1,
such that vectors r ∈ R have the property

(4) e−iθAr − eiθA∗r = 2iξr.

Proof. The subspace R is one dimensional and the operators T and T∗ from (2) are
operators of multiplication by the numbers t and t̄, respectively. Due to (2) we can
represent the vector x̃ = tr + A∗r ∈ D(Ã), r ∈ R, in the form x̃ = x0 + t̄pr + pAr,
where x0 ∈ D and p is a complex number. Thus Ãx̃ = tAr, Ã∗x̃ = A∗x0 + t̄pA∗r.
Hence, 0 = (Ãx0, Ãx̃) = (Ã∗x0, Ã

∗x̃) = (Ã∗x0, Ã
∗x0), i.e, x0 = 0. From the another

side, (Ãx̃, Ãx̃) = (Ã∗x̃, Ã∗x̃), which gives p = e−2iθ, where θ ∈ (−π2 ,
π
2 ]. The equality

x̃ = tr +A∗r = e−2iθ(t̄r +Ar) gives (4), where ξ = 1
2i (te

iθ − t̄e−iθ). �
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Definition 1. A vector r ∈ D(A) such that Ar 6∈ D(A) is called admissible for the
operator A with characteristics θ, ξ if the equality (4) is true, i.e., r is an eigenvector of
the operator Im (e−iθA) with the eigenvalue ξ.

Theorem 1. For the set P1(A) of all normal operators Ã 6= A that are rank one singular
perturbations of the normal operator A to be nonempty, it is necessary and sufficient that
there existed an admissible vector r for the operator A.

If r is an admissible vector with characteristics θ, ξ, and τ is an arbitrary real number,
then the operator Ãr,τ that has the domain

(5) D(Ãr,τ ) = D+̇{e−iθ(τ + iξ)ρ+A∗ρ}, D = A−1(H 	 {Ar}), ρ = ar,

and acts by

(6) Ãr,τ (x0 + e−iθ(τ + iξ)ρ+A∗ρ) = Ax0 + e−iθ(τ + iξ)Aρ, x0 ∈ D,

belongs to the set P1(A).
Each operator Ã ∈ P1(A) admits the representation (5), (6). Such a representation

defines a one-to-one correspondence between the set P1(A) and the set of pairs {R, τ},
where R is the one-dimensional subspace spanned by the admissible vector and τ is a
self-adjoint operator in R.

The operator Ãr,τ has bounded inverse iff τ + iξ 6= 0, and

(7) Ã−1
r,τ = A−1 + eiθ(τ + iξ)−1(·, Ar)A∗r.

Proof. The necessity follows from Lemma 2. By a direct calculation we obtain that the
operator Ãr,τ defined in (5), (6) is normal, Ãr,τ ∈ P1(A), and representation (7) takes
place. �

Theorem 1 has the following equivalent form.

Theorem 2. The set P1(A) is nonempty iff the normal operator A has a cyclic invari-
ant subspace H̃, where the operator A is a linear function of an unbounded self-adjoint
operator L in H̃.

Proof. If P1(A) 6= ∅, then there exists an admissible vector r with the characteristics θ, ξ.
Let H̃ = H(r) be the cyclic invariant subspace of the operator A generated by the vector
r [1]. Since H̃ reduces the operator A and Ar /∈ D(A), the operator L = 1

2 (e−iθA+eiθA∗)
is an unbounded self-adjoint operator on H̃, and the operator A �H̃= eiθ(L + iξI) is a
linear function of L.

Sufficiency follows from the fact that the unbounded self-adjoint operator L has sin-
gular perturbations of an arbitrary rank [7]. �

Corollary 1. If the intersection of an arbitrary line on the complex plane and the spec-
trum of the operator A is a bounded or an empty set, then the normal operator A does
not have a singular perturbation of the rank one, that is, P1(A) = ∅.

20. We give a description of operators Ã ∈ P1(A) in terms of a scale of Hilbert
spaces, Hs ⊂ H = H0 ⊂ H−s, s > 0, constructed from the positive self-adjoint operator
|A| = (AA∗)1/2 = (A∗A)1/2 [12]. In this construction, we set Hs = D(|A|s/2), ‖u‖s =
‖|A|s/2u‖, and H−s is the closure of H0 in the norm ‖u‖−s = ‖|A|−s/2u‖. Let us remark
that H2 = D(A) = D(A∗), and the operators A and A∗ have extensions by continuity
to A A∗, being isometric operators acting from all H = H0 into all H−2. The scalar
product (·, ·) in H can be extended by continuity to a pairing 〈·, ·〉 between Hs and H−s.
If B is an operator acting from H into H−2, then its restriction B to the space H is
defined on the set D(B) = {u ∈ D(B), Bu ∈ H}: B = B �H= B �D(B). If B 6= B, then
we call the operator B singular on H.
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For each element ψ ∈ H−2 \ H and a complex number z 6= 0, we can construct a one-
dimensional singular operator V = z〈·, ψ〉ψ, acting from H2 into H−2. This operator is
defined on all H2.

If ψ ∈ H−1, then we continue the functional 〈·, ψ〉 to the whole H1 and, in such a
case, the operator V is defined on the elements A−1ψ, (A∗)−1ψ and, hence, it is defined
on all elements ϕ+ c1A−1ψ + c2(A∗)−1ψ, where ϕ ∈ H2, c1, c2 ∈ C.

Let ψ ∈ H−2, ‖ψ‖−2 = 1, ψ = (AA∗)r, where r is an admissible vector with char-
acteristics θ, ξ of the operator A, according to Definition 1. In this case, to extend the
operator V to all elements of the form ϕ+c1A−1ψ+c2(A∗)−1ψ, it is sufficient to extend
the functional 〈·, ψ〉 to the elements ω = 1

2 (eiθA−1ψ+e−iθ(A∗)−1ψ) using the real num-
ber γ, 〈ω, ψ〉γ = γ. Then the extended operator Vγ is defined on the elements A−1ψ
and (A∗)−1ψ and has the value

Vγ(A−1ψ) = ze−iθ(γ − iξ)ψ, Vγ((A∗)−1ψ) = zeiθ(γ + iξ)ψ.

Such an extension of the operator V will be called a regularisation and the real number γ
is called a parameter of the regularisation. If ψ ∈ H−1, the parameter of the regularisa-
tion γ = 〈ω, ψ〉 is defined by continuity. If ψ ∈ H−2 \H−1, we can choose the parameter
of regularisation to be arbitrary or in such a way that the operator V would have some
symmetry properties [13].

Definition 2. The sum of a normal operator A and a one-dimensions regularised sin-
gular operator Vγ , in the space H, we understand an operator Ã that is the restriction
of the operator A + Vγ , Ã = (A + Vγ) �H= A+ z〈·, ψ〉γψ.

Theorem 3. Let ψ ∈ H−2, ‖ψ‖−2 = 1, ψ = (AA∗)r, and r be an admissible vector of the
operator A with characteristics θ, ξ. Let a real number γ be the parameter of regularisation
of the one-dimensional operator constructed from the vector ψ, and suppose that a real
number λ 6= 0. Then

(8) Ãψ,λ = A+ eiθλ〈·, ψ〉γψ ∈ P1(A).

If τ = −λ−1 − γ, then the operator Ãψ,λ coincides with the operator Ãr,τ defined in
Theorem 1.

Proof. The domain of the operator Ãψ,λ consist of vectors of the form x̃ = x0 + c1r +
c2(A)−1ψ such that Ãψ,λx̃ ∈ H. It gives the condition c1 = e−iθ(−λ−1 − γ + iξ)c2. The
comparison the operator Ãψ,λ with the operator Ãr,τ from the Theorem 1 shows that
for τ = −λ−1 − γ the operator Ãr,τ is equals to the operator Ãψ,λ. What is more with
this connection if τ + γ = 0, then λ = ∞, and the operator Ãψ,∞ in (8) we understand
as Ãr,τ , with τ = −γ [14]. Let us remark that

Ã∗ψ,λ = A∗ + e−iθλ〈·, ψ〉γψ.
�

30. Let us consider the singular perturbation of an arbitrary finite rank. If the
normal operator Ã is a singular rank n perturbation of the normal operator A, then,
due to the equality D(Ã) = D(Ã∗) and Lemma 1, we conclude that R+̇AR = R+̇A∗R.
The last equality takes place if and only if there exist linear operators P and Q on the
n-dimensional subspace R such that the operator P has an inverse, and

(9) Ar = A∗Pr +Qr, r ∈ R.

Definition 3. The finite dimensional subspace R ⊂ D(A), AR ∩D(A) = {0}, is called
(P,Q)-admissible for the normal operator A if there exist linear operators P, P−1 and Q
in R such that the equality (9) holds true.
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From the Lemma 1, we have that the absence of an n-dimensional admissible subspace
of the normal operator A is a sufficient condition for the absence of the normal singular
perturbation of rank n.

Let us consider an example. Let pn+1(t) = (t−z1)(t−z2) · · · (t−zn+1) be a polynomial
of the degree n+1, where we choose the numbers zj so that all the numbers αj = pn+1(z̄j),
j = 1, 2, . . . , n + 1, are distinct. Then the operator A of multiplication by pn+1(t) is
normal in the space L2([1,∞)) and does not have a singular normal perturbation of the
rank less than n+ 1. Indeed, if there existed a singular perturbation of the rank m ≤ n,
the m-dimensional subspace R would be admissible for the operator A. And due to
the equality (9), we would immediately have that det[pn+1(t)I − p̄n+1(t)P − Q] ≡ 0.
Putting t = z̄j , j = 1, 2, . . . , n + 1, we would obtain the identity det[αjI − Q] = 0, i.e.,
the operator Q would have n+ 1 different eigenvalues in the m-dimensional subspace R,
which is impossible.

The proposed example has a generalization. The range of values of the constructed
polynomial pn+1(t), t ∈ R is an algebraic curve γn+1 in the complex plane. If the
spectrum of the normal operator A belongs to the algebraic curve γn+1, then the operator
A does not have a normal singular perturbation of the rank less than n+ 1.

In particular, the last observation gives the following. If a Borel measure µ on the
complex plane C is supported on an algebraic curve γn+1, (n ≥ 2), and all the complex
moments ck,m =

∫
zkz̄mdµ are finite, then such an integral representation is unique for

the sequence ck,m, (k,m = 0, 1, 2, . . .).
The operator T in Lemma 1 is connected with characteristics (P,Q) of the admissible

subspace R. For a description of this connection, it is convenient to translate the op-
erators T, P,Q acting on the subspace R to act on the subspace N = AR by using the
identities T̂ = ATA−1, P̂ = APA−1 and Q̂ = AQA−1. Then from (2) and (9), we obtain

(10) T̂ P̂ − T̂ ∗ = Q̂.

And from the condition that ‖Ãψ‖ = ‖Ã∗ψ‖ and from (3) we get

(11) ‖T̂ ∗n‖ = ‖T̂ P̂ n‖, n ∈ N = AR.

Definition 4. The operator T acting on a (P,Q)-admissible subspace R of the normal
operator A is called admissible on R if the identities (10) and (11) hold.

Theorem 4. Relations (2), (3) establish a bijection between the set of all singular per-
turbations of finite rank of the normal operator A and the set of the pairs {R, T}, where
R is an admissible subspace of the operator A and T is an admissible operator on R.

Proof. Each normal operator Ã, which is a singular perturbation of finite rank of a
normal operator A, uniquely generates, due the Lemma 1, a (P,Q)-admissible subspace
R and an admissible operator T on R.

The converse is proved immediately using the construction of operators Ã and Ã∗

given in (2) and (3). �

Let us remark that the subspace R is admissible for a strictly positive self-adjoint
operator A if and only if R = A−1N, where the finite dimensional subspace N satisfies
the condition N ∩D(A) = {0}. In such a case, the operator T in R is admissible if and
only if the operator T̂ = ATA−1 is self-adjoint on N [7].

The description of a singularly perturbed normal operator, proposed in this paper, is
more effective than the description given in [2]–[6], where one tries to describe all normal
extensions of a formally normal operator.

Acknowledgments. The authors express their sincere gratitude to Prof. Yu. M. Berezan-
sky for helpful discussions and suggestions.



SINGULARLY PERTURBED NORMAL OPERATORS 303

References

1. A. I. Plesner, Spectral Theory of Linear Operators, Nauka, Moscow, 1965.
2. Y. Kilpi, Uber lineare normale Transformationen im Hilbertschen Raum, Ann. Acad. Sci. Fenni-

cae, Math. Ser. A-I, 1953, no. 154.

3. E. A. Coddington, Normal extensions of formally normal operators, Pacific J. Math. 10 (1960),
no. 4, 1203–1209.

4. G. Biriuk, E. A. Coddington, Normal extensions of unbounded formally normal operators, J.

Math. Mech. 13 (1964), no. 4, 617–638.
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