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HARMONIC ANALYSIS ON A LOCALLY COMPACT HYPERGROUP

A. A. KALYUZHNYI, G. B. PODKOLZIN, AND YU. A. CHAPOVSKY

This paper is dedicated to the memory of Israel Gohberg.

Abstract. We propose a new axiomatics for a locally compact hypergroup. On the

one hand, the new object generalizes a DJS-hypergroup and, on the other hand, it

allows to obtain results similar to those for a unimodular hypecomplex system with
continuous basis. We construct a harmonic analysis and, for a commutative locally

compact hypergroup, give an analogue of the Pontryagin duality theorem.

1. Introduction

An extensive study of generalized translation operators or, in other terms, a coalgebra
structure on a function algebra with a right counit has started in the work of J. Del-
sart [1] and B. Levitan [2], also see the more contemporary surveys of B. Litvinov [3]
and L. Vainerman [4]. Yu. M. Berezansky and S. G. Krein [5, 6] have introduced a
notion of a commutative hypercomplex system with a continual (compact or discrete)
basis, where, for the first time, apparently, an axiom of positivity of comultiplication
has been introduced, which gave a possibility to develop a rich harmonic analysis for
such systems. Starting in 1973, after a DJS-hypergroup was introduced independently
by C. Dunkl [7], R. Spector [8], and R. Jewett [9], there appeared a significant number of
works on the DJS-hypergroups, see e.g. the monograph [10] and the bibliography therein.
It turned out that compact and discrete commutative DJS-hypergroups make a subclass
of hypercomplex systems with compact and discrete bases, hence a number of the results
on such hypergroups have already been obtained in earlier works of Yu. M. Berezansky
and S. G. Krein. Moreover, the definition of a DJS-hypergroup imposes certain topo-
logical type conditions that are not used in the definition of a hypercomplex system of
Yu. M. Berezansky and S. G. Krein; also, these conditions do not yield a satisfactory
analogue of the Pontryagin duality in the case of a commutative DJS-hypergroup.

Unimodular locally compact hypercomplex systems, noncommutative in general, have
been studied by Yu. M. Berezansky and A. A. Kalyuzhnyi, see [11] and the bibliography
cited there. Such hypercomplex systems are more general than the unimodular locally
compact DJS-hypergroups, although the axiomatics of such hypercomplex systems is
rather cumbersome and can not be generalized to a nonunimodular case.

For this reason, in this paper, we introduce a locally compact hypergroup which gener-
alize a DJS-hypergroup, on the one hand, and generalize a normal hypercomplex system
with a basis unity to the nonunimodular case, on the other hand.

The definition of the locally compact hypergroup is given in terms of a comultiplica-
tion, which is the same as defining it via generalized translation operators (recall that
the comultiplication ∆ and the generalized translation operators Rp are connected by the
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formula (Rpf)(q) = (∆f)(p, q), where p, q ∈ Q, f is a continuous bounded function on
the hypergroup Q). Moreover, as it is the case with locally compact quantum groups [12],
the axiomatics of the locally compact hypergroup includes an axiom for existence of a
left Haar measure. This is justified, since existence of a left Haar measure has not been
proved even for a locally compact DJS-hypergroup (its existence was proved only for a
discrete, a compact, or a commutative DJS-hypergroup). On the other hand, postulating
existence of a Haar measure allows to simplify the axiomatics and to extend the class
of examples of locally compact hypergroups; there exists an example of a compact com-
mutative hypergroup related to the generalized Tchebycheff polynomials, which is not a
DJS-hypergroup [11].

Let us now describe the structure of the paper.
Section 2 gives a definition of a locally compact hypergroup and examples related to

groups and double cosets of a group and a subgroup.
In Section 3, we study convolution of measures. Let us mention that the convolution

of Dirac measures is given by the formula (εp ∗ εq)(f) = (∆f)(p, q), where p, q ∈ Q and
f is a continuous bounded function of the hypergroup Q.

In Section 4 we prove that the left and the right Haar measures are unique up to a
scalar. We also introduce a corresponding modulus function.

In Section 5, we prove that the space L1(Q,µ) of functions on the hypergroup Q,
which are absolutely integrable with respect to a left Haar measure µ, is an involutive
algebra with an approximate identity, with respect to naturally defined convolution and
involution.

It is shown in Section 6 that the space of continuous functions with compact support
form a left Hilbert algebra with respect to the corresponding convolution. We also study
modular properties of the obtained left Hilbert algebra.

Regular representations of the locally compact hypergroup are introduced in Section 7,
where we prove a theorem on a correspondence between bounded representation of the
hypergroup and ?-representations of the involutive algebra L1(Q,µ).

Section 8 gives a study of positive definite functions on the locally compact hyper-
group, and contains a theorem on approximating, with respect to the topology of uniform
convergence on compact sets, a continuous function on the hypergroup with linear com-
binations of elementary positive definite functions.

In section 9, we prove that the von Neumann algebras generated by the left and right
regular representations are commutants of each other, which is similar to the group case.
Also we prove an analogue of the Plancherel theorem and an inversion formula.

Section 10 gives main theorems on harmonic analysis for commutative hypergroups,
including an analogue of the Pontryagin duality theorem.

2. Definition of a locally compact hypergroup. Examples

Let Q be a locally compact second countable Hausdorff topological space.
The spaces of complex-valued functions that are continuous, continuous and bounded,

continuous with compact supports, continuous and equal to zero at infinity are denoted
by C(Q), Cb(Q), Cc(Q), C0(Q), respectively. For f ∈ Cc(Q), supp f denotes support of
the function f . The linear spaces C0(Q) and Cb(Q) have the structure of a C∗-algebra
with respect to the pointwise multiplication and complex conjugation, endowed with the
norm ‖f‖ = supr∈Q|f(r)| for f ∈ Cb(Q) or f ∈ C0(Q).

Everywhere in the sequel a measure will mean a Radon measure on Q [13]. The
integral of f , f ∈ Cc(Q), with respect to a measure µ is denoted by µ(f) =

∫
Q
f(p) dµ(p).

The Dirac measure at a point q ∈ Q is denoted by εq, i.e., εq(f) = f(q), f ∈ C(Q).
For a measure µ, its absolute value |µ| and the norm ‖µ‖ are, respectively, |µ|(f) =
supg∈Cc(Q), |g|≤f |µ(g)| for f ≥ 0, and ‖µ‖ = supf∈Cc(Q), ‖f‖≤1 |µ(f)|. We use M(Q),
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Mb(Q), Mc(Q) to denote, respectively, the set of measures on Q, the set of bounded
measures, the set of measures with compact supports. The linear space Mb(Q) is a
Banach space with respect to the norm ‖ · ‖ [13].

Definition 2.1. Let Q be a locally compact space with an involutive homeomorphism
∗ : Q→ Q and a point e ∈ Q, e∗ = e, and let the following conditions be satisfied.

(H1) There is a C-linear mapping ∆: Cb(Q)→ Cb(Q×Q) such that
(a) ∆ is coassociative, that is,

(1) (∆× id) ◦∆ = (id×∆) ◦∆;

(b) ∆ is positive, that is, ∆f ≥ 0 for all f ∈ Cb(Q) such that f ≥ 0;
(c) ∆ preserves the identity, that is, (∆1)(p, q) = 1, for all p, q ∈ Q;
(d) for all f, g ∈ Cc(Q), we have (1⊗ f) · (∆g) ∈ Cc(Q×Q) and (f ⊗ 1) · (∆g) ∈
Cc(Q×Q).

(H2) The homomorphism ε : Cb(Q) → C defined on the C∗-algebra Cb(Q) by ε(f) =
f(e) satisfies the counit property, that is,

(2) (ε× id) ◦∆ = (id× ε) ◦∆ = id,

in other words, (∆f)(e, p) = (∆f)(p, e) = f(p) for all p ∈ Q.
(H3) The function f̌ defined by f̌(q) = f(q∗) for f ∈ Cb(Q) satisfies

(3) (∆f̌)(p, q) = (∆f)(q∗, p∗).

(H4) There exists a positive measure µ on Q, suppµ = Q, such that

(4)
∫
Q

(∆f)(p, q) g(q) dµ (q) =
∫
Q

f(q) (∆g)(p∗, q) dµ (q)

for all f ∈ Cb(Q) and g ∈ Cc(Q), or f ∈ Cc(Q) and g ∈ Cb(Q), p ∈ Q; such a
measure µ will be called a left Haar measure on Q.

Then (Q, ∗, e,∆, µ ), or simply Q, is called a locally compact hypergroup.

Definition 2.2. Let Q be a locally compact hypergroup. A positive measure ν on Q
satisfying

(5)
∫
Q

(∆f)(p, q) g(p) dν (p) =
∫
Q

f(p) (∆g)(p, q∗) dν (p)

for all f, g as in (H4), q ∈ Q, is called a right Haar measure on Q.

Remark 2.3. It directly follows from axiom (H1) (d) that the integrands in (4) (resp., (5))
are compact functions of q (resp., p) for a fixed p (resp., q), hence the integrals in (4)
and (5) are finite.

Example 2.4. Let Q be a locally compact group with multiplication ·, unit e, and
inverse −1. For f ∈ Cb(Q), p, q ∈ Q, define

(∆f)(p, q) = f(p · q),
take e to be the unit of Q, and q∗ = q−1, q ∈ Q, µ the left Haar measure on Q. Then Q
becomes a locally compact hypergroup.

Axiom (H1) (a) asserts that the multiplication in the group is associative, f
(
(p·q)·r

)
=

f
(
p·(q ·r)

)
for all f ∈ Cb(Q). Axiom (H1) (b), (H1) (c) are clear. Axiom (H1) (d) requires

that f(p)g(p · q) have compact support for f, g ∈ Cc(Q), which is true. Since e is a unit
in Q, we have (ε× id) ◦∆(f)(p) = f(e · p) = f(p) and (id× ε) ◦∆(f)(p) = f(p · e) = f(p)
showing that (H2) is verified. (H3) means that f

(
(p · q)−1

)
= f(q−1 · p−1), and, finally,

condition (H4) means that∫
Q

f(p · q) g(q) dµ (q) =
∫
Q

f(q) g(p−1 · q) dµ (q),
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which is equivalent to that µ is indeed a left Haar measure on the group Q.
Note that ∆ is a C∗-algebra homomorphism here, which needs not be the case in

general.

Example 2.5. Let G be a locally compact group with multiplication ·, unit e, and
inverse −1, and let µG be a left Haar measure on G. Let H be a compact subgroup
of G with a Haar measure µH normalized by the condition

∫
H
dµH(p) = 1. Let Q =

H \G/H = {HgH : g ∈ G} be the set of double cosets endowed with the factor topology.
Define P : Cb(G)→ Cb(G) by

P (f)(g) =
∫
H2

f(h1gh2) dµH(h1)dµH(h2).

Then Cb(Q) ∼= P (Cb(G)) and C0(Q) ∼= P (C0(G)), and it is easy to see that f ∈ ImP if
and only if

(6) f(h1gh2) = f(g)

for all h1, h2 ∈ H.
For pi = HgiH, gi ∈ G, i = 1, 2, and f ∈ Cb(Q) viewed as a continuous bounded

function on G satisfying (6), let

∆f(p1, p2) =
∫
H

f(p̃1hp̃2) dµH(h),

where p̃i ∈ pi, i = 1, 2, set e = H, q∗ = Hg−1H, and define µ on Q by∫
Q

f(q) dµ (q) =
∫
G

f(g) dµG(g)

for q = HgH, g ∈ G, f ∈ Cc(G) satisfying (6). All the axioms are easily verified.

3. Convolution of measures

Lemma 3.1. Consider Cb(Q) and Cb(Q×Q) as C∗-algebras. Then ∆: Cb(Q)→ Cb(Q×Q)
is continuous and ‖∆‖ = 1.

Proof. Let f ∈ Cb(Q), f > 0, be such that ‖f‖ = supp∈Q |f(q)| = 1. Then 1 − f ≥ 0 in
Cb(Q) and, as follows from (H1) (b) and (H1) (c),

∆(1− f)(p, q) = 1−∆f(p, q) ≥ 0,

hence, 0 ≤ ∆f(p, q) ≤ 1 for all p, q ∈ Q. This means that ‖∆f‖ ≤ 1, and so ‖∆‖ ≤ 1.
On the other hand, ∆(1) = 1, whence the claim. �

Definition 3.2. Let µ, µ′ ∈M(Q) be such that the linear functional µ ∗ µ′, defined by

(7) (µ ∗ µ′)(f) =
∫
Q2

∆(f)(p, q) dµ(p)dµ ′(q), f ∈ Cc(Q),

is a measure. Then the measures µ and µ′ are called convolvable.

Lemma 3.3. If µ, µ′ ∈Mb(Q), then the measures µ and µ′, as well as the measures µ′

and µ are convolvable. The same is true if µ′ ∈Mc(Q) and µ ∈M(Q).

Proof. Let µ, µ′ ∈ Mb(Q) and f ∈ Cc(Q). Then |f(q)| ≤ ‖f‖ for all q ∈ Q and, by
Lemma 3.1, |∆f(p, q)| ≤ ‖f‖ for any p, q ∈ Q. Hence,

|(µ ∗ µ′)(f)| =
∣∣∣∫
Q2

(∆f)(p, q) dµ(p)dµ′(q)
∣∣∣ ≤ ∫

Q2

∣∣(∆f)(p, q)
∣∣ d|µ|(p) d|µ′|(q)

≤ ‖f‖
∫
Q

d|µ|(p)
∫
Q

d|µ′|(q),

which shows that µ ∗ µ′ is a Radon measure.



308 A. A. KALYUZHNYI, G. B. PODKOLZIN, AND YU. A. CHAPOVSKY

If now µ ∈ M(Q) and µ′ ∈ Mc(Q), then let g ∈ Cc(Q) be such that g(q) = 1 for
q ∈ suppµ′. Then µ′ = gµ′ and

|(µ ∗ µ′)(f)| =
∣∣∣∫
Q2

(∆f)(p, q) g(q) dµ(p) dµ′(q)
∣∣∣

≤
∫
Q2

∣∣(∆f)(p, q) g(q)
∣∣ d|µ|(p) d|µ′|(q) ≤ ‖f‖ (|µ| × |µ′|)(K),

where K ⊂ Q2 is the support of the function (∆f)(1⊗ g), which is compact. This ends
the proof. �

Since the Dirac measure εp, p ∈ Q, has compact support, it is convolvable with any
measure, and any measure is convolvable with it.

Let µ be an element of M(Q), Mb(Q) or Mc(Q). Then a measure µ̌ defined by

(8) µ̌ (f) =
∫
Q

f(p∗) dµ(p)

for f ∈ Cc(Q) belongs to M(Q), Mb(Q) or Mc(Q), respectively. The same is true for a
measure µ? defined by µ? = ¯̌µ, that is,

(9) µ?(f) =
∫
Q

f̄(p∗) dµ (p).

Proposition 3.4. The normed linear spaceMb(Q) is an involutive Banach algebra with
respect to the convolution and involution defined by (7) and (9), correspondingly. The
measure εe is an identity.

Proof. It follows from Lemma 3.3 that µ1 ∗ µ2 ∈Mb(Q) for µ1, µ2 ∈Mb(Q). Moreover,
Mb(Q) is a Banach space with respect to the norm ‖·‖ [13]. Associativity of convolution
follows immediately from axiom (H1) (a). Indeed, for µ1, µ2, µ3 ∈Mb(Q), f ∈ Cc(Q),(

(µ1 ∗ µ2) ∗ µ3

)
(f) =

∫
Q2

(∆f)(p, r) d(µ1 ∗ µ2)(p) dµ3(r)

=
∫
Q3

(
(∆× id) ◦∆f

)
(p, q, r) dµ1(p) dµ2(q) dµ3(r)

=
∫
Q3

(
(id×∆) ◦∆f

)
(p, q, r) dµ1(p) dµ2(q) dµ3(r)

=
∫
Q2

∆f(p, q) dµ1(p) d(µ2 ∗ µ3)(q) =
(
µ1 ∗ (µ2 ∗ µ3)

)
(f).

To see that µ 7→ µ? is an involution, we use (H3),

(µ1 ∗ µ2)?(f) =
∫
Q

f̄(p∗) d(µ1 ∗ µ2)(p) =
∫
Q2

(∆ ˇ̄f)(p, q) dµ1(p)dµ2(q)

=
∫
Q2

(∆f̄)(q∗, p∗) dµ1(p)dµ2(q) =
∫
Q2

(∆f)(q∗, p∗) dµ2(q)dµ1(p)

= (µ?2 ∗ µ?1)(f).

It is clear that (µ?)? = µ. For the norm ‖µ?‖, we have

‖µ?‖ = sup
f∈Cc(Q),
‖f‖≤1

|µ?(f)| = sup
f∈Cc(Q),
‖f‖≤1

|µ( ¯̌f)| = sup
f∈Cc(Q),

‖ ¯̌f‖≤1

|µ(f)| = ‖µ‖.

We immediately get that εe is an identity by using axiom (H2). �
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Remark 3.5. Definition 2.1 of a locally compact hypergroup generalizes that of a DJS-
hypergroup introduced independently by C. Dunkl [7], R. Jewett [9], and R. Spector [8].

4. Uniqueness of the Haar measure. The modulus function

Lemma 4.1. Let f ∈ Cc(Q). If µ is a left Haar measure, then

(10)
∫
Q

(∆f)(p, q) dµ (q) =
∫
Q

f(q) dµ (q)

for each fixed p ∈ Q. If ν is a right Haar measure, then

(11)
∫
Q

(∆f)(p, q) d ν (p) =
∫
Q

f(p) dν (p)

for each fixed p ∈ Q.

Proof. By using (H1) (c) and (4) with g = 1, we get∫
Q

(∆f)(p, q) dµ (q) =
∫
Q

f(q) (∆1)(p∗, q) dµ (q) =
∫
Q

f(q) dµ (q),

which proves (10). Identity (11) is proved similarly using (5). �

Lemma 4.2. If µ is a left (resp., right) Haar measure on Q, then µ̌ defined by (8) is
a right (resp., left) Haar measure.

Proof. Let µ be a left Haar measure. Using (H3) and (4) we have∫
Q

(∆f)(p, q) g(p) dµ̌ (p) =
∫
Q

(∆f)(p∗, q) g(p∗) dµ (p) =
∫
Q

(∆f̌)(q∗, p) ǧ(p) dµ (p)

=
∫
Q

f̌(p) (∆ǧ)(q, p) dµ (p) =
∫
Q

f(p∗) (∆g)(p∗, q∗) dµ (p)

=
∫
Q

f(p) (∆g)(p, q∗) dµ̌ (p).

For a right Haar measure, the proof is similar. �

Proposition 4.3. Let µ be a left Haar measure and ν a measure satisfying (11). Then
ν̌ is proportional to µ . If ν is a right Haar measure and µ is a measure satisfying (10),
then µ̌ is proportional to ν .

Proof. The argument is standard [13]. Let µ be a left Haar measure and ν a measure
satisfying (11). Let f, g ∈ Cc(Q). Consider the product µ (f)ν (g) and use (11), (4) to
obtain

µ (f)ν (g) =
(∫

Q

f(q) dµ (q)
)(∫

Q

g(p) dν (q)
)

=
∫
Q

dµ (q) f(q)
∫
Q

(∆g)(p, q) dν (p)

=
∫
Q

dν (p)
∫
Q

f(q) (∆g)(p, q) dµ (q) =
∫
Q

dν (p)
∫
Q

(∆f)(p∗, q) g(q) dµ (q)

=
∫
Q

dµ (q) g(q)
∫
Q

(∆f)(p∗, q) dν (p).

Taking f such that µ (f) 6= 0 and denoting

Df (q) =
1

µ (f)

∫
Q

(∆f)(p∗, q) dν (p)

we obtain
ν (g) = µ (gDf )
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for all g ∈ Cc(Q). This shows that Df (q) does not depend on f , because taking f ′ ∈ Cc(Q)
satisfying µ(f ′) 6= 0, we would have from the latter identity that

µ
(
g(Df −Df ′)

)
= 0

for all g ∈ Cc(Q). Since µ is positive on open sets and Df is a continuous function of q,
we have Df = Df ′ . Denoting this function

D(q) =
1

µ (f)

∫
Q

(∆f)(p∗, q) dν (p)

we have

D(e) =
1

µ (f)

∫
Q

(∆f)(p∗, e) dν (p) =
1

µ (f)

∫
Q

f(p∗) dν (p) =
ν̌ (f)
µ (f)

.

This shows that ν̌ is proportional to µ .
The other part is proved similarly. �

Corollary 4.4. A left (resp., right) Haar measure is unique up to a constant.

Proof. A right Haar measure ν satisfies (11), hence any left Haar measure is proportional
to ν̌ . �

Corollary 4.5. Let µ be a measure satisfying (10) (resp., (11)). Then µ is a left (resp.,
right) Haar measure. In other words, if µ is such that εp ∗ µ = µ (resp., µ ∗ εp = µ) for
all p ∈ Q, then µ is a left (resp., right) Haar measure.

Proof. If a measure µ satisfies (10), which is the same as εp ∗ µ = µ for all p ∈ Q, then
the measure µ̌ satisfies (11). Indeed, for q ∈ Q,∫

Q

(∆f)(p, q) dµ̌ (p) =
∫
Q

(∆f)(p∗, q) dµ (p) =
∫
Q

(∆f̌)(q∗, p) dµ (p)

=
∫
Q

f̌(p) dµ (p) =
∫
Q

f(p∗) dµ (p) =
∫
Q

f(p) dµ̌ (p).

This means that a left Haar measure is proportional to ˇ̌µ = µ .
The proof of the other part of the corollary is similar. �

Lemma 4.1 and Proposition 3.4 show that if µ is a left Haar measure and p ∈ Q, then
µ ∗ εp is a left Haar measure. Since a left Haar measure is unique up to a constant,

(12) µ ∗ εp∗ = δ(p)µ

for a positive number δ(p). This number does not depend on the left Haar measure µ .

Definition 4.6. The function δ : Q→ C defined by (12) is called the modulus function
of the locally compact hypergroup Q.

Proposition 4.7. The modulus function δ of Q is positive, continuous and satisfies the
following properties:

(i) δ(p)δ(p∗) = 1 for every p ∈ Q;
(ii) µ̌ = δ̌µ for a left Haar measure µ ;
(iii)

(
∆(fδz)

)
(p, q) = (∆f)(p, q) δz(p)δz(q) for every f ∈ Cc(Q) and z ∈ C, Re z ≥ 0.

Proof. For f ∈ Cc(Q), f ≥ 0 and f(p∗) > 0, we have that ∆f ≥ 0 and, since (∆f)(e, p∗) =
f(p∗) > 0, we have that

(µ ∗ εp∗)(f) =
∫
Q

(∆f)(q, p∗) dµ (q) > 0,

which shows that δ(p) > 0.
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Let f ∈ Cc(Q) be such that µ(f) 6= 0. Then consider

δ(p)µ(f) =
∫
Q

f(q) d(µ ∗ εp∗) (q) =
∫
Q

(∆f)(p, q∗) dµ (p).

But ∆f ∈ C(Q×Q) showing that δ ∈ C(Q).
Let us now prove (ii). For f, g ∈ Cc(Q), µ(f) 6= 0, consider

µ(f)µ̌(g) =
∫
Q

f(p) dµ (p)
∫
Q

(∆ǧ)(p∗, q) dµ (q) =
∫
Q

dµ (q)
∫
Q

f(p)(∆g)(q∗, p) dµ (p)

=
∫
Q

dµ (q)
∫
Q

(∆f)(q, p) g(p) dµ (p) =
∫
Q

g(p) dµ (p)
∫
Q

(∆f)(q, p) dµ(q)

=
∫
Q

g(p)
(
µ ∗ εp

)
(f) dµ (p) =

∫
Q

g(p)δ(p∗) dµ (p)
∫
Q

f(q) dµ (q) = µ(f)µ(gδ̌).

This proves (ii).
Considering (i) we have

µ = ˇ̌µ = (δ̌µ)̌ = δµ̌ = δδ̌µ,

which gives (i).
Let us finally prove (iii). First consider the case z = 1. We need to show that(

∆(fδ)
)
(p, q)δ−1(p)δ−1(q) = (∆f)(p, q)

for f ∈ Cc(Q). Take arbitrary g1, g2 ∈ Cc(Q) and using property (ii) as well as (5), (4)
we get the following:∫

Q

∫
Q

(
∆(fδ)

)
(p, q) g1(p) g2(q) δ−1(p) δ−1(q) dµ (p)dµ (q)

=
∫
Q

∫
Q

(
∆(fδ)

)
(p, q) g1(p) g2(q) dµ̌ (p)dµ̌ (q)

=
∫
Q

g2(q) dµ̌ (q)
∫
Q

(
∆(fδ)

)
(p, q) g1(p) dµ̌ (p)

=
∫
Q

g2(q) dµ̌ (q)
∫
Q

f(p) δ(p) (∆g1)(p, q∗) dµ̌ (p)

=
∫
Q

f(p) δ(p) dµ̌ (p)
∫
Q

(∆g1)(p, q∗) g2(q) dµ̌ (q)

=
∫
Q

f(p) δ(p) dµ̌ (p)
∫
Q

(∆g1)(p, q) ǧ2(q) dµ (q)

=
∫
Q

f(p) δ(p) dµ̌ (p)
∫
Q

g1(q) (∆ǧ2)(p∗, q) dµ (q)

=
∫
Q

g1(q) dµ (q)
∫
Q

f(p) δ(p) (∆ǧ2)(p∗, q) dµ̌ (p)

=
∫
Q

g1(q) dµ (q)
∫
Q

f(p) (∆ǧ2)(p∗, q) dµ (p)

=
∫
Q

g1(q) dµ (q)
∫
Q

f(p) (∆g2)(q∗, p) dµ (p)

=
∫
Q

g1(q) dµ (q)
∫
Q

(∆f)(q, p)g2(p) dµ (p)

=
∫
Q

∫
Q

(∆f)(p, q) g1(p) g2(q) dµ (p)dµ (q).
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This finishes the case z = 1. By induction, we immediately see that (iii) is true for z ∈ N.
Next, consider a function ϕ : C→ C defined by

ϕ(z) =
(
∆(fδz)

)
(p, q)δ−z(p)δ−z(q)− (∆f)(p, q)

for fixed f ∈ C0(Q), p, q ∈ Q. This is an entire function, in particular, it is analytic in
D = {z ∈ C : Re z > 0} and continuous on D, the closure of D. It follows from the above
that ϕ(z) = 0 for z ∈ N. Finally, it is easy to see that there exist M,α > 0 such that

|ϕ(z)| ≤MeαRe z

for all z ∈ D. Now it follows from [14, p. 228] that ϕ = 0 on D. �

5. Involutive Banach algebra structure on L1(Q,µ )

Everywhere in this section, µ denotes a fixed left Haar measure. As in the case of
locally compact groups [13], we make the following definition.

Definition 5.1. A convolution of functions f and g for f, g ∈ Cc(Q) is the function f ∗ g
defined by

(13) (f µ ) ∗ (g µ ) = (f ∗ g)µ ,

where the convolution of the measures in (13) is given by (7). The function f? defined
by

(14) (f µ )? = f? µ

is called an involution of f , where the involution of a measure is given by (9).

Lemma 5.2. Let f, g ∈ Cc(Q). Then f ∗ g ∈ Cc(Q), f? ∈ Cc(Q), and

(f ∗ g)(q) =
∫
Q

f(p) (∆g)(p∗, q) dµ (p),(15)

f?(q) = f̄(q∗)δ(q∗).(16)

Proof. For ϕ ∈ Cc(Q), using (4) we have(
(f µ ) ∗ (g µ )

)
(ϕ) =

∫
Q2

(∆ϕ)(p, q) f(p) g(q) dµ (p) dµ (q)

=
∫
Q

f(p) dµ (p)
∫
Q

(∆ϕ)(p, q) g(q) dµ (q)

=
∫
Q

f(p) dµ (p)
∫
Q

ϕ(q) (∆g)(p∗, q) dµ (q)

=
∫
Q

ϕ(q) dµ (q)
∫
Q

f(p)(∆g)(p∗, q) dµ (p).

This shows formula (15). It immediately follows from axiom (H1) (d) that f ∗ g ∈ Cc(Q).
Consider (14). Let ϕ ∈ Cc(Q). Then by definition (9),

(f µ )?(ϕ) =
∫
Q

ϕ̄(p∗) f(p) dµ (p) =
∫
Q

ϕ(p∗) f̄(p) dµ (p)

=
∫
Q

ϕ(p) f̄(p∗) dµ̌ (p) =
∫
Q

ϕ(p) f̄(p∗) δ(p∗) dµ (p),

where we have used Proposition 4.7 (ii). It is immediate that f? ∈ Cc(Q). �

Corollary 5.3. It follows from Proposition 3.4 that Cc(Q) is an involutive algebra with
the multiplication and involution defined by (15) and (16), correspondingly.
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Proposition 5.4. Let α, β ∈ (1,+∞) and 1/α+ 1/β = 1. Then, for f, g ∈ Cc(Q),

(17) ‖f ∗ g‖∞ ≤ ‖f‖α‖ǧ‖β ,

where ‖ · ‖α denotes the norm in Lα(Q,µ ).

Proof. Let us first show that

(18) |∆g(p, q)|β ≤ ∆|g|β(p, q)

for any g ∈ Cc(Q), p, q ∈ Q, β ∈ (1,+∞). Indeed, let α ∈ (1,+∞) be such that
1/α+ 1/β = 1. Then using Hölder’s inequality we have

|∆g(p, q)| =
∣∣∣∫
Q

g(r) d(εp ∗ εq)(r)
∣∣∣ ≤ ∫

Q

|g(r)| d(εp ∗ εq)(r)

≤
(∫

Q

|g(r)|β d(εp ∗ εq)(r)
)1/β(∫

Q

1α d(εp ∗ εq)(r)
)1/α

=
(
∆|g|β)(p, q)

)1/β
,

which proves (18).
Now, consider (17). Using again Hölder’s inequality, (18), and (10) we have

|(f ∗ g)(q)| =
∣∣∣∫
Q

f(p)∆g(p∗, q) dµ (p)
∣∣∣ =

∣∣∣∫
Q

f(p)∆ǧ(q∗, p) dµ (p)
∣∣∣

≤
(∫
|f(p)|α dµ (p)

)1/α(∫
Q

|∆ǧ(q∗, p)|β dµ (p)
)1/β

≤
(∫
|f(p)|α dµ (p)

)1/α(∫
Q

∆|ǧ|β(q∗, p) dµ (p)
)1/β

=
(∫
|f(p)|α dµ (p)

)1/α(∫
|ǧ(p)|β dµ (p)

)1/β

= ‖f‖α‖ǧ‖β .

This proves (17). �

Proposition 5.5. Let f, g ∈ Cc(Q) and, for α = 1, 2,∞, ‖ · ‖α denote the norm in the
corresponding space Lα(Q,µ ). Then

(19) ‖f ∗ g‖α ≤ ‖f‖1‖g‖α

and

(20) ‖f?‖1 = ‖f‖1.

Proof. Let us first consider the case α = 1 for (19). Using (10) and that |∆g| ≤ ∆|g| we
have

‖f ∗ g‖1 =
∥∥∥∫

Q

f(p) (∆g)(p∗, q) dµ (p)
∥∥∥

1
=
∫
Q

dµ (q)
∣∣∣∫
Q

f(p) (∆g)(p∗, q) dµ (p)
∣∣∣

≤
∫
Q

dµ (q)
∫
Q

|f(p)| |(∆g)(p∗, q)| dµ (p)

≤
∫
Q

dµ (q)
∫
Q

|f(p)| (∆|g|)(p∗, q) dµ (p)

=
∫
Q

dµ (p) |f(p)|
∫
Q

(∆|g|)(p∗, q) dµ (q)

=
∫
Q

dµ (p)|f(p)|
∫
Q

|g(q)| dµ (q) = ‖f‖1 ‖g‖1.
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Next, consider the case α = 2. We will use the Cauchy–Bunyakovskii inequality, the
inequality |∆g|2 ≤ ∆|g|2, and (10),

‖f ∗ g‖22 =
∥∥∥∫

Q

f(p) (∆g)(p∗, q) dµ (p)
∥∥∥2

2

=
∫
Q

dµ (q)
∫
Q2
f(p1) (∆g)(p∗1, q) f(p2) (∆g)(p∗2, q) dµ (p1) dµ (p2)

=
∣∣∣∫
Q2
dµ (p1) dµ (p2) f(p1) f(p2)

∫
Q

(∆g)(p∗1, q) (∆g)(p∗2, q) dµ (q)
∣∣∣

≤
∫
Q2
dµ (p1) dµ (p2) |f(p1)| |f(p2)|

∣∣∣∫
Q

(∆g)(p∗1, q)(∆g)(p∗2, q) dµ (q)
∣∣∣

≤
∫
Q2
dµ (p1) dµ (p2) |f(p1)| |f(p2)|

(∫
Q

|∆g|2(p∗1, q1) dµ (q1)
)1/2

·
(∫

Q

|∆g|2(p∗1, q2) dµ (q2)
)1/2

≤
∫
Q2
dµ (p1) dµ (p2) |f(p1)| |f(p2)|

(∫
Q

(∆|g|2)(p∗1, q1) dµ (q1)
)1/2

·
(∫

Q

(∆|g|2)(p∗1, q2) dµ (q2)
)1/2

=
∫
Q2
dµ (p1) dµ (p2) |f(p1)| |f(p2)|

(∫
Q

|g|2(q1) dµ (q1)
)1/2

·
(∫

Q

|g|2(q2) dµ (q2)
)1/2

= ‖f‖21 ‖g‖22.

Finally, let us consider that case where α =∞.

‖f ∗ g‖∞ = sup
q∈Q

∣∣∣∫
Q

f(p) (∆g)(p∗, q) dµ (p)
∣∣∣ ≤ ∫

Q

|f(p)| sup
q∈Q
|(∆g)(p∗, q)| dµ (p)

≤
∫
|f(p)| ‖∆g‖∞ dµ (p) ≤ ‖f‖1 ‖∆g‖∞ ≤ ‖f‖1 ‖g‖∞,

since ‖∆‖ = 1.
Consider now identity (20). We have

‖f?‖1 =
∫
Q

|f?(p)| dµ(p) =
∫
Q

|f(p∗)| δ(p∗) dµ (p) =
∫
Q

|f(p)| δ(p) dµ̌ (p)

=
∫
Q

|f(p)| δ(p) δ(p∗) dµ (p) =
∫
Q

|f(p)| dµ (p) = ‖f‖1,

where we used (16) and Proposition 4.7 (ii). �

Corollary 5.6. Let f ∈ L1(Q,µ ) and g ∈ Lα(Q,µ ), α = 1, 2,∞. Let fn, gn ∈ Cc(Q) be
sequences of functions such that fn → f in L1(Q,µ ) and gn → g in Lα(Q,µ ) as n→∞.
Then

(i) limn→∞(fn ∗ gn) exists and is an element of Lα(Q,µ );
(ii) limn→∞ f?n exists and is an element of L1(Q,µ ).

Proof. It follows from (19) that the sequence fn ∗ gn is Cauchy and, since Lα(Q,µ ) is
complete, the sequence converges. �
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Definition 5.7. Let f, fn and g, gn be as in Corollary 5.6. Then the function
limn→∞(fn ∗ gn) is called convolution of f and g. The element f? is an involution
of f .

Theorem 5.8. The space L1(Q,µ ) is an involutive Banach algebra with respect to the
convolution and involution defined by Definition 5.7 and formulas (15), (16).

Proof. The proof immediately follows from Definition 5.1, Proposition 3.4, Definition 5.7,
and Corollary 5.6. �

Theorem 5.9. The involutive Banach algebra L1(Q,µ ) has a two-sided approximate
identity (en), that is, there exists a sequence of functions en ∈ L1(Q,µ ), n ∈ N, such
that, for all n, en ≥ 0, en = e?n almost everywhere, ‖en‖1 = 1 and ‖en ∗ f − f‖1 → 0,
‖f ∗ en − f‖1 → 0 as n→∞ for any f ∈ L1(Q,µ ).

Moreover, for any f ∈ C(Q),

(21) lim
n→∞

∫
Q

f(r) en(r) dµ (r) = f(e).

Proof. Without loss of generality, we can assume that f ∈ Cc(Q). Next, let Vn, n ∈
N, be a fundamental system of open relatively compact neighborhoods of e such that
Vn ⊇ Vn+1, ∩n∈NVn = {e}. Let ẽn ∈ Cc(Q) be a sequence of functions such that ẽn ≥ 0,
ẽ?n = ẽn, supp ẽn ⊂ Vn and, finally set en = ẽn/µ (ẽn), having µ (en) = 1 for all n.

Hence,

inf
q∈Vn

f(q) ≤
∫
Q

f(r) en(r) dµ (r) ≤ sup
q∈Vn

f(q),

which immediately implies (21).
Now, consider f(p)− (en ∗ f)(p) and write it as

f(p)− (en ∗ f)(p) = f(p)
(

1−
∫
Vn

en(q) dµ (q)
)

+
∫
Vn

en(q)
(
f(p)− (∆f)(q∗, p)

)
dµ (q)

−
∫
Q\Vn

en(q) (∆f)(q∗, p) dµ (q).

The first term is zero by the definition of en. The third term is also zero, since supp en ⊂
Vn. Hence,

|f(p)− (en ∗ f)(p)| ≤
∫
Vn

en(q) |f(p)− (∆f)(q∗, p)| dµ (q).

The function
(p, q) 7→ en(q)

(
f(p)− (∆f)(q∗, p)

)
is continuous, has compact support contained in F × Vn ⊂ F × V1 for all n ∈ N, where
F is some compact subset of Q. Thus consider the function

Φ: (p, q) 7→ f(p)− (∆f)(q∗, p)

on F × V1. We have that Φ(p, e) = 0 for all p ∈ F . Hence, for any ε > 0 there is a
neighborhood Vε of e such that |Φ(p, q)| < ε for all (p, q) ∈ F × Vε. Choosing N such
that VN ⊂ Vε we will have Vn ⊂ VN ⊂ Vε for all n > N and thus for such n,

|f(p)− (en ∗ f)(p)| ≤
∫
Vn

en(q) |f(p)− (∆f)(q∗, p)| dµ (q)

≤
∫
Vn

en(q) sup
(p,q)∈F×Vε

|Φ(p, q)| dµ (q) ≤ ε
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for all p ∈ F . Thus

‖f − (en ∗ f)‖1 =
∫
Q

|f(p)− (en ∗ f)(p)| dµ (p)

=
∫
F

|f(p)− (en ∗ f)(p)| dµ (p) ≤ ε
∫
F

dµ (p).

This proves that ‖f − (en ∗ f)‖1 → 0 as n→∞.
Let us now consider f − f ∗ en. First of all recalling that dµ̌ is a right Haar measure,

hence (5) holds, and we have

(f ∗ en)(p) =
∫
Q

f(q) (∆en)(q∗, p) dµ (q) =
∫
Q

f̌(q) (∆en)(q, p) dµ̌ (q)

=
∫
Q

en(q) (∆f̌)(q, p∗) dµ̌ (q) =
∫
Q

en(q∗) (∆f̌)(q∗, p∗) dµ (q)

=
∫
Q

en(q) (∆f)(p, q) dµ (q).

This shows that

f(p)− (f ∗ en)(p) = f(p)
(

1−
∫
Vn

en(q) dµ (q)
)

+
∫
Vn

en(q)
(
f(p)− (∆f)(p, q)

)
dµ (q)

−
∫
Q\Vn

en(q) (∆f)(p, q) dµ (q).

Then we continue the reasoning as above. �

Remark 5.10. Everywhere in the sequel, we will assume that the approximate identity
(en) satisfies the following: supp en ⊂ Vn where ∩n∈NVn = {e}.

6. A left Hilbert algebra structure on Cc(Q)

Recall [15] that a linear subspace A of a Hilbert space H is called a left Hilbert algebra
if A is an associative algebra with involution ] and the following holds:

(i) the map ] : A→ A is a preclosed operator on H;
(ii)

(
fg, h

)
H

=
(
g, f ]h

)
H

for f, g, h ∈ A;
(iii) for every f ∈ A, the operator Lf : g 7→ fg, g ∈ A, can be extended to a continuous

operator on H;
(iv) A · A is dense in H.

Proposition 6.1. Let Q be a locally compact hypergroup. Consider the algebra A =
Cc(Q) with multiplication ∗ defined by (15) and involution ? defined by (16), with the
scalar product induced from the Hilbert space H = L2(Q,µ). Then (A, ∗, ?) is a left
Hilbert algebra.

Proof. It follows from Corollary 5.3 that Cc(Q) is an involutive algebra.
To see that the map ? : Cc(Q)→ Cc(Q) is preclosed in L2(Q,µ ), let fn ∈ Cc(Q), fn → 0

and f?n → f in L2(Q,µ ) for f ∈ L2(Q,µ ). Since

‖f?n − f‖22 =
∫
Q

∣∣f?n(q)− f(q)
∣∣2 dµ (q)

=
∫
Q

∣∣f̄n(q∗)δ(q∗)− f(q)
∣∣2 dµ (q) =

∫
Q

∣∣f̄n(q)δ(q)− f(q∗)
∣∣2 dµ (q∗)

=
∫
Q

∣∣f̄n(q)δ(q)− f(q∗)
∣∣2δ(q∗) dµ (q) =

∫
Q

∣∣fn(q)− f̄(q∗)δ(q∗)
∣∣2δ(q) dµ (q).
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This show that fn → f? = 0 almost everywhere, hence f = 0 in L2(Q,µ ) and ? is
preclosed in L2(Q,µ ).

Consider now the left-hand side of the identity in (ii). We have(
f ∗ g, h

)
H

=
∫
Q

h̄(q) (f ∗ g)(q) dµ (q) =
∫
Q

h̄(q)
(∫

Q

f(r)∆g(r∗, q) dµ (r)
)
dµ (q).

The right-hand side of (ii) will be(
g, f? ∗ h

)
H

=
∫
Q

(f? ∗ h)(q)g(q) dµ (q) =
∫
Q

(∫
Q

f?(r)∆h(r∗, q) dµ (r)
)
g(q) dµ (q)

=
∫
Q

(∫
Q

δ(r∗)f(r∗)∆h̄(r∗, q) dµ (r)
)
g(q) dµ (q)

=
∫
Q

(∫
Q

f(r)∆h̄(r, q) dµ (r)
)
g(q)dµ (q)

=
∫
Q

f(r)
(∫

Q

∆h̄(r, q)g(q) dµ (q)
)
dµ (r)

=
∫
Q

f(r)
(∫

Q

∆g(r∗, q) h̄(q) dµ (q)
)
dµ (r),

where we have used that the measure µ is left-invariant. By comparing the above two
expressions, we see that (ii) holds.

Using inequality (19) with α = 2, we see that Lf can be extended to a continuous
operator with ‖Lf‖ ≤ ‖f‖1, hence (iii) is true.

Consider (iv). For f ∈ A and an approximate identity (en), using (19) we have

‖f − en ∗ f‖∞ ≤ ‖f‖∞ + ‖en ∗ f‖∞ ≤ ‖f‖∞ + ‖en‖1‖ ‖f‖∞ = 2‖f‖∞.

Since, for any g ∈ A,

‖g‖22 =
∫
Q

|g(q)|2 dµ (q) ≤ ‖g‖∞ ‖g‖1,

we have that

‖f − en ∗ f‖2 ≤ ‖f − en ∗ f‖1/2∞ ‖f − en ∗ f‖
1/2
1 ≤

(
2‖f‖∞

)1/2‖f − en ∗ f‖1/21 ,

showing that en ∗ f → f in L2(Q,µ ). This proves (iv), since en ∈ A for all n. �

Proposition 6.2. Let S denote the closure of the antilinear operator ? and S = JD1/2

be its polar decomposition, where D is positive and J is an antilinear isometry. Then,
for any f ∈ Cc(Q),

(22) (D1/2f)(p) = δ1/2(p)f(p), (Jf)(p) = δ1/2(p∗)f̄(p∗).

Proof. For f, g ∈ Cc(Q), we have(
Sf, g

)
H

=
∫
Q

f?(q)ḡ(q) dµ (q) =
∫
Q

δ(q∗)f̄(q∗)ḡ(q) dµ (q)

=
∫
Q

δ(q)f̄(q)ḡ(q∗) dµ (q∗) =
∫
Q

f̄(q)ḡ(q∗) dµ (q).

Hence, S∗(g)(p) = ḡ(p∗) and (Df)(p) = (S∗Sf)(p) = (Sf)(p∗) = δ(p)f(p). This proves
the first identity in (22).

To prove the second identity in (22), consider g = δ1/2f = D1/2f . We have

(Jg)(p) = (JD1/2f)(p) = f?(p) = δ(p∗)f̄(p∗) = δ(p∗)δ−1/2(p∗)ḡ(p∗) = δ1/2(p∗)ḡ(p∗).

�
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Corollary 6.3. For f ∈ Cc(Q), set

(23) f†(p) = f̄(p∗).

Then (f†)† = f and

(24)
(
f, g ∗ h

)
H

=
(
f ∗ h†, g

)
H
,

Proof. It follows from Proposition 6.2 that the involution adjoint to ? is †, hence we get
the result [15]. �

7. Representations of a locally compact hypergroup

Lemma 7.1. For each p ∈ Q, let Lp : Cc(Q)→ Cc(Q) and Rp : Cc(Q)→ Cc(Q) be defined
by

(Lpf)(q) = (∆f)(p∗, q),(25)

(Rpf)(q) = (∆f)(q, p) δ
1
2 (p).(26)

Then ‖Lp f‖α ≤ ‖f‖α, α ∈ {1, 2}, and ‖Rp f‖2 ≤ ‖f‖2, where ‖ · ‖α is the norm in
Lα(Q,µ ), µ is a left Haar measure.

Proof. Consider the case α = 1. Let p ∈ Q be fixed. Since |∆f | ≤ ∆|f |, using (10) we
have

‖Lpf‖1 =
∫
Q

|Lpf |(r) dµ (r) =
∫
Q

|∆f(p∗, r)| dµ (r)

≤
∫
Q

∆|f |(p∗, r) dµ (r) =
∫
Q

|f |(r) dµ (r) = ‖f‖1.

Now consider the case α = 2. Since |∆f |2 ≤ ∆|f |2, we have the following estimate for a
fixed p ∈ Q:

‖Lpf‖22 =
∫
Q

|(Lpf)(q)|2 dµ (q) =
∫
Q

|∆f |2(p∗, q) dµ (q)

≤
∫
Q

(∆|f2|)(p∗, q) dµ (q) =
∫
Q

|f2|(q) dµ (q) = ‖f‖22.

Now, consider ‖Rpf‖22 and use properties (ii), (iii) and (i) in Proposition 4.7,

‖Rpf‖22 =
∫
Q

∣∣(∆f(q, p) δ
1
2 (p)

∣∣2 dµ (q) = δ(p)
∫
Q

∣∣∆f ∣∣2(q, p) dµ (q)

≤ δ(p)
∫
Q

(∆|f |2)(q, p) dµ (q) = δ(p)
∫
Q

(∆|f |2)(q, p) δ(q) dµ̌ (q)

= δ(p)δ(p∗)
∫
Q

∆(|f |2δ)(q, p) dµ̌ (q) =
∫
Q

|f |2(q)δ(q) dµ̌ (q) = ‖f‖22.

�

Corollary 7.2. For p ∈ Q, the operator Lp : L1(Q,µ ) → L1(Q,µ ) and the operators
Lp, Rp : L2(Q,µ ) → L2(Q,µ ) have norms 1. Hence they can be extended by continuity
to the corresponding Banach and Hilbert spaces.

Definition 7.3. The extension of Lp (resp. Rp) by continuity to the Hilbert space
L2(Q,µ ) is called a generalized left (resp. right) translation operator. We will still
denote it by Lp (resp. Rp).

Definition 7.4. Let H be a Hilbert space, L(H) the algebra of all bounded operators
on H. A weakly continuous mapping π : Q → L(H) is called a representation of the
hypergroup Q if it satisfies the following properties:

(i) π(e) = I, the identity operator on H;
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(ii) π(p∗) = π(p)∗;
(iii) for every ξ, η ∈ H,

(27) ∆
(
π( � )ξ, η

)
H

(p, q) =
(
π(p)π(q)ξ, η

)
H
.

A representation π is called bounded if the function p 7→ ‖π(p)‖ is bounded on Q.

Proposition 7.5. Let µ be a left Haar measure on Q, and set H = L2(Q,µ ). Then the
mappings

πL : p 7→ Lp, πR : p 7→ Rp

are bounded representations of Q. Moreover, they separate points, that is, if p 6= q, then
πL(p) 6= πL(q) and πR(p) 6= πR(q).

Proof. For f, g ∈ Cc(Q), we have(
Lpf, g

)
H

=
∫
Q

∆f(p∗, q) ḡ(q) dµ (q),

(
Rpf, g

)
H

= δ
1
2 (p)

∫
Q

∆f(q, p) ḡ(q) dµ (q),

whence weak continuity of πL and πR follows, since ∆f(1⊗ḡ) and ∆f(ḡ⊗1) are functions
continuous on Q×Q and have compact support, and δ

1
2 ∈ C(Q).

Property (i) for πL (resp. πR) follows immediately from (H2) and the definitions of
πL (resp. πR).

Property (ii) for πL is equivalent to axiom (H4). Indeed, let f, g ∈ Cc(Q). Then(
Lpf, g

)
H

=
∫
Q

(Lpf)(q) ḡ(q) dµ (q) =
∫
Q

∆f(p∗, q) ḡ(q) dµ (q).

On the other hand,(
f, Lp∗g

)
H

=
∫
Q

f(q)Lp∗g(q) dµ (q) =
∫
Q

f(q) ∆ḡ(p, q) dµ (q).

Hence, the identity L∗p = Lp∗ is indeed equivalent to (H4). To see that (ii) holds for
Rp, we will use positivity of δ, Proposition 4.7 (i)–(iii), and that µ̌ is a right invariant
measure thus satisfying (5). Take f, g ∈ Cc(Q) and consider(
Rpf, g

)
H

=
∫
Q

∆f(q, p) δ
1
2 (p) ḡ(q) dµ (q) =

∫
Q

∆f(q, p) ḡ(q) δ
1
2 (p)δ(q) dµ̌ (q)

=
∫
Q

f(q) ∆(g δ)(q, p∗) δ
1
2 (p) dµ̌ (q) =

∫
Q

f(q) ∆g(q, p∗)δ(q)δ(p∗)δ
1
2 (p)δ−1(q) dµ (q)

=
∫
Q

f(q) ∆g(q, p∗) δ−
1
2 (p) dµ (q) =

∫
q

f(q)Rp∗g(q) dµ (q) =
(
f,Rp∗g

)
H
.

Let us now consider (iii) in Definition 7.4. Let f, g ∈ Cc(Q) and p, q ∈ Q.
Consider πL. On the one hand,(

Lp(Lqf), g
)
H

=
∫
Q

(
Lp(Lqf)

)
(r)ḡ(r) dµ (r) =

∫
Q

∆
(
Lqf

)
(p∗, r)ḡ(r) dµ (r)

=
∫
Q

(
(id×∆) ◦∆ f

)
(q∗, p∗, r)ḡ(r) dµ (r).

On the other hand,

∆
(
L � f, g

)
H

(p, q) = ∆
(∫

Q

(L � f)(r)ḡ(r) dµ (r)
)

(p, q) =
∫
Q

∆(L � f)(p, q, r)ḡ(r) dµ (r)

=
∫
Q

(
(∆× id) ◦ (̌ × id) ◦∆ f

)
(p, q, r)ḡ(r) dµ (r)

=
∫
Q

(
(∆× id) ◦∆ f

)
(q∗, p∗, r)ḡ(r) dµ (r).
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This proves (iii) for πL.
Consider now πR. Let f, g ∈ Cc(Q). The right-hand side of (27) becomes(

Rp(Rqf, g
)
H

=
∫
Q

Rp(Rqf)(r)ḡ(r) dµ (r) =
∫
Q

∆(Rqf)(r, p)δ
1
2 (p) ḡ(r) dµ (r)

=
∫
Q

(
(∆× id) ◦∆ f

)
(r, p, q)δ

1
2 (q)δ

1
2 (p) ḡ(r) dµ (r).

For the left-hand side of (27), using Proposition 4.7 (iii) with z = 1/2, we have

∆
(
R � f, g

)
H

(p, q) = ∆
(∫

Q

(R � f)(r) ḡ(r) dµ (r)
)

(p, q) =
∫
Q

∆(R � f)(r, p, q) ḡ(r) dµ (r)

=
∫
Q

∆
(
∆f(r, � )δ

1
2
)
(p, q) ḡ(r) dµ (r)

∫
Q

∆
(
∆f(r, � )

)
(p, q)δ

1
2 (p)δ

1
2 (q) ḡ(r) dµ (r).

This shows that πR satisfies (27).
Since ‖Lp‖ ≤ 1 and ‖Rp‖ ≤ 1 for p ∈ Q by Corollary 7.2, the representations πL and

πR are bounded.
To show that πL separates points, let p, q ∈ Q, p 6= q. Then there is a function

f ∈ Cc(Q) such that f(p∗) 6= f(q∗). Thus Lp(f)(e) = ∆(f)(p∗, e) = f(p∗) and, similarly,
Lq(f)(e) = f(q∗). This means that Lp(f) 6= Lq(f) in L2(Q,µ ), hence πL(p) 6= πL(q).

For πR, the proof is similar. �

Lemma 7.6. Let p ∈ Q and f, g ∈ Cc(Q). Then

Lp(f ∗ g) = Lp(f) ∗ g,(28) (
Lp(f)

)? ∗ g = f? ∗
(
Lp∗(g)

)
.(29)

Proof. Let us first prove identity (28). For p, q ∈ Q, using the definition of Lp, coasso-
ciativity of ∆, right-invariance of µ̌ , property (H3) we have

Lp(f ∗ g)(q) = Lp

(∫
Q

f(r)(∆g)(r∗, � ) dµ (r)
)

(q) = ∆
(∫

Q

f(r)(∆g)(r∗, � ) dµ (r)
)

(p∗, q)

=
∫
Q

f(r)
(
(id×∆) ◦∆ g

)
(r∗, p∗, q) dµ (r) =

∫
Q

f(r)
(
(∆× id) ◦∆ g

)
(r∗, p∗, q) dµ (r)

=
∫
Q

f̌(r∗)
(
(∆× id) ◦∆ g

)
(r∗, p∗, q) dµ (r) =

∫
Q

f̌(r)
(
(∆× id) ◦∆ g

)
(r, p∗, q) dµ̌ (r)

=
∫
Q

∆f̌(r, p) ·∆g(r, q) dµ̌ (r) =
∫
Q

∆f̌(r∗, p) ·∆g(r∗, q) dµ (r)

=
∫
Q

∆f(p∗, r) ·∆g(r∗, q) dµ (r).

On the other hand,(
Lp(f) ∗ g

)
(q) =

∫
Q

Lp(f)(r) ·∆g(r∗, q) dµ (r) =
∫
Q

∆f(p∗, r) ·∆g(r∗, q) dµ (r),

which ends the proof of (28).
Consider now (29). The left-hand side equals(

(Lp(f))? ∗ g
)
(q) =

∫
Q

(
Lp(f)

)?(r) ∆g(r∗, q) dµ (r) =
∫
Q

Lp(f)(r∗)δ(r∗) ∆g(r∗, q) dµ (r)

=
∫
Q

∆f̄(p∗, r∗) ∆g(r∗, q) δ(r∗) dµ (r) =
∫
Q

∆f̄(p∗, r) ∆g(r, q) δ(r) dµ (r∗)

=
∫
Q

∆f̄(p∗, r) ∆g(r, q) dµ (r) =
∫
Q

f̄(r)
(
(∆× id) ◦∆ g

)
(p, r, q) dµ (r),
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where we have used Proposition 4.7 and left invariance of µ .
Write out the right-hand side of (29) as(

f? ∗ Lp∗(g)
)
(q) =

∫
Q

f?(r) ∆
(
Lp∗(g)

)
(r∗, q) dµ (r)

=
∫
Q

f̄(r∗) δ(r∗)
(
(id×∆) ◦∆ g

)
(p, r∗, q) dµ (r)

=
∫
Q

f̄(r)
(
(id×∆) ◦∆ g

)
(p, r, q) δ(r) dµ (r∗)

=
∫
Q

f̄(r)
(
(id×∆) ◦∆ g

)
(p, r, q) dµ (r).

Since ∆ is coassociative, we see that both sides are equal. �

Theorem 7.7. Let π : Q → L(H) be a bounded nondegenerate representation of the
hypergroup Q on a Hilbert space H. Then π̂ : L1(Q,µ )→ L(H) given by

(30) π̂(f) =
∫
Q

f(q)π(q) dµ (q), f ∈ L1(Q,µ ),

defines a nondegenerate representation π̂ of the Banach algebra L1(Q,µ ) on H, where
the integral is understood in the sense of Bochner [16].

Conversely, let π̂ : L1(Q,µ )→ L(H) be a nondegenerate representation of the Banach
algebra L1(Q,µ ), (en) an approximate identity, p ∈ Q, and Lp is considered as a mapping
L1(Q,µ )→ L1(Q,µ ). Then the limit

(31) π(p) = lim
n→∞

π̂(Lp(en))

exists in the strong operator topology, and the mapping π : Q→ L(H) defined by (31) is
a nondegenerate bounded representation of the hypergroup Q. Moreover,

(32) π(p) π̂(f) ξ = π̂
(
Lp(f)

)
ξ,

where f ∈ L1(Q,µ ), ξ ∈ H.

Proof. Let π be a representation of Q on H and show that π̂ is a representation of
L1(Q,µ ). We start by showing that π̂(f) ∈ L(H) for f ∈ L1(Q,µ ). Indeed,

‖π̂(f)‖ = ‖
∫
Q

π(q)f(q) dµ (q)‖ ≤
∫
Q

‖π(q)f(q)‖ dµ (q) =
∫
Q

‖π(q)‖ · |f(q)| dµ (q)

≤ sup
q∈Q
‖π(q)‖ ·

∫
Q

|f(q)| dµ (q) = sup
q∈Q
‖π(q)‖ · ‖f‖1 <∞,

since π is a bounded representation of Q.
Next, consider π̂(f?). We have

π̂(f?) =
∫
Q

π(q)f?(q) dµ (q) =
∫
Q

π(q)f̄(q∗)δ(q∗) dµ (q)

=
∫
Q

π(q∗)f̄(q)δ(q) dµ (q∗) =
∫
Q

π(q)∗f̄(q)δ(q)δ(q∗) dµ (q)

=
(∫

Q

π(q)f(q) dµ (q)
)∗

= π̂(f)∗,

where we have used the definition (16) of f? and Proposition 4.7.
Consider now

π̂(f1 ∗ f2) =
∫
Q

π(q)(f1 ∗ f2)(q) dµ (q) =
∫
Q

π(q)
(∫

Q

f1(r)∆(f2)(r∗, q) dµ (r)
)
dµ (q).



322 A. A. KALYUZHNYI, G. B. PODKOLZIN, AND YU. A. CHAPOVSKY

For ξ, η ∈ H, we have(
π̂(f1 ∗ f2) ξ, η

)
H

=
∫
Q

(
π(q) ξ, η

)
H

∫
Q

f1(r)∆(f2)(r∗, q) dµ (r) dµ (q)

=
∫
Q

f1(r)
∫
Q

(
π(q) ξ, η

)
H

∆(f2)(r∗, q) dµ (q) dµ (r)

=
∫
Q

f1(r)
∫
Q

∆
((
π( � ) ξ, η

)
H

)
(r, q)f2(q) dµ (q) dµ (r)

=
∫
Q

f1(r)
∫
Q

(
π(r)π(q) ξ, η

)
H
f2(q) dµ (q) dµ (r)

=
∫
Q

f1(r)
(
π(r) π̂(f2) ξ, η

)
H
dµ (r) =

(
π̂(f1) π̂(f2) ξ, η

)
H
,

where we have used (iii) of Definition 7.4.
Consider now the converse and prove that the limit in (31) exists in the strong operator

topology. Since π̂ is a representation of a Banach algebra, it is continuous and ‖π̂(f)‖ ≤
‖f‖1 for f ∈ L1(Q,µ ). Since it is nondegenerate, the set π̂(A)H is dense in H. Hence,
consider a vector of the form π̂(f) ξ for some f ∈ A, ξ ∈ H,

∥∥ξ∥∥
H

= 1. For n ∈ N,
using (28) and Theorem 5.9 we have∥∥π̂(Lp(en)) π̂(f) ξ − π̂(Lp(f)) ξ

∥∥
H

=
∥∥π̂(Lp(en) ∗ f − Lp(f)

)
ξ
∥∥
H

≤ ‖π̂
(
Lp(en) ∗ f − Lp(f)

)
‖ ·
∥∥ξ∥∥

H
≤ ‖Lp(en) ∗ f − Lp(f)‖1

= ‖Lp(en ∗ f)− Lp(f)‖1 = ‖Lp(en ∗ f − f)‖1
≤ ‖en ∗ f − f‖1 −−−−→

n→∞
0,

proving (32). To see that π(p) is bounded on H, let ξ ∈ H,
∥∥ξ∥∥

H
= 1. Then∥∥π(p) ξ

∥∥
H

=
∥∥ lim
n→∞

π̂(Lp(en))ξ
∥∥
H

= lim
n→∞

∥∥π̂(Lp(en))ξ
∥∥
H

≤ lim
n→∞

‖Lp(en)‖1
∥∥ξ∥∥

H
= lim
n→∞

‖en‖1 = 1.

This, in particular, shows that the map p 7→ ‖π(p)‖ is bounded.
Let us now prove that (31) defines a representation of Q on H.
Since Le(en) = en and (en) is an approximate identity, π̂(Le(en))→ I strongly on H.
To prove that π(p)∗ = π(p∗), take η = π̂(f) ξ ∈ H, f ∈ L1(Q,µ ), and using Theo-

rem 5.9 and (29) consider

π̂(Lp(en))∗ η = π̂(Lp(en)?) π̂(f) ξ = π̂
(
Lp(en)? ∗ f

)
ξ

= π̂
(
e?n ∗ Lp∗(f)

)
ξ = π̂

(
en ∗ Lp∗(f)

)
ξ −−−−→
n→∞

π̂
(
Lp∗(f)

)
ξ,

where the limit is taken in H. This shows that limn→∞ π̂(Lp(en))∗ exists on each vector
of a dense subset of H and is bounded. Hence, for η = π̂(f) ξ,

π(p)∗ η =
(

lim
n→∞

π̂(Lp(en))
)∗
η = lim

n→∞

(
π̂(Lp(en))∗ η

)
= π̂

(
Lp∗(f)

)
ξ.

On the other hand,

π̂
(
Lp∗(en)

)
η = π̂

(
Lp∗(en)

)
π̂(f) ξ = π̂

(
Lp∗(en) ∗ f

)
ξ

= π̂
(
Lp∗(en ∗ f)

)
ξ −−−−→
n→∞

π̂
(
Lp∗(f)

)
ξ.

And this shows that π(p)∗ = π(p∗).
To prove that (iii) in Definition 7.4 is satisfied, for p, q, r ∈ Q, consider(

∆(L � (f))(p, q)
)
(r) =

(
∆(L � (f))

)
(p, q, r) =

(
(∆× id) ◦ (̌ × id) ◦∆ f

)
(p, q, r)

=
(
(∆× id) ◦∆ f

)
(q∗, p∗, r) =

(
Lp(Lq(f))

)
(r).
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Hence, for η1 = π̂(f) ξ ∈ H, f ∈ L1(Q,µ ), η2 ∈ H, we have(
∆
(
π( � ) η1, η2

)
H

)
(p, q) =

(
∆
(
π̂(L � (f)) ξ, η2

)
H

)
(p, q)

=
(
π̂
(
∆(L � (f))(p, q)

)
ξ, η2

)
H

=
(
π̂
(
Lp(Lq(f))

)
ξ, η2

)
H
,

as follows from the preceding identity. On the other hand,(
π(p)π(q) η1, η2

)
H

=
(
π(p)π(q) π̂(f) ξ, η2

)
H

=
(
π(p)π̂(Lq(f)) ξ, η2

)
H

=
(
π̂
(
Lp(Lq(f))

)
ξ, η2

)
H
,

which ends the proof of (iii), Definition 7.4.
It is clear that nondegenerate representations of L1(Q,µ ) correspond to nondegenerate

representations of Q and vice versa. �

8. An approximation theorem

Definition 8.1. A continuous bounded function k on Q is called positive definite if for
any n ∈ N, qi ∈ Q, i = 1, . . . , n, the matrix(

∆k(q∗i , qj)
)

1≤i,j≤n

is positive semi-definite [17].

Definition 8.2. For two positive definite functions k1, k2, we say that k1 majorizes k2,
written by k1 � k2, if k1 − k2 is positive definite. A positive definite function k is called
elementary if any positive definite function majorized by k is of the form λk, λ ∈ [0, 1].

Lemma 8.3. Let A denote the involutive Banach algebra L1(Q,µ ). A continuous
bounded function k on Q is positive definite if and only if the functional χk : A → C
defined by

(33) χk(f) =
∫
Q

k(q)f(q) dµ (q)

is positive on A, that is,

(34) χk(f? ∗ f) =
∫
Q

k(q)(f? ∗ f) dµ(q) ≥ 0

for any f ∈ A.

Proof. First of all, let us show that

(35) χk(g? ∗ f) =
∫
Q2

∆k(r∗, q) ḡ(r)f(q) dµ (r)dµ (q).

Indeed,∫
Q

k(q)(g? ∗ f)(q) dµ (q) =
∫
Q

k(q) dµ (q)
∫
Q

g?(r)∆f(r∗, q) dµ (r)

=
∫
Q

k(q) dµ (q)
∫
Q

ḡ(r∗)δ(r∗)∆f(r∗, q) dµ (r)

=
∫
Q

ḡ(r∗)δ(r∗) dµ (r)
∫
Q

k(q)∆f(r∗, q) dµ (q)

=
∫
Q

ḡ(r∗)δ(r∗) dµ (r)
∫
Q

∆k(r, q)f(q) dµ (q)

=
∫
Q2

∆k(r, q)ḡ(r∗)f(q)δ(r∗) dµ (r)dµ (q) =
∫
Q2

∆k(r∗, q)ḡ(r)f(q) dµ (r)dµ (q).
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Thus, for g = f , we have

χk(f? ∗ f) =
∫
Q2

∆k(r∗, q)f̄(r)f(q) dµ (r)dµ (q).

So, let the functional χk on A be positive, i.e., (34) hold. Let qi ∈ Q, i = 1, . . . , n, be
given. Let ε > 0 and, for each i, choose a neighborhood Ui about qi such that∣∣∆k(r∗i , rj)−∆k(q∗i , qj)

∣∣ < ε ∀ (ri, rj) ∈ Ui × Uj .
and Ui ∩ Uj = ∅ if i 6= j. Let ci ∈ C, i = 1, . . . , n, be arbitrary complex numbers.
Denoting by fi the characteristic function of the set Ui, set

f =
n∑
i=1

ci
µ (Ui)

fi.

Then

χk(f? ∗ f) =
∫
Q2

∆k(r∗, q)
n∑
i=1

c̄i
µ (Ui)

fi(q)
n∑
j=1

cj
µ (Uj)

fj(r) dµ (r)dµ (q)

=
n∑

i,j=1

c̄i cj
µ (Ui)µ (Uj)

∫
Ui×Uj

∆k(r∗, q) dµ (r)dµ (q)

=
n∑

i,j=1

c̄i cj
µ (Ui)µ (Uj)

(
∆k(q∗i , qj) + εij

)
µ (Ui)µ (Uj) =

n∑
i,j=1

c̄icj
(
∆k(q∗i , qj) + εij

)
,

where |εij | < ε. Hence, positivity of the functional χk implies that the matrix(
∆k(q∗i , qj) + εij

)
1≤i,j≤n

is positive definite. Since ε is arbitrary, the matrix
(
∆k(q∗i , qj)

)
1≤i,j≤n itself is positive

definite.
Let now k be positive definite and prove (34). Take f ∈ Cc(Q) with compact support

K. For arbitrary qi ∈ K, i = 1, . . . , n, we have
n∑

i,j=1

∆k(q∗i , qj) f̄(qi)f(qj) ≥ 0.

Hence, ∫
Kn

( n∑
i,j=1

∆k(q∗i , qj) f̄(qi)f(qj)
)
dµ (q1) . . . dµ (qn)

= nµ (K)n−1

∫
K

∆k(q∗, q) f̄(q)f(q) dµ (q)

+ n(n− 1)µ (K)n−2

∫
K2

∆k(r∗, q)f̄(r)f(q) dµ (r)dµ (q) ≥ 0.

This means that
µ (K)
n− 1

∫
Q

∆k(q∗, q) f̄(q)f(q) dµ (q) +
∫
Q2

∆k(r∗, q)f̄(r)f(q) dµ (r)dµ (q) ≥ 0.

Making n→∞, we see that∫
Q2

∆k(r∗, q)f̄(r)f(q) dµ (r)dµ (q) ≥ 0,

which proves (34) for f with compact support and, hence, for any f ∈ L1(Q,µ ). �

Corollary 8.4. For continuous bounded positive definite k1, k2, we have k1 � k2 if and
only if χk1 � χk2 .
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Theorem 8.5. A continuous function k on Q is bounded and positive definite if and
only if there is a Hilbert space Hk, a bounded representation πk of Q on Hk, and a vector
ξk ∈ Hk such that

(36) k(q) =
(
πk(q)ξk, ξk

)
Hk
, q ∈ Q.

The representation πk is irreducible if and only if k is elementary.

Proof. Let π be a bounded representation of Q on H, and k be defined by (36).
For qi ∈ Q, ci ∈ C, i = 1, . . . , n, and using property (27) we have

n∑
i,j=1

(
∆k(q∗i , qj)

)
c̄icj =

n∑
i,j=1

(
∆
(
πk( � )ξk, ξk

)
Hk

(p∗i , pj)
)
c̄icj

=
n∑

i,j=1

(
πk(q∗i )πk(qj)ξk, ξk

)
Hk
c̄icj =

n∑
i,j=1

(
πk(qj)ξk, πk(qi)ξk

)
Hk
c̄icj

=
( n∑
j=1

cjπk(qj)ξk,
n∑
i=1

ciπk(qi)ξk
)
Hk

=
∥∥ n∑
i=1

ciπk(qi)ξk
∥∥2

Hk
≥ 0,

which means that the matrix
(
∆k(q∗i , qj)

)
1≤i,j≤n is positive definite, hence such is the

function k.
Conversely, let k be a bounded positive definite function. This means that the func-

tional χk defined in (33) is positive and bounded on the involutive Banach algebra
A = L1(Q,µ ). Using the GNS-construction, see [18], we obtain a Hilbert space Hk,
a representation π̂k of A and a cyclic vector ξk such that

χk(f) =
(
π̂k(f)ξk, ξk

)
Hh
, f ∈ A.

By setting f = Lp(en) and making n→∞, see (32), we get(
π̂k(p)ξk, ξk

)
Hk

= lim
n→∞

χk
(
Lp(en)) = lim

n→∞
χk
(
Lp(e?n)) = lim

n→∞

∫
Q

k(r)Lp(e?n)(r) dµ (r)

= lim
n→∞

∫
Q

k(r) ∆en(r∗, p) dµ (r) = lim
n→∞

(k ∗ en)(p) = k(p).

It is clear that π : Q → L(H) is weakly continuous if and only if k is continuous, and π
is bounded if and only if k is bounded.

The representation πk is irreducible if and only if χk is pure [18] and this is the case,
by Corollary 8.4, if and only if k is elementary. �

Lemma 8.6. Let k be a continuous bounded positive definite function on Q and χk the
associated positive functional defined by (33) on L1(Q,µ ). Then

(i) k(e) = ‖χk‖;
(ii) |k(p)| ≤ k(e) for any p ∈ Q;
(iii) k(p∗) = k(p);
(iv) |k(p)−∆k(p, q)|2 ≤ 2k(e) Re

(
k(e)− k(q)

)
for all p, q ∈ Q.

Proof. For the positive functional χk on the Banach involutive algebra A = L1(Q,µ ),
consider π̂k, Hk, ξk, which are the corresponding representation, the Hilbert space, and
the vector obtained via the GNS-construction. Then [18], since A has an approximate
identity by Theorem 5.9,

‖χk‖ = ‖ξk‖2 = k(e),

which proves (i).
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Consider (ii). Using Lemma 7.1 we have that ‖Lp(en)‖1 ≤ ‖en‖1 = 1. Hence,

|k(p)| = | lim
n→∞

(
π̂k(Lp(en))ξk, ξk

)
Hh
| =

∣∣ lim
n→∞

χk(Lp(en))
∣∣

≤ sup
‖f‖1≤1

|χk(f)| = ‖χk‖ = k(e),

proving (ii).
Next, consider the corresponding representation of Q on Hk. We have

k(p∗) =
(
π(p∗) ξk, ξk

)
Hk

=
(
ξk, π(p) ξk

)
Hk

=
(
π(p) ξk, ξk

)
Hk

= k(p),

which gives (iii).
To prove (iv), consider∣∣k(p)−∆k(p, q)

∣∣2 =
∣∣(π(p) ξk, ξk

)
Hk
−
(
π(p)π(q) ξk, ξk

)
Hk

∣∣2
=
∣∣(π(p)(I − π(q)) ξk, ξk

)
Hk

∣∣2 =
∣∣((I − π(q) ξ, π(p∗) ξk

)
Hk

∣∣2
≤
∥∥(I − π(q)) ξk

∥∥2

Hk

∥∥π(p∗) ξk
∥∥2

Hk
.

It follows from (ii) that −k(e) ≤ k(p) ≤ k(e) for all p ∈ Q. Hence, −k(e) ≤ ∆k(p, q) ≤
k(e), that is, |∆k(p, q)| ≤ k(e) for all p, q ∈ Q. Thus, we have the following estimate for
the second factor:∥∥π(p∗) ξk

∥∥2

Hk
=
(
π(p)π(p∗) ξk, ξk

)
Hk

= ∆k(p, p∗) ≤ k(e).

For the first factor, we have∥∥(I − π(q)) ξk
∥∥2

Hk
=
(
(I − π(q)) ξk, (I − π(q)) ξk

)
Hk

=
∥∥ξk∥∥2

Hk
+
∥∥π(q) ξk

∥∥2

Hk
− 2Re

(
π(q) ξk, ξk

)
Hk

≤ 2k(e)− 2Re
(
π(q) ξk, ξk

)
Hk

= 2Re
(
k(e)− k(q)

)
,

which ends the proof. �

Corollary 8.7. For f ∈ Cc(Q), let f† be defined by (23). Then f ∗ f† is a positive
definite function.

Proof. Indeed, for any g ∈ Cc(Q), using property (ii) in the definition of a left Hilbert
algebra and (24) we have

χf∗f†(g
? ∗ g) =

∫
Q

(f ∗ f†)(ḡ? ∗ ḡ)(p) dµ (p)

=
(
f ∗ f†, ḡ? ∗ ḡ

)
H

=
(
ḡ ∗ f, ḡ ∗ f

)
H

= ‖ḡ ∗ f‖2H ≥ 0.

Hence, χf∗f† is a positive functional, thus f ∗ f† is positive definite. �

Lemma 8.8. For any f, g ∈ Cc(Q), f ∗ g† is a weighted sum of four positive definite
functions, namely,

(37) 4f ∗g† = (f+g)∗(f+g)†−(f−g)∗(f−g)†+i(f+ig)∗(f+ig)†−i(f−ig)∗(f−ig)†.

Proof. The proof is immediate. �

Lemma 8.9. Let f ∈ L1(Q,µ ) be fixed. Then the map L � (f) : Q → L1(Q,µ ) defined
by

(38) Q 3 p 7→ Lp(f) ∈ L1(Q,µ )

is continuous.
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Proof. Let p0 ∈ Q and prove that the map (38) is continuous in the point p0. Fix ε > 0,
and let f0 ∈ Cc(Q) be such that ‖f − f0‖1 < ε. Take a neighborhood U of p0 that has
compact closure, E = U . Let g ∈ Cc(Q) be such that g(p∗) = 1 for p ∈ E. Since the
function f0 has compact support, (g⊗1)∆f0 also has compact support, which we denote
by K, K ⊂ Q×Q. Let F be the image of K under the projection of Q×Q onto the second
factor. Thus F is also compact. Finally, since ∆f0 is continuous on the compact set K,
choose a neighborhood U1 of the point p0 such that |∆f0(p∗, q)−∆f0(p∗0, q)| < ε/µ (F )
for all p ∈ U1 and all q ∈ F . Hence, for p ∈ U ∩ U1, we have

‖Lp(f0)− Lp0(f0)‖1 =
∫
Q

∣∣∆f0(p∗, q)−∆f0(p∗0, q)
∣∣ dµ (q)

=
∫
Q

∣∣(∆f0(p∗, q)−∆f0(p∗0, q)
)
g(p∗)

∣∣ dµ (q)

=
∫
F

∣∣∆f0(p∗, q)−∆f0(p∗0, q)
∣∣ dµ (q) <

ε

µ (F )
µ (F ) = ε.

Thus, for p ∈ U ∩ U1, we have
‖Lp(f)− Lp0(f)‖1
≤ ‖Lp(f)− Lp(f0)‖1 + ‖Lp(f0)− Lp0(f0)‖1 + ‖Lp0(f0)− Lp0(f)‖1
= ‖Lp(f − f0)‖1 + ‖Lp(f0)− Lp0(f0)‖1 + ‖Lp0(f0 − f)‖1
≤ ‖f − f0‖1 + ‖Lp(f0)− Lp0(f0)‖1 + ‖f0 − f‖1 < 3ε,

which ends the proof. �

Corollary 8.10. Denote by σ(L1(Q,µ ), L∞(Q,µ )) the weak topology on L1(Q,µ ) in-
duced by the dual space L∞(Q,µ ). Then the map given by (38) is weakly continuous.

Proof. Indeed, for any g ∈ L∞(Q,µ ), f ∈ L1(Q,µ ), and p, p0 ∈ Q, we have∫
Q

g(q)
(
Lp(f)− Lp0(f)

)
(q) dµ (q) ≤ ‖g‖∞

∥∥Lp(f)− Lp0(f)
∥∥

1
.

The continuity follows now from Lemma 8.9. �

Lemma 8.11. Let f ∈ C0(Q) and (en) be an approximate identity. Then

f − f ∗ en → 0, n→∞,
uniformly on compact subsets of Q.

Proof. Let K be a compact subset of Q. Denote by En the support of en and, for p ∈ K,
consider

|f(p)− (f ∗ en)(p)| =
∣∣f(p)−

∫
Q

f(q)∆en(q∗, p) dµ (q)
∣∣

=
∣∣f(p)−

∫
Q

f(q)∆ěn(p∗, q) dµ (q)
∣∣ =

∣∣∫
Q

f(p)en(q) dµ (q)−
∫
Q

∆f(p, q)en(q) dµ (q)
∣∣

=
∣∣∫
En

(
∆f(p, e)−∆f(p, q)

)
en(q) dµ (q)

∣∣
≤ sup
q∈En

∣∣∆f(p, e)−∆f(p, q)
∣∣ ∫
En

en(q) dµ (q) = sup
q∈En

∣∣∆f(p, e)−∆f(p, q)
∣∣.

Since K and En are compact for all n, En ⊂ En1 if n > n1, ∩n∈NEn = {e}, and ∆f is
continuous, for a given ε > 0 there is n1 ∈ N such that

|f(p)− (f ∗ en)(p)| < ε

for all n > n1 and p ∈ K. �
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Proposition 8.12. Let P1 be the set of continuous bounded positive definite functions
k on Q such that k(e) = 1. Then the weak σ(L1(Q,µ ), L∞(Q,µ ))-topology and the
topology of uniform convergence on compact sets coincide on P1.

Proof. It is clear that if k0 is a limit point of a set X, X ⊂ P1, in the topology of uniform
convergence on compact sets, then it is a limit point with respect to the weak topology.
Let us prove the converse.

Assume that k0 is a limit point of X with respect to the weak topology. Fix a compact
set K ⊂ Q, take an arbitrary k ∈ P1 and let (en) be an approximate identity. Then we
have

(39) |k0(p)− k(p)| ≤
∣∣(k0 − k0 ∗ en)(p)

∣∣+
∣∣((k0 − k) ∗ en)(p)

∣∣+
∣∣(k ∗ en − k)(p)

∣∣.
Fix now ε > 0. Since k0 is continuous and k0(e) = 1 because k0 ∈ P1, choose a
neighborhood V of e such that |1 − k0(p)| < ε for all p ∈ V . By Lemma 8.11, the first
term in (39) approaches zero uniformly on K, hence there is n such that

|(k0 − k0 ∗ en)(p)| < ε

for all p ∈ K. Clearly, we can assume that Vn = supp en ⊂ V .
Use Lemma 8.11 to find a σ(L1(Q,µ ), L∞(Q,µ ))-weak neighborhood U1 of the point

k0 such that ∣∣((k − k0) ∗ en)(p)
∣∣ < ε

for all k ∈ U1 and any p ∈ K.
Finally, let U2 be a σ(L1(Q,µ ), L∞(Q,µ ))-weak neighborhood of the point k0 such

that ∣∣∣∫
Q

(k0 − k)(q) en(q) dµ (q)
∣∣∣ < ε

for any k ∈ U2 and the en found above.
Let k ∈ U1∩U2∩X and consider the third term in (39). Using (4), (iv) in Lemma 8.6,

and that ěn = en and ‖en‖1 = 1 we have∣∣(k ∗ en)(p)− k(p)
∣∣ =

∣∣∣∫
Q

k(q)∆en(q∗, p) dµ (q)− k(p)
∣∣∣

=
∣∣∣∫
Q

k(q)∆en(p∗, q) dµ (q)− k(p)
∣∣∣

=
∣∣∣∫
V

∆k(p, q)en(q) dµ (q)−
∫
V

k(p)en(q) dµ (q)
∣∣∣

≤
∫
V

∣∣∆k(p, q)− k(p)
∣∣en(q) dµ (q)

≤
√

2
∫
V

(
Re (1− k(q))

)1/2
en(q)1/2en(q)1/2 dµ (q)

≤
√

2
(∫

V

Re
(
1− k(q)

)
en(q) dµ (q)

)1/2(∫
V

en(q) dµ (q)
)1/2

=
√

2
(∫

V

Re
(
1− k0(q)

)
en(q) dµ (q) + Re

∫
V

(
k0 − k)(q)en(q) dµ (q)

)1/2

≤
√

2
(∫

V

∣∣1− k0(q)|en(q) dµ (q) +
∣∣∫
V

(k0 − k)(q)en(q) dµ (q)
∣∣)1/2

≤
√

2(ε+ ε)1/2 = 2ε1/2,

since |1− k0(p)| ≤ ε for p ∈ V and because k ∈ U2.
This shows that for any ε > 0 there is k ∈ X such that

|k0(p)− k(p)| < 2(ε+ ε1/2)



HARMONIC ANALYSIS ON A LOCALLY COMPACT HYPERGROUP 329

for any p ∈ K, and this ends the proof. �

Theorem 8.13. Every continuous function can be uniformly approximated on a compact
set with linear combinations of elementary positive definite functions.

Proof. Fix a compact subset K of Q and let f ∈ C(Q). We can assume that f ∈ C0(Q).
Using Lemma 8.11 we can approximate f with f ∗ en uniformly on K, where (en) is an
approximate identity. Using identity (37) we can represent f∗en as a weighted sum of four
positive definite functions fi, i = 1, . . . , 4, and due to Lemma 8.6 (ii) we can assume that
fi(e) = 1, that is fi ∈ P1. The set P̃1 of continuous positive definite functions k such that
k(e) ≤ 1 is a convex σ(L∞(Q,µ ), L1(Q,µ ))-weakly compact subset of the locally convex
space L∞(Q,µ ). Since the extreme points of P̃1 are precisely the elementary positive
definite functions, applying the Krein-Milman theorem, we approximate, with respect
to the σ(L∞(Q,µ ), L1(Q,µ )) weak topology, each function fi with a finite weighted
sum of elementary positive definite functions. Application of Proposition 8.12 ends the
proof. �

9. A Plancherel theorem and inversion formulas for a locally compact
hypergroup

In this section, A denotes the left Hilbert algebra considered in Section 6.

Theorem 9.1. Let L (resp. R) denote the von Neumann algebra generated by the
operators Lp (resp. Rp), p ∈ Q, on H = L2(Q,µ ). Then L′ = R and R′ = L.

Proof. It follows from Theorem 7.7 that the von Neumann algebra L coincides with the
von Neumann algebra πL(A)′′ generated by the left regular representation of A on H, so
that L′ = πL(A)′. However, it follows from [15] that πL(A)′ =

(
JπL(A)J

)′′. Whence, to
prove the theorem, it is sufficient to show that

JLpJ = Rp

on A. Indeed, for f ∈ A, using (22) and Proposition 4.7 (iii) with z = 1/2 we have

(JLpJ f)(q) = δ
1
2 (q∗) (LpJ f)(q∗) = δ

1
2 (q∗)∆(J f)(p∗, q∗)

= δ
1
2 (q∗)∆(δ̌

1
2 f̌)(p∗, q∗) = δ

1
2 (q∗)∆(δ

1
2 f)(q, p)

= δ
1
2 (q∗)δ

1
2 (q)δ

1
2 (p)∆f(q, p) = δ

1
2 (p)∆f(q, p) = (Rp f)(q).

�

Let H = L2(Q,µ) and denote by Lf = π̂L(f), f ∈ A, the operator defined by (30)
for the left regular representation πL of Q defined in Proposition 7.5. Let L be the von
Neumann algebra generated by Lf , f ∈ A, on H and ϕ the weight on L corresponding
to the scalar product in H, i.e., it is defined by

(40) ϕ(L∗gLf ) =
(
f, g
)
H
, f, g ∈ A.

Let Hϕ be the Hilbert space obtained from L and ϕ via the GNS-construction. The
central decomposition theorem for von Neumann algebras applied to L gives

(41) Hϕ =
∫ ⊕
Z

Hϕ(z) dρ(z), L =
∫ ⊕
Z

L(z) dρ(z), ϕ =
∫ ⊕
Z

ϕz dρ(z),

where Z is spectrum of the center of L.

Definition 9.2. The measure ρ on Z will be called a Plancherel measure. The Fourier
transform f̂ of f ∈ A is defined on Z by

(42) f̂(z) = Lf (z) =
∫
Q

f(q)Lq(z) dµ (q), z ∈ Z.
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Theorem 9.3. Let the Fourier transform be given by (42) and ρ a Plancherel measure.
Then (

f, g
)
H

=
∫
Z

ϕz
(
ĝ∗(z)f̂(z)

)
dρ(z)(43)

f(q) =
∫
Z

ϕz
(
Lq(z)∗f̂(z)

)
dρ(z),(44)

and the Fourier transformˆcan be extended to a unitary operator L2(Q,µ)→ Hϕ.

Proof. Identity (43) follows immediately from (40) that defines the weight ϕ and the
decomposition (41). Indeed, we have(

f, g
)
H

= ϕ(L∗gLf ) =
∫
Z

ϕz
(
L∗g(z)Lf (z)

)
dρ(z) =

∫
Z

ϕz
(
ĝ∗(z)f̂(z)

)
dρ(z),

showing that the Fourier transform is an isometry. Since Hϕ is the closure of the image
of the Fourier transform, we see that it is a unitary operator.

Let f ∈ A, with the Fourier image f̂ and let

f1(q) =
∫
Z

ϕz
(
L∗q(z)f̂(z)

)
dρ(z).

Then, for any g ∈ A, we have(
f1, g

)
H

=
∫
Q

ḡ(r)f1(r) dµ (r) =
∫
Q

(
ḡ(r)

∫
Z

ϕz(L∗r(z)f̂(z)
)
dρ(z)

)
dµ (r)

=
∫
Z

ϕz

(∫
Q

ḡ(r)L∗r(z) dµ (r) f̂(z)
)
dρ(z) =

∫
Z

ϕz
(
L∗g(z)Lf (z)

)
dρ(z)

= ϕ(L∗gLf ) =
(
f, g
)
H
.

This shows that f − f1 is orthogonal to any g ∈ A, hence it is zero. �

Remark 9.4. The idea to use the central decomposition of the von Neumann algebra
generated by the left regular representation to obtain a Plancherel formula for generalized
translation operators is due to L. I. Vainerman and G. L. Litvinov [19].

10. Harmonic analysis on a cocommutative hypergroup

The results in this section were obtained in [11] in the terminology of hypercomplex
systems. Here we give them for the sake of completeness. The proofs are easily adopted
from [11].

Definition 10.1. A hypergroup Q is called Hermitian if q∗ = q for all q ∈ Q; it is called
cocommutative if

∆f(p, q) = ∆f(q, p),
for all f ∈ Cb(Q), p, q ∈ Q.

Remark 10.2. It directly follows from (H3) that a Hermitian hypergroup is cocommuta-
tive.

Definition 10.3. A function χ ∈ Cb(Q) is called a character of the hypergroup Q if
(∆χ)(p, q) = χ(p)χ(q) for all p, q ∈ Q. A character χ is called Hermitian if χ(p∗) = χ(p),
p ∈ Q.

For the rest of this subsection, the hypergroup Q is assumed to be cocommutative.
Let Xh be the space of bounded Hermitian characters. For each character χ ∈ Xh, its

kernel is a maximal ideal. In what follows, we endow Xh with the topology of the space
of maximal ideals of the involutive Banach algebra L1(Q,µ ).
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Theorem 10.4. Every continuous positive definite function k on Q can be uniquely
represented as an integral,

(45) k(p) =
∫
Xh

χ(p) dρ(χ),

with respect to some nonnegative finite Borel measure ρ on the space Xh. Conversely,
every function of the form (45) is continuous and positive definite.

Definition 10.5. For a function f ∈ L1(Q,µ ), the function f̂ : Xh → C defined by

(46) f̂(χ) =
∫
Q

f(p)χ̄(p) dµ (p),

is called the Fourier transform of f .

Theorem 10.6. The Fourier transform given by (46) defines a unitary operator of the
space L2(Q,µ ) onto the space L2(Q̂, ρ), where the measure ρ on X̂h, called a Plancherel
measure, is uniquely defined, Q̂ = supp ρ, and the following inversion formula holds:

(47) f(p) =
∫
Q̂

f̂(χ)χ(p) dρ(χ).

Remark 10.7. This theorem is now a simple corollary of Theorem 9.3. Let us remark
that the Fourier transform maps L1(Q,µ ) into C0(Q̂) and the inverse Fourier transform,
given by formula (47), maps L1(Q̂, ρ) into C0(Q).

Theorems 10.4 and 10.6 give the following.

Corollary 10.8. A function k ∈ L1(Q,µ ) ∩ Cb(Q) is positive definite if and only if
k̂(χ) ≥ 0 for all h ∈ Q̂.

The following lemma directly follows from Theorem 10.4.

Lemma 10.9. Let χ1 · χ2 be a positive definite function on Q for all χ1, χ2 ∈ Q̂. Then
there exists a nonnegative finite regular Borel measure ρχ1,χ2 on Xh such that

(48) χ1(p)χ2(p) =
∫
Xh

χ(p) dρχ1,χ2(χ).

Theorem 10.10. Let Q be a cocommutative hypergroup satisfying the following proper-
ties:

(1) the character ε defined in (H2) belongs to Q̂;
(2) the product of two characters χ1, χ2 ∈ Q̂ is a positive definite function, and the

support of the measure µχ1,χ2 defined by (48) is contained in Q̂;
(3) the comultiplication ∆̂ : Cb(Q̂)→ Cb(Q̂× Q̂) defined by

(49) ∆̂(F )(χ1, χ2) =
∫
Q̂

F (χ) dµχ1,χ2(χ), F ∈ Cb(Q̂),

satisfies axiom (H1) (d).
Then Q̂ is also a locally compact commutative hypergroup, a so-called dual hypergroup,
that satisfies the conditions of this theorem, and the hypergroup ˆ̂

Q dual to Q̂ coincides
with Q. The hypergroup dual to a compact hypergroup is a discrete hypergroup, the
hypergroup dual to a discrete hypergroup is a compact hypergroup.

Theorem 10.11. Let conditions of Theorem 10.10 be satisfied. Then

A(Q) = L2(Q,µ ) ∗ L2(Q,µ )

is a Banach algebra (an analogue of the Fourier algebra) with respect to the pointwise
multiplication and the norm ‖f‖A(Q) = ‖f̂‖L1(Q̂,µ̂ ).
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