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SPECTRAL PROBLEM FOR FIGURE-OF-EIGHT GRAPH OF
STIELTJES STRINGS

O. MARTINYUK AND V. PIVOVARCHIK

To the memory of Israel Gohberg.

Abstract. We describe the spectrum of the problem generated by the Stieltjes string

recurrence relations on a figure-of-eight graph. The continuity and the force balance

conditions are imposed at the vertex of the graph. It is shown that the eigenvalues
of such (main) problem are interlaced with the elements of the union of sets of

eigenvalues of the Dirichlet problems generated by the parts of the string which

correspond to the loops of the figure-of-eight graph. Also the eigenvalues of the main
problem are interlaced with the elements of the union of sets of eigenvalues of the

periodic problems generated by the same parts of the string.

In 1950 M. Krein and F. Gantmakher [1, pp. 332–349] found a mechanical interpreta-
tion for the classical results of Stieltjes on the development into continued fractions for
functions of a certain class. These functions occur in the theory of small transversal vi-
brations of strings which are zero density threads bearing point masses. After M. Krein
and F. Gantmakher these strings were called Stieltjes. Similar development into con-
tinued fractions were used earlier by W. Cauer in the theory of synthesis of electrical
circuits. He associated the synthesis of reactive two-port having given entrance resistance
with the continued fraction coefficients of which are capacities and inductances [2] (see
also [3], pp. 498–508).

In Section 1 of this paper, we consider a periodic problem generated by the equation of
the Stieltjes string transversal vibrations. This problem occurs in the following situation.
A stretched Stieltjes sting is girdling a hard cylinder as a loop. It is assumed that
there is no friction between the string and the cylinder. The string can vibrate in the
direction parallel to the axis of the cylinder. One meets another physical interpretation
of the periodic problem when considers a closed transmission line containing capacities
in the longitudinal and inductances in the transversal elements of the circle or vice versa
depending on the pole of input resistance [3, pp. 498–508]. The spectrum of such a
problem consists of normal (i.e. isolated Fredholm) eigenvalues (see [4, p. 23] for the
definition). As an auxiliary result it is proved that these eigenvalues are interlaced in
a non-strict sense with the eigenvalues of the Dirichlet problem generated by the same
string.

In Section 2 a figure-of-eight graph composed by two Stieltjes strings is considered.
At the vertex, continuity conditions are imposed together with the Kirchhoff condition
which, in the mechanical interpretation of the problem, describes the balance of forces.
It is shown that the relation

ϕN = ϕINϕ
II
D + ϕIIN ϕ

I
D
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obtained in [5] for trees remains true in the case of figure-of-eight graph. Here the upper
indices correspond to subgraphs into which the vertex divides the graph. In the case
of figure-of-eight graph the subgraphs are the loops. The lower indices correspond to
the Dirichlet (D) and to the generalized Neumann (N), i.e., the Kirchhoff and continuity
conditions. It is proved that the eigenvalues of the problem on the graph, i.e., the set of
zeros of the function ϕN (λ2) are interlaced in a non-strict sense with the union of the
spectra of the Dirichlet problems generated by the Stieltjes strings of the loops as well
as with the union of the spectra of the periodic problems generated by the strings of the
loops.

It should be mentioned that the spectral problem on a figure-of-eight graph generated
by the Sturm-Liouville equation was considered in [6].

1. Let us consider a Stieltjes string of length l, i.e., a massless elastic thread bearing
n point masses. Let the ends of the thread be joined at a point composing a cycle.
Denote by mk, k = 1, 2, . . . , n, the values of the point masses and by lk, k = 0, 1, . . . , n,
the subintervals into which the masses and the point A break the string such that lk lies
to the left from mk+1 while lk+1 lies to the right.

Small transversal vibrations of such a string can be described by transversal displace-
ments of the masses Vk(t) where t denotes the time.

The equation of transversal motion for the mass mk is

(1)
Vk(t)− Vk−1(t)

lk−1
+
Vk(t)− Vk+1(t)

lk
+mkV

′′
k (t) = 0 (k = 1, 2, . . . , n).

Continuity condition at A gives

(2) V0(t) = Vn+1(t).

The periodic problem we obtain if we add to (1) and (2) the equation of balance of
forces at A (the Kirchhoff condition),

(3)
V1(t)− V0(t)

l0
=
Vn+1(t)− Vn(t)

ln
.

Substituting Vk(t) = Uke
iλt into (1)–(3) we obtain the following spectral problem:

(4)
Uk − Uk−1

lk−1
+
Uk − Uk+1

lk
−mkλ

2Uk = 0 (k = 1, 2, . . . , n),

(5) U0 = Un+1,

(6)
U1 − U0

l0
=
Un+1 − Un

ln
,

where λ is the spectral parameter and Uk is the vibration amplitude of k-th mass.
With the notations,

Y = {U0, U1, U2, . . . , Un+1}T ,
M = diag{m1,m2, . . . ,mn, 0, 0},

K =



− 1
l0

1
l1

+ 1
l0

− 1
l1

0 0 0 . . . 0 0 0
0 − 1

l1
1
l2

+ 1
l1

− 1
l2

0 0 . . . 0 0 0
0 0 − 1

l2
1
l3

+ 1
l2
− 1
l3

0 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . − 1
ln−1

1
ln

+ 1
ln−1

− 1
ln

1 0 0 0 0 0 . . . 0 0 −1
− 1
l0

1
l0

0 0 0 0 . . . 0 1
ln

− 1
ln





SPECTRAL PROBLEM FOR FIGURE-OF-EIGHT GRAPH OF STIELTJES STRINGS 351

problem (4)–(6) can be rewritten as an eigenvalue problem generated by the operator
pencil K − λ2M .

According to [1] we look for the solution {U0, U1, . . . , Un, Un+1} of problem (4)–(6) in
the form

(7) Uk = R2k−2(λ2)a+Q2k−2(λ2)b,

where R2k−2(λ2) and Q2k−2(λ2) are the polynomials defined by the recurrence relations

(8)
R2k(λ2) = lkR2k−1(λ2) +R2k−2(λ2),

R2k−1(λ2) = R2k−3(λ2)−mkλ
2R2k−2(λ2),

(9)
Q2k(λ2) = lkQ2k−1(λ2) +Q2k−2(λ2),

Q2k−1(λ2) = Q2k−3(λ2)−mkλ
2Q2k−2(λ2),

with the initial conditions

(10) R0(λ2) = 1, R−1(λ2) =
1
l0
,

(11) Q0(λ2) = 1, Q−1(λ2) = 0.

Let us prove an analogue of the Lagrange identity [7],

(12) R2k−1(λ2)Q2k(λ2)−R2k(λ2)Q2k−1(λ2) =
1
l0
.

Using (8)–(9) we get

R2k−1(λ2)Q2k(λ2)−R2k(λ2)Q2k−1(λ2)

= lkQ2k−1(λ2)R2k−3(λ2) +R2k−3(λ2)Q2k−2(λ2)− lkmkλ
2R2k−2(λ2)Q2k−1(λ2)

− lkR2k−1(λ2)Q2k−3(λ2)−R2k−2(λ2)Q2k−3(λ2) + lkmkλ
2R2k−1(λ2)Q2k−2(λ2).

Substituting
R2k−3(λ2) = R2k−1(λ2) +mkλ

2R2k−2(λ2)

we obtain

R2k−1(λ2)Q2k(λ2)−R2k(λ2)Q2k−1(λ2)

= lkR2k−1(λ2)(Q2k−1(λ2)−Q2k−3(λ2)) +R2k−3(λ2)Q2k−2(λ2)

−R2k−2(λ2)Q2k−3(λ2) + lkmkλ
2R2k−1(λ2)Q2k−2(λ2)

= R2k−3(λ2)Q2k−2(λ2)−R2k−2(λ2)Q2k−3(λ2).

Repeating this procedure and using (10) and (11) we arrive at

R2k−1(λ2)Q2k(λ2)−R2k(λ2)Q2k−1(λ2) = R−1(λ2)Q0(λ2)−R0(λ2)Q−1(λ2) =
1
l0
,

what is to be proved.
Due to (8)–(11) the vector (U0, U1, U2, . . . , Un, Un+1), where Uk is given by (7), satis-

fies (4).
Equation (5) with account of (8)–(11) implies

(13) R2n(λ2)a+
(
Q2n(λ2)− 1

)
b = 0.

From (6) we obtain

(14)
(

1
l0
−R2n−1(λ2)

)
a−Q2n−1(λ2)b = 0.
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The system of linear algebraic equations (13)–(14) with respect to the unknowns a
and b possesses a nontrivial solution if and only if its determinant

(15) ϕ(λ2) =

∣∣∣∣∣∣
R2n(λ2) Q2n(λ2)− 1

1
l0
−R2n−1(λ2) −Q2n−1(λ2)

∣∣∣∣∣∣
is zero.

Taking into account (12) we rewrite (15) in the form

(16) ϕ(λ2)
def
=

Q2n(λ2) + l0R2n−1(λ2)− 2
l0

.

As an auxiliary one we choose the Dirichlet problem generated by equations (4) and
the boundary conditions

U0 = 0,
Un+1 = 0.

It is clear that R2n(λ2) is the characteristic polynomial of this problem called Dirichlet-
Dirichlet.

Definition 1. A function f(z) is said to belong to the Nevanlinna class if
1) it is analytic in the half-planes Im z > 0 and Im z < 0;
2) f(z) = f(z) (Im z 6= 0);
3) Im z Im f(z) ≥ 0 for Im z 6= 0.

The class of Nevanlinna functions will be denoted by N .

Definition 2. The function f(z) analytic in C\[0,+∞) is said to be an S-function if
1) f(z) ∈ N ,
2) f(z) ≥ 0 for all z < 0.
We denote the class of S-functions by S.

Where it is convenient we will use another parameter z = λ2.

Theorem 1.
R2n(z)
ϕ(z)

∈ S.

Proof. Consider the system of equations (4)

U1 − U2

l1
+
U1 − U0

l0
−m1zU1 = 0,

U2 − U3

l2
+
U2 − U1

l1
−m2zU2 = 0,

. . .

Uk − Uk+1

lk
+
Uk − Uk−1

lk−1
−mkzUk = 0,

. . .

Un − Un+1

ln
+
Un − Un−1

ln−1
−mnzUn = 0.

We multiply the first equation by U1 the second one by U2 and so on and the last one
by Un and add the obtained equations. Then we arrive at

(17)
U1 − U0

l0
U1 +

Un − Un+1

ln
Un = z

n∑
k=1

mk |Uk|2 .
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Now we take the imaginary part of (17)

(18) Im
(
Un − Un+1

ln
Un +

U1 − U0

l0
U1

)
= Im z

n∑
k=1

mk |Uk|2 .

Obviously,

(19)
Im
(
Un − Un+1

ln
Un

)
= Im

(
Un − Un+1

ln
(Un − Un+1 + Un+1)

)
= Im

(
Un − Un+1

ln
Un+1

)
and

(20) Im
(
U1 − U0

l0
U1

)
= Im

(
U1 − U0

l0
U0

)
.

Due to (19), (20) and (5), equation (18) can be reduced to

(21) Im
(
Un+1

(
Un − Un+1

ln
+
U1 − U0

l0

))
= Im z

n∑
k=1

mk |Uk|2 .

If we multiply this equation by |Un+1|−2, then we obtain

(22) − Im

U1 − U0

l0
−
Un+1 − Un

ln
Un+1

=
Im z

|Un+1|2
n∑
k=1

mk |Uk|2

or

(23) − Im

 Un+1

U1 − U0

l0
−
Un+1 − Un

ln


−1

=
Im z

|Un+1|2
n∑
k=1

mk |Uk|2 .

Hence,

− Im z Im

 Un+1

U1 − U0

l0
−
Un+1 − Un

ln


−1

> 0

and, consequently,

Im z Im

 Un+1

U1 − U0

l0
−
Un+1 − Un

ln

 > 0.

The set of zeros of the denominator in the left-hand side of the above inequality
coincides with the set of zeros of the function ϕ(z) while zeros of the numerator coincide
with the zeros of R2n(z).

Therefore,
R2n(z)
ϕ(z)

is a Nevanlinna function.

Using equations (8)–(11) we conclude that for z < 0 the following inequalities are true:

(24) Q2k(z) ≥ 1, l0R2k−1(z) ≥ 1 (k = 1, 2, . . . , n).

Thus,

(25)
R2n(z)
ϕ(z)

∈ S.

Theorem is proved. �
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Let us prove that the maximal possible multiplicity of zeros of ϕ(z) is 2. It can happen
that for some value of z all elements of the matrix of system (13)–(14) are equal to 0,
i.e.,

R2n(z) = Q2n(z)− 1 =
1
l0
−R2n−1(z) = −Q2n−1(z) = 0.

In this case system of equations (13)–(14) possesses two linearly independent solutions,
i.e., the multiplicity of the corresponding zero of ϕ(z) is 2. Zeros of R2n(z) are simple
(see [1]) and interlaced with zeros of ϕ(z) and (25) would be impossible if the multiplicity
of a zero of ϕ(z) exceeded 2.

2. In this section we consider a figure-of-eight metric graph which consists of two
loops of lengths L1 and L2 joined at the vertex. The first loop is a Stieltjes string bearing
point masses mk, k = 1, 2, . . . , n1, which together with the vertex break the string into

subintervals lk > 0, k = 0, 1, . . . , n1 (
n1∑
k=0

lk = L1). The amplitudes of vibrations of these

masses can be described by (4) with n = n1. The second loop bears point masses m̃k,

k = 1, 2, . . . , n2, which together with the vertex break the string into subintervals l̃k > 0,

k = 0, 1, . . . , n2 (
n2∑
k=0

l̃k = L2). Small transversal vibrations of the second string can be

described by the amplitude vector {Ũ0, Ũ1, . . . , Ũn+1}, where Ũk satisfy the equations

(26)
Ũk − Ũk−1

l̃k−1

+
Ũk − Ũk+1

l̃k
+ m̃kλ

2Ũk = 0 (k = 1, 2, . . . , n2).

The continuity conditions at the vertex are

(27) U0 = Un+1 = Ũ0 = Ũn+1,

and the Kirchhoff condition gives

(28)
U1 − U0

l0
+
Ũ1 − Ũ0

l̃0
=
Un+1 − Un

ln
+
Ũn+1 − Ũn

l̃n
.

Let us introduce the notations

X = {U0, U1, U2, . . . , Un+1}T ,

X̃ = {Ũ0, Ũ1, Ũ2, . . . , Ũn+1}T ,
M = diag{m1,m2, . . . ,mn, 0},

M̃ = diag{m̃1, m̃2, . . . , m̃n, 0},

A =



− 1
l0

1
l1

+ 1
l0

− 1
l1

0 0 0 . . . 0 0 0
0 − 1

l1
1
l2

+ 1
l1

− 1
l2

0 0 . . . 0 0 0
0 0 − 1

l2
1
l3

+ 1
l2
− 1
l3

0 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . − 1
ln−1

1
ln

+ 1
ln−1

− 1
ln

1 0 0 0 0 0 . . . 0 0 −1


.

By Ã we denote the matrix obtained from A by change lk for l̃k in each element. Then
we rewrite problem (4), (26)–(28) in a matrix form,

A 0
0 Ã

1 . . . . . . . . . . . . . . . . . . . . . 0 −1 . . . . . . . . . . . . . . . . . . 0
− 1
l0

1
l0

0 . . . 0 1
ln
− 1

ln
− 1el0 1el0 0 . . . 0 1eln − 1eln



X

X̃
0
0

 = λ2


M

M̃
0
0



X

X̃
0
0

 .
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We look for the solution (U0, U1, U2, . . . , Un, Un+1, Ũ0, Ũ1, Ũ2, . . . , Ũn, Ũn+1) of the sys-
tem composed by equations (4) with n = n1 and by (26)–(28) in the form

(29) Uk = R2k−2(λ2)a+Q2k−2(λ2)b,

(30) Ũk = R̃2k−2(λ2)ã+ Q̃2k−2(λ2)̃b,

where R2k−2(λ2) and Q2k−2(λ2) are the polynomials defined by (8)–(11). Analogous
relations with m̃k and l̃k instead of m̃k and l̃k are true for R̃2k−2(λ2) and Q̃2k−2(λ2).

The solution (U0, U1, U2, . . . , Un, Un+1, Ũ1, Ũ2, . . . , Ũn, Ũn+1) where Uk and Ũk are
given by (29), (30) satisfies (4) with n = n1 and (26). With account of (8)–(11) we
obtain from (27) and (28) that

(31) b = b̃,

(32) R2n1(λ2)a+
(
Q2n1(λ2)− 1

)
b = 0,

(33) R̃2n2(λ2)ã+
(
Q̃2n2(λ2)− 1

)
b̃ = 0,

(34)
(
R2n1−1(λ2)− 1

l0

)
a+

(
R̃2n2−1(λ2)− 1

l̃0

)
ã+Q2n1−1(λ2)b+ Q̃2n2−1(λ2)̃b = 0.

Equations (31)–(34) complete a homogeneous system with respect to the unknowns
a, ã, b, b̃. This system possesses a nontrivial solution if and only if its determinant

(35)
ϕ(λ2) def= R2n1(λ2)

(
1

l̃0
Q̃2n2(λ2)− 2

l̃0
+ R̃2n2−1(λ2)

)
+ R̃2n2(λ2)

(
1
l0
Q2n1(λ2)− 2

l0
+R2n1−1(λ2)

)
is equal to 0.

Equation (35) can be interpreted as follows. The conditions of continuity at an interior
vertex of the graph together with the Kircchoff condition can be considered as genera-
lized Neumann conditions. If these conditions are imposed at a pendant vertex of the
graph, then the continuity condition is fulfilled automatically and the Kirchhoff condition
coincides with the classical Neumann condition. Therefore, ϕ(λ2) in (35) is nothing but
the characteristic polynomial of the Neumann boundary value problem on the figure-of-
eight graph (with the Neumann condition at the vertex). The polynomials

1
l0
Q2n1(λ2)− 2

l0
+R2n1−1(λ2)

and
1

l̃0
Q̃2n2(λ2)− 2

l̃0
+ R̃2n2−1(λ2),

which are characteristic functions of the periodic problems on the loops can be interpreted
as characteristic polynomials for the Neumann eigenvalue problems on the loops. The
characteristic polynomials of the Dirichlet-Dirichlet problems on the loops are R2n1(λ2)
and R̃2n2(λ2).

Thus, the relation

(36) ϕN (λ2) = ϕIN (λ2)ϕIID (λ2) + ϕIIN (λ2)ϕID(λ2),

obtained in [5] for the Sturm-Liouville problems on trees appears to be valid in our case
too.

Theorem 2. Let {λk}n1+n2
k=−(n1+n2),k 6=0, λ−k = −λk, be a set of eigenvalues of the bound-

ary value problem composed by equations (4) with n = n1 and by equations (26)-(28); let
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ν

(1)
k

}n1

k=−n1,k 6=0
, ν

(1)
−k = −ν(1)

k be a set of eigenvalues of the Dirichlet-Dirichlet problem

generated by the string of the first loop on the interval of length L1 and
{
ν

(2)
k

}n2

k=−n2,k 6=0

be the set of eigenvalues of the Dirichlet-Dirichlet eigenvalue problem generated by the
string of the second loop on the interval of length L2. Denote by

{ξk}n1+n2
k=−(n1+n2),k 6=0 =

{
ν

(1)
k

}n1

k=−n1,k 6=0

⋃{
ν

(2)
k

}n2

k=−n2,k 6=0
.

Then {λk}n1+n2
k=−(n1+n2),k 6=0 are interlaced with {ξk}n1+n2

k=−(n1+n2),k 6=0

0 = λ2
1 < ξ21 ≤ · · · ≤ λ2

n1+n2
≤ ξ2n1+n2

.

Proof. According to the proof of Theorem 1, equation (18) is fulfilled for the first loop
as well as the equation

(37) Im

(
Ũn+1

(
Ũn − Ũn+1

l̃n
+
Ũ1 − Ũ0

l̃0

))
= Im z

(
n∑
k=1

m̃k

∣∣∣Ũk∣∣∣2)
is satisfied for the second loop. Adding (18) to (37) we obtain

(38)

Im
(
Un+1

(
Un − Un+1

ln
+
U1 − U0

l0

))
+ Im

(
Ũn+1

(
Ũn − Ũn+1

l̃n
+
Ũ1 − Ũ0

l̃0

))

= Im z

(
n∑
k=1

mk |Uk|2 +
n∑
k=1

m̃k

∣∣∣Ũk∣∣∣2) .
This implies

(39)

− Im

(
1

Un+1

(
U1 − U0

l0
+
Ũ1 − Ũ0

l̃0
− Un+1 − Un

ln
− Ũn+1 − Ũn

l̃n

))

= Im z

(
n∑
k=1

mk |Uk|2 +
n∑
k=1

m̃k

∣∣∣Ũk∣∣∣2)
|Un+1|2

.

The right-hand side of (39) is positive for Im z > 0 and negative for Im z < 0, therefore,

− Im z Im

 Un+1

U1 − U0

l0
+
Ũ1 − Ũ0

l̃0
−
Un+1 − Un

ln
−
Ũn+1 − Ũn

l̃n


−1

> 0.

Thus we obtain

Im z Im

 Un+1

U1 − U0

l0
+
Ũ1 − Ũ0

l̃0
−
Un+1 − Un

ln
−
Ũn+1 − Ũn

l̃n

 > 0.

The set of zeros of the denominator

U1 − U0

l0
+
Ũ1 − Ũ0

l̃0
−
Un+1 − Un

ln
−
Ũn+1 − Ũn

l̃n

coincides with the set {λ2
k}
n1+n2
k=1 of zeros of ϕ(z) while the set of zeros of the numerator

coincides with the union of the sets {(ν(1)
k )2}n1

k=1 and {(ν(2)
k )2}n2

k=1 where
{
ν

(1)
k

}n1

k=−n1,k 6=0
,
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ν
(1)
−k = −ν(1)

k , is the spectrum of the problem generated by equations (4), (5) together

with the equation Un+1 = 0, while
{
ν

(2)
k

}n2

k=−n1,k 6=0
, ν

(2)
−k = −ν(2)

k is the spectrum of

the problem generated by equations (26) and the equations Ũ0 = Ũn+1 = 0.

Thus,
R2n1(z)R̃2n2(z)

ϕ(z)
∈ N.

Obviously, similar to (24), the inequalities

Q̃2k(z) ≥ 1, l̃0R̃2k−1(z) ≥ 1 (k = (1, 2, . . . , n2)

are true for z < 0. Hence, after reduction of the fraction,
R2n1(z)R̃2n2(z)

ϕ(z)
∈ S. Due to

the property of S-functions we conclude that its poles are interlaced with its zeros.
To finish the proof it is enough to show that λ1 = 0. This is true because it is clear

that all the eigenvalues are nonnegative and it is easy to check that the vector with

U0 = U1 = · · · = Un+1 = Ũ0 = Ũ1 = · · · = Ũn+1 = const 6= 0

is the eigenvector corresponding to λ1 = 0. �

Let ϕ(z) be the characteristic polynomial (35) of problem (26)–(28) with z = λ2. We
know that all the zeros of R2n1(z) and R̃2n2(z) are simple and we have showed at the
end of Section 1 that the maximal multiplicity of zeros of the polynomials 1el0 Q̃2n2(z) −
2el0 + R̃2n2−1(z) and 1

l0
Q2n1(z) − 2

l0
+ R2n1−1(z) can be 2. Moreover, it is possible that

for some value of z the equations

1

l̃0
Q̃2n2(z)− 2

l̃0
+ R̃2n2−1(z) = R2n1(z) =

1
l0
Q2n1(z)− 2

l0
+R2n1−1(z) = R2n2(z) = 0

are satisfied. Thus it follows from (35) that the multiplicity of a zero of ϕ(z) can be
equal and does not exceed 3.

Theorem 3. Let {λk}n1+n2
k=−(n1+n2),k 6=0, λ−k = −λk, be a set of eigenvalues of the

problem which consists of equations (4), with n = n1 and by equations (26)–(28), let{
µ

(1)
k

}n1

k=−n1,k 6=0
, µ(1)
−k = −µ(1)

k , be a set of eigenvalues of the periodic problem generated

by the first string on the loop of the length L1 and let
{
µ

(2)
k

}n2

k=−n2,k 6=0
, µ(2)
−k = −µ(2)

k , be

a set of eigenvalues of the periodic problem generated by the second string on the loop of
the length L2. Denote

{ζk}n1+n2
k=−(n1+n2),k 6=0 =

{
µ

(1)
k

}n1

k=−n1,k 6=0

⋃{
µ

(2)
k

}n2

k=−n2,k 6=0
.

Then {λk}n1+n2
k=−(n1+n2),k 6=0 is interlaced with {ζk}n1+n2

k=−(n1+n2),k 6=0 in the following sense:

0 = ζ2
1 = λ2

1 = ζ2
2 ≤ λ2

2 ≤ · · · ≤ ζ2
n1+n2

≤ λ2
n1+n2

,

where 0 = ζ2
1 = λ2

1 = ζ2
2 = µ

(1)
1 = µ

(2)
1 .

Proof. With account of (35) we evaluate

ϕ(z)(
1
l0
Q2n1(z)− 2

l0
+R2n1−1(z)

)(
1el0 Q̃2n2(z)− 2el0 + R̃2n2−1(z)

)
=
R2n1(z)

(
1el0 Q̃2n2(z)− 2el0 + R̃2n2−1(z)

)
+ R̃2n2(z)

(
1el0Q2n1(z)− 2

l0
+R2n1−1(z)

)
(

1
l0
Q2n1(z)− 2

l0
+R2n1−1(z)

)(
1el0 Q̃2n2(z)− 2el0 + R̃2n2−1(z)

)
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=
R2n1(z)

1
l0
Q2n1(z)− 2

l0
+R2n1−1(z)

+
R̃2n2(z)

1el0 Q̃2n1(z)− 2el0 + R̃2n2−1(z)
.

According to Theorem 1 the both rational functions in the last expression are S-functions.
Therefore,

ϕ(z)(
1
l0
Q2n1(z)− 2

l0
+R2n1−1(z)

)(
1el0 Q̃2n2(z)− 2el0 + R̃2n2−1(z)

) ∈ S,
and the sets

{
ζ2
k

}n1+n2

k=1
and

{
λ2
k

}n1+n2

k=1
are interlaced. Problem (4)–(6) has the solution

U0 = U1 = ... = Un+1 = const 6= 0 for λ = 0. The same is true for the periodic problem
on the second loop. Hence, ζ2

1 = ζ2
2 = 0. Theorem is proved. �

Analogues of Theorems 2, 3 for eigenvalue problems generated by Sturm-Liouville
equations on trees were obtained in [8].
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