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DIRECT AND INVERSE PROBLEMS FOR GENERALIZED PICK
MATRIX

A. A. NUDELMAN

This paper is dedicated to memory of Israel Gohberg.

Abstract. All matrix modifications of classical Nevanlinna-Pick interpolation prob-

lem with a finite number of nonreal nodes which can be investigated by V. P. Potapov

method are described.

1. Introduction

In the present paper some aspects of matrix generalizations of the classical Nevanlinna-
Pick interpolation problem are considered in the class of Nevanlinna functions.

1.1. A function w(z) is said to be a Nevanlinna R-function if it is holomorphic
in the open upper half-plane C+ and maps C+ into the closed upper half-plane, i.e.,
Imw(z) ≥ 0 for z ∈ C+. It is known (see for example [1]) that an R-function admits the
integral representation

(1.1) w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t),

where α and β are real numbers, β ≥ 0, dσ(t) ≥ 0,
∫∞
−∞(1 + t2)−1dσ(t) <∞. We denote

by R the set of all R-functions.
The classical Nevanlinna-Pick problem is as follows. Given two sequences of complex

numbers {zk}n1 , nodes of interpolation, and {wk}n1 , interpolation data, such that all zk
are pairwise distinct and lie in C+, find conditions under which there exists a function
w ∈ R such that w(zk) = wk, k = 1, 2, . . . , n. In the case when solutions exist it is
necessary to describe all such functions. It is known (see for example [1]), that this
problem is solvable if and only if the Pick matrix

W =
(
wj − wk
zj − zk

)n
j,k=1

is Hermite-nonnegative.
In the case where z1 = z2 = · · · = zn(= z0), we have one node of multiplicity n and

along with w0 = w(z0) the values of the derivatives w(k)(z0), k = 1, 2, . . . , n− 1, should
be included in the data. Then the interpolation problem can be stated as follows. Find
all R-functions w(z) whose expansion in a neighborhood of z0 is of the form

w(z) = w0 + w1(z − z0) + · · ·+ wn−1(z − z0)n−1 + o((z − z0)n−1) (z → z0).
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Considering this problem in the class of holomorphic functions mapping the open unit
disk into the closed unit disk or into the closed right half-plane with z0 = 0 we arrive at
the classical Schur problem or the Carathéodory problem, respectively.

1.2. A direct generalization of the Nevanlinna-Pick problem for the matrix case differs
from the scalar version in the following: here wk are quadratic matrices of order m, i.e.,
wk ∈ Cm×m and the solution is to be found in the class Rm of matrix-valued functions
w(z) which satisfy the conditions

1) w(z) take on values in Cm×m,
2) w(z) are holomorphic in C+,
3) Imw(z)(= (w(z)− w(z)∗)/2i) ≥ 0 for z ∈ C+ (in the Hermite sense),
4) w(z) are defined in the lower half-plane C− by the formula

(1.2) w(z) = w(z)∗.

V. P. Potapov proposed an elegant method for investigation of the matrix Nevanlinna-
Pick problem [3] based on ”J-theory” developed by him [4]. Later on, this method
has been used by him, his colleagues, and followers for treating the matrix Schur and
Carathéodory problems, the infinite matrix moment problem, the problem of continua-
tion of Hermite-positive matrix-valued functions (see [5]) and more complicated problems
[6].

Here all possible matrix generalizations of Nevanlinna-Pick interpolation problems in
the class Rm with a finite number of nonreal nodes of interpolation solvable by Potapov
method are described.

Let us first describe a simple cases of matrix modifications of the Nevanlinna-Pick
problem.

In the simplest left-sided tangential problem, pairwise different nodes of interpolation
{zk}n1 ⊂ C+ are given together with two sequences of m-dimensional vector-rows {bk}n1
and {ck}n1 . Conditions are to be found under which there exists w ∈ Rm such that

(1.3) bkw(zk) = ck, k = 1, 2, . . . , n.

The formulation of the simplest right-sided Nevanlinna-Pick problem is similar: given
pairwise different nodes of interpolation, {ζk}n1 ⊂ C+, together with two sequences of
m-dimensional vector-columns {βk}n1 and {γk}n1 , find all w ∈ Rm for which

w(ζk)βk = γk, k = 1, 2, . . . , n.

Let us state the simplest bitangential Nevanlinna-Pick problem. Given two sequences
{zk}n1

1 ⊂ C+ and {ζk}n2
1 ⊂ C+ of nodes of interpolation, two sequences of m-dimensional

vector-rows {bk}n1
1 and {ck}n1

1 and two sequences ofm-dimensional vector-columns {βk}n2
1

and {γk}n2
1 . If the sequences {zk}n1

1 and {ζk}n2
1 do not intersect then the task is to find

w ∈ Rm for which

bkw(zk) = ck, k = 1, 2, . . . , n1, w(ζj)βj = γj , j = 1, 2, . . . , n2.

If, for example, zk = ζj (denote these coinciding nodes by ηkj) then, in addition, d1 =
bkw

′(ηkj)βj must be given. Thus if we set d0 = bkw(ηkj)βj(= ckβj = bkγj) then the
additional condition can be represented in the form

bkw(z)βj = d0 + d1(z − ηkj) + o(z − ηkj), z → ηkj .

At first, one-sided tangential problem (for the Schur matrix-valued functions) was
stated by M. G. Krein and was solved by I. P. Fedchina [14] under his guidance. The
author stated more general one-sided tangential interpolation problems for Nevanlinna,
Schur, and Caratheodory pairs of matrix-valued functions [12]. The two-sided problem
was stated and solved by J. Ball, I. Gohberg, L. Rodman [15] in development of methods
of [12].
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2. Main relations

2.1. Let us deduce the main relations using the simplest left-sided tangential problem
as an example. Let pairwise different points zk, k = 1, 2, . . . , n, in C+ be given together
with two sequences of m-dimensional rows {bk}n1 and {ck}n1 . It is necessary to find all
w ∈ Rm for which

(2.1) bkw(zk) = ck, k = 1, 2, . . . , n.

Let us find a necessary condition for solvability of the problem under consideration.
The Pick matrix

U =
(
w(zj)− w(zk)∗

zj − zk

)n
j,k=1

is positive semidefinite. Let a matrix T ∈ Cn×nm be block diagonal were the k-th
diagonal block is bk ∈ C1×m. The matrix

W = TUT ∗ =
(
cjbk

∗ − bjck∗

zj − zk

)n
j,k=1

is positive semidefinite too. So a necessary condition for solvability of the above men-
tioned problem is W ≥ 0. This condition is also sufficient (see Sec. 7).

2.2. Using integral representation (1.1) one can rewrite (2.1) as

(2.2) ck = bkα+ zkbkβ +
∫ ∞
−∞

((t− zk)−1 − t(1 + t2)−1)bk dσ(t).

Introducing the matrices

A =


z1 0 . . . 0
0 z2 . . . 0
...

...
. . .

...
0 0 . . . zn

 , B =

′
b1
b2
...
bn

 , C =


c1
c2
...
cn


we rewrite (2.2) as follows:

(2.3) C = Bα+ABβ +
∫ ∞
−∞

((tIn −A)−1 − t(1 + t2)−1In) dσ(t),

where In is the identity matrix of order n. We shall omit the index n if there are no
doubts about the order. The symbol 0 stands for the zero matrix of appropriate size.

The conditions of many interpolation problems can be given in the form of (2.3) with
an appropriate choice of matrices A, B, C.

2.3. There exists a simple connection between the matrices A, B, C and W . The
identities

zj
cjbk

∗ − bjck∗

zj − zk
− cjbk

∗ − bjck∗

zj − zk
zk = cjbk

∗ − bjck∗

represented in the matrix form are

(2.4) AW −WA∗ = CB∗ −BC∗.
Such matrix identities (in some other form) were used by V. P. Potapov, his students,
and followers as a technical tool for factorization of certain matrices while solving matrix
versions of classical interpolation problems. It should be mentioned that if the spectra
of the matrices A and A∗ do not intersect then relations (2.4) uniquely determine the
matrix W (see, e.g. [7] or [8]), i.e., (2.4) permits to find W using the interpolation data.
For example, for the simplest left-sided tangential problem rewriting (2.4) element-wise
we obtain

zjwjk − zkwjk = cjbk
∗ − bjck∗,
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which implies

W =
(
cjbk

∗ − bjck∗

zj − zk

)n
j,k=1

.

2.4. Finally, let us obtain an integral representation for the matrixW in the considered
case. Such representations are important for this paper.

Let us calculate

wjk =
cjbk

∗ − bjck∗

zj − zk
=
bjw(zj)bk∗ − bjw(zk)∗bk∗

zj − zk
using (2.2),

wjk =
1

zj − zk
(bj(α+ βzj +

∫ ∞
−∞

((t− zj)−1 − t(1 + t2)−1) dσ(t))bk∗

− bj(α+ βzk +
∫ ∞
−∞

((t− zk)−1 − t(1 + t2)−1) dσ(t))bk∗)

= bjβb
∗
k +

∫ ∞
−∞

(t− zj)−1bj dσ(t)b∗k(t− zk)−1.

This implies

(2.5) W = BβB∗ +
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1.

2.5. Using integral representation (1.1) for solutions and choosing appropriate matri-
ces A, B and C, formulae (2.3) and (2.5) can be obtained for other solvable interpolation
problems in Rm. These matrices A, B and C and the generalized Pick matrix W in the
considered problem satisfy relation (2.4). By a generalized Pick matrix we mean here a
positive semidefinite matrix, which is a necessary and sufficient condition for solvability
of the corresponding interpolation problem.

In the present paper we solve the inverse problem: given the main matrix identity (2.4)
where A ∈ CN×N , B ∈ CN×m, C ∈ CN×m, (m ≤ N), and W = W ∗ ≥ 0, W ∈ CN×N

and the spectrum of A being non-real. The question is: does an interpolation problem
exist for which W is a generalized Pick matrix? We give an affirmative answer to this
question under the essential condition that rankB = m (this condition is fulfilled for all
direct matrix generalizations of classical interpolation problems in Rm) and describe the
corresponding interpolation problem. Therefore, forestalling we will call by a generalized
Pick matrix the matrix W involved in (2.4).

2.6. The scheme of our investigation is as follows. We prove that from (2.4) and
W ≥ 0 directly follows the representation

(2.6) W = BβB∗ +
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1,

where β = β∗ ∈ Cm×m, β ≥ 0, dσ(t) ≥ 0,
∫∞
−∞(1 + t2)−1dσ(t) < ∞. For rankB = m,

this representation implies

C = Bα+ABβ +
∫ ∞
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t),

where α = α∗ ∈ Cm×m. Using the parameters α, β, dσ(t) it is possible to introduce an
Rm-function by

w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t).
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This function will be called associated with the quadruple (A,B,C,W ). It is shown in
this paper that to every such a quadruple there corresponds an interpolation problem
the set of solutions of which coincides with the set of the associated functions and that
W is a generalized Pick matrix for this problem.

This approach is related to that of T. S. Ivanchenko and L. A. Sakhnovich [9] (see
also [10]). However, these authors consider A, B, C and W as operators acting on a
Hilbert space with restrictive conditions. Associated functions they called solutions of
an interpolation problem not formulating this problem except for some particular cases.
They also do not prove the integral representation of the nonnegative W and just assume
its existence.

In this paper, also a simple algorithm is given to calculate the elements of the gener-
alized Pick matrix using the interpolation data.

3. Block structure of the generalized Pick matrix

3.1. Definition. A quadruple A ∈ CN×N , B ∈ CN×m, C ∈ CN×m, W = W ∗ ∈
CN×N (the pair A, B, respectively) is said to be similar to a quadruple Ã, B̃, C̃, W̃ ,
(the pair Ã, B̃ respectively) if there exists a non-singular matrix T ∈ CN×N such that

Ã = TAT−1, B̃ = TB, C̃ = TC, W̃ = TWT ∗

(Ã = TAT−1, B̃ = TB, respectively).
It is easy to see that (2.4) is invariant under the similarity transformation, i.e., ÃW̃ −

W̃ Ã∗ = C̃B̃∗ − B̃C̃∗ and under such a transformation formulae (2.3) and (2.5) are also
invariant while α, β and dσ(t) do not change. Thus the same set of associated Rm-
functions corresponds to similar quadruples if W ≥ 0. The spectra of A and Ã coincide,
and W̃ ≥ 0 if and only if W ≥ 0.

To investigate interpolation properties of Rm-functions associated with (A, B, C, W )
it is possible, due to the above mentioned, to assume that the matrix A is reduced to a
lower Jordan form, A = diag(A1, A2, . . . , Aν), where Aj is a lower Jordan cell the order
of which is denoted by nj + 1 (it is convenient for us to index rows and columns starting
with 0),

Aj =


zj 0 0 . . . 0 0
1 zj 0 . . . 0 0
0 1 zj . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 zj

 .

Let us split B, C and W into blocks corresponding to the block structure of A,

B =

 B1

...
Bν

 , C =

 C1

...
Cν

 , W = (Wjk)νj,k=1 ,

where

Bj =

 bj0
...
bjnj

 ∈ C(nj+1)×m, Cj =

 cj0
...
cjnj

 ∈ C(nj+1)×m, Wjk ∈ C(nj+1)×(nk+1).

Evidently,

(3.1) AjWjk −WjkA
∗
k = CjB

∗
k −BjC∗k .
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To simplify the notations, the elements w
(jk)
pq of the block Wjk are denoted by vpq.

Comparing elements in both sides of (3.1) we arrive at

(3.2)
vp−1,q − vp,q−1 + (zj − zk)vpq = cjp(b

k
q )∗ − bjp(ckq )∗,

p = 0, 1, . . . , nj , q = 0, 1, . . . , nk, v−1,q = 0, vp,−1 = 0.

3.2. First assume that zj 6= zk. Setting p = 0 and choosing q = 0, 1, . . . , nk succes-
sively we find, from the relation

−v0,q−1 + (zj − zk)v0q = cj0(bkp)∗ − bj0(cjp)
∗,

the elements of the first row (p = 0) of the block Wjk. In the same way setting q = 0
and p = 0, 1, . . . , nj we find, from the relation

vp−1,0 + (zj − zk)vp0 = cjp(b
k
0)∗ − bjp(ck0)∗,

the elements of the first column (q = 0). After this using (3.2) we can find all the rest
of elements of the block Wjk. Thus, for zj 6= zk, all the elements of the block Wjk are
uniquely determined from elements of the matrices Bj , Cj , B∗k and C∗k . Notice that the
condition zj 6= zk is fulfilled if all the eigenvalues of the matrix A lie in the upper (or in
the lower) half-plane.

3.3. Let us consider now the case of zj = zk. Then (3.2) can be reduced to

(3.3) vp−1,q − vp,q−1 = cjp(b
k
q )∗ − bjp(ckq )∗.

Without loss of generality we can assume that if nj 6= nk then nj > nk. Otherwise, we
can consider Wkj = W ∗jk instead of Wjk. For q = 0 using (3.3) we obtain

vp−1,0 = cjp(b
k
0)∗ − bjp(ck0)∗

for elements in the first column. Setting p = 0, 1, . . . , nj we find all elements of this
column except for the last one, vnj ,0. Now (3.3) allow to find successively the elements
vp−1,1, vp−2,2, . . . (the sum of indices is equal p) using vp,0. The last element in this series
is v0,p if p ≤ nk and vp−nk,nk

if p > nk. All the rest of the elements can be expressed in
the same way in terms of elements of the last row, i.e., through vnj ,0, vnj ,1,. . ., vnj ,nk

.
These elements of the last row can not be determined from (3.3) because they do not
depend on elements of the matrices Bj , Cj , B∗k and C∗k .

4. Integral representation of non-negative generalized Pick matrix

4.1. Let matrices A ∈ CN×N , B ∈ CN×m, C ∈ CN×m, (m < N) and W ∈ CN×N ,
W = W ∗ be given and satisfy the main matrix identity

(4.1) AW −WA∗ = CB∗ −BC∗.

It is supposed that the spectrum of A is non-real. The subsequent considerations are
based on the following two theorems.

Theorem 1. The following assertions are equivalent:
1) W ≥ 0.
2)The representation

(4.2) W = BβB∗ +
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1

is valid where β ∈ Cm×m is a Hermite-semidefinite matrix and dσ(t) is a matrix-valued
measure taking values in Cm×m for which the integral

∫∞
−∞(1 + t2)−1dσ(t) converges.

In the case where detW = 0, additionally rankB = m is required.
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Theorem 2. 1) If representation (4.2) is true and rankB = m, then there exists a
matrix α = α∗ ∈ Cm×m such that

(4.3) C = Bα+ABβ +
∫ ∞
−∞

((tIn −A)−1 − t(1 + t2)−1In) dσ(t).

2)If the spectra of the matrices A and A∗ do not intersect then (4.3) implies (4.2).

The parameters α, β, and dσ(t) appeared in (4.3) allow to introduce the Rm-functions

w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t),

which we call associated with the quadruple (A,B,C,W ). Their role was already men-
tioned in Sec. 2.

5. Proof of Theorem 1

.
Let us start with the case of W > 0. While proving we will construct one of the

representations of the matrix W .

5.1. Introduce the matrix

(5.1) V = AW +BC∗.

The main matrix identity AW −WA∗ = CB∗ −BC∗ implies that V ∗ = V .
We consider the linear pencil

(5.2) V − zW.
A number λ is said to be an eigenvalue of the pencil if there exists a vector-column g 6= 0,
called an eigenvector, such that (V −λW )g = 0. It is easy to see that the eigenvalues λj
of the pencil coincide with the eigenvalues of the Hermitian matrix W−1/2VW−1/2 and,
therefore, are real. The eigenvectors gj of the pencil are related to the eigenvectors fj of
this matrix by the formula gj = W−1/2fj . Since the vectors {fj}N1 constitute a complete
orthogonal system which can be considered normalized (i.e. f∗j fk = δjk, where δjk is the
Kronecker symbol), the eigenvectors of the pencil possess the following property:

(5.3) g∗jWgk = δjk.

Using this property it is easy to verify that

(5.4) W =
N∑
j=1

Wgjg
∗
jW.

Indeed, denote the right-hand side of (5.4) by U . Using (5.3) we obtain

Ugk =
N∑
j=1

Wgjδjk = Wgk, k = 1, 2, . . . , N,

therefore U = W .
Using Definition (5.1) let us rewrite (V − λjW )gj = 0 in the form

(A− λjI)Wgj +BC∗gj = 0,

what implies that

Wgj = (λjI −A)−1BC∗gj , j = 1, 2, . . . , N.

Therefore (5.4) can be presented as

W =
N∑
j=1

(λjI −A)−1BC∗gjg
∗
jCB

∗(λjI −A∗)−1.
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Uniting the eigenvalues which are equal to each other in the groups (the group may
consist of one eigenvalue), let us number these groups and let us denote the common
value of the eigenvalues from the k-th group by tk. Summing the items which correspond
to these eigenvalues let us put

ρk =
∑
λj=tk

C∗gjgj
∗C ≥ 0 (ρk ∈ Cm×m)

and so

W =
M∑
k=1

(tkI −A)−1BρkB
∗(tkI −A∗)−1,

where M is the number of the groups. Thus,

W =
∫ ∞
−∞

(tI −A)−1Bdσ(t)B∗(tI −A∗)−1,

where σ(t) is a piece-wise constant matrix-valued function with jumps ρk at the points
tk. Theorem is proved for the case of W > 0.

5.2. We start to consider the case of W ≥ 0, detW = 0, we assume temporarily that
V 6= 0 and the pair of matrices (A,B) is controllable.

The initial definition of controllability in the control theory involves terms of this
theory. We will just mention two criteria of controllability (see, e.g. [11]). The first
criterion can easily be checked, the second is used in the proof of Theorem 1.

Proposition 1. A pair of matrices A ∈ CN×N and B ∈ CN×m is controllable if and
only if

rank
(
B,AB,A2B, . . . , AN−1B

)
= N.

Proposition 2. A pair of matrices A ∈ CN×N and B ∈ CN×m is controllable if and
only if for f ∈ CN×1 the identity f∗(tI −A)−1B ≡ 0 is true only for f = 0.

Let us show that for any controllable pair (A,B) there exists a positive matrix W0

and a matrix C0∈ CN×m which satisfy the relation

(5.5) AW0 −W0A
∗ = C0B

∗ −BC∗0 .

We set P (t) = det(tI −A),

C0 =
∫ ∞
−∞

(tI −A)−1|P (t)|2Be−t
2
dt

(the integral converges, since (tI −A)−1P (t) is a polynomial matrix) and

W0 =
∫ ∞
−∞

(tI −A)−1BB∗(tI −A∗)−1|P (t)|2e−t
2
dt (≥ 0).

Let us check that W0 > 0. For an arbitrary f ∈ CN×1 we have

f∗W0f =
∫ ∞
−∞
|Q(t)|2|P (t)|2e−t

2
dt,
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where Q(t) = f∗(tI − A)−1B. The identity f∗W0f = 0 means that Q(t) ≡ 0, which,
according to Proposition 2, is possible only if f = 0. It only remains to prove (5.5),

C0B
∗ −BC∗0

=
∫ ∞
−∞

(tI −A)−1(BB∗(tI −A∗)− (tI −A)BB∗)(tI −A∗)−1|P (t)|2e−t
2
dt

=
∫ ∞
−∞

(tI −A)−1(ABB∗ −BB∗A∗)(tI −A∗)−1|P (t)|2e−t
2
dt

= AW0 −W0A
∗.

Set W (ε) = W + εW0, (ε > 0), C(ε) = C + εC0, V (ε) = AW (ε) + BC(ε). It it easy to
see that the matrix W (ε) is positive and

AW (ε)−W (ε)A∗ = C(ε)B∗ −BC(ε)∗.

Let us denote by λk(ε) the eigenvalues and by gk(ε) the corresponding eigenvectors of
the pencil V (ε) − zW (ε), normalized by the condition g∗j (ε)W (ε)gk(ε) = δjk, j, k =
1, 2, . . . , N .

As ε→ +0 we have W (ε)→W , V (ε)→ V , and W (ε) decreases if ε decreases. A part
of the eigenvalues λk(ε) of the pencil V (ε) − zW (ε) disappear at infinity when ε → +0,
while the rest of them converge to the corresponding eigenvalues of the pencil V − zW .
In the representation

W (ε) =
N∑
j=1

W (ε)gj(ε)g∗j (ε)W (ε)

each of the summands is less than W (ε0) for 0 < ε < ε0 and therefore is bounded. Using
the fact that the trace of the product of two matrices do not depend on the order of the
factors we conclude that for 0 < ε < ε0 the vectors W (ε)gk(ε) are bounded,

‖W (ε)gk(ε)‖2 = (gk(ε))∗W (ε)2gk(ε)

= trace((gk(ε)∗W (ε))(W (ε)gk(ε))

= trace(W (ε)gk(ε)gk(ε)∗W (ε)) < traceW (ε) < traceW (ε0).

Therefore, for a certain sequence εn → 0 there exist the limits

fk = lim
n→∞

W (εn)gk(εn).

Let λk(εn) converge to a finite number λk as n → ∞. Then, due to rankB = m, the
relation

(5.6) (λk(εn)I −A)W (εn)gk(εn) = B(C(εn))∗gk(εn)

implies existence of the limits

hk = lim
n→∞

(C(εn))∗gk(εn)

and, therefore,
(λkI −A)fk = Bhk.

Let now λk(εn)→∞ as εn → +0. Let us rewrite (5.6) in the form

(I − λ−1
k (εn)A)W (εn)gk(εn) = Bλ−1

k (εn)(C(εn))∗gk(εn).

The limit in the left-hand side is equal to fk, thus, due to rankB = m, there exists

hk = lim
n→∞

λk(εn)−1(C(εn))∗gk(εn)
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and, therefore, fk = Bhk. Now the summands in the representation

W =
N∑
k=1

fkf
∗
k

can be split into two groups. The first group corresponds to those of the eigenvalues
λk(εn) which tend to infinity as ε → +0. Let us index them with the numbers k =
1, 2, . . . , n1. The limit of their sum can be presented in the form BβB∗ where β =
n1∑
k=1

hkh
∗
k.

The sum of the rest of the summands, as in Subsection 4.1, can be presented in the
form ∫ ∞

−∞
(tI −A)−1B dσ(t)B∗(tI −A∗)−1.

Therefore,

W = BβB∗ +
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1.

5.3. Let us dispose of the requirement of controllability of the pair (A, B). We will
use the following assertion (see, e.g. [11]).

Proposition 3. A non-controllable pair (A, B) is similar to the pair (Ã, B̃), where

Ã =
(
Ã11 Ã12

0 Ã22

)
, B̃ =

(
B̃1

0

)
and the pair (Ã11, B̃1) is controllable.

Let us transform similarly the quadruple (A, B, C, W ) with W ≥ 0 into the quadruple
(Ã, B̃, C̃, W̃ )

Ã =
(
Ã11 Ã12

0 Ã22

)
, B̃ =

(
B̃1

0

)
, C̃ =

(
C̃1

C̃2

)
, W̃ =

(
W̃11 W̃12

W̃21 W̃22

)
≥ 0.

Comparing the right-lower blocks in the identity ÃW̃ −W̃ Ã∗ = C̃B̃∗−B̃C̃∗ we obtain
the equation Ã22W̃22 − W̃22Ã

∗
22 = 0. Without loss of generality one can assume that

Ã22 = diag(G1, . . . , Gµ), where Gj are lower Jordan cells. Let Ujj be the corresponding
diagonal block of the matrix W̃22. Since GjUjj−UjjG∗j = 0 and the spectra of the blocks
Gj and G∗j do not intersect, we arrive at Ujj = 0. Thus, all the diagonal blocks of W̃22

are zero and due to W̃22 ≥ 0 we conclude that W̃22 = 0 . This implies W̃12 = 0 and

W̃21 = 0. Consequently, W̃ =
(
W̃11 0

0 0

)
. Since the pair (Ã11, B̃1) is controllable and

in the case where detW̃11 = 0 we have rank B̃1 = rankB = m, the representation

W̃11 = B̃1βB̃
∗
1 +

∫ ∞
−∞

(tI − Ã11)−1B̃1dσ(t)B̃∗1(tI − Ã∗11)−1

holds. Taking into account the identity

(tI − Ã)−1 =
(

(tI − Ã11)−1 −(tI − Ã11)−1Ã12(tI − Ã22)−1

0 (tI − Ã22)−1

)
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we obtain

B̃βB̃∗ +
∫ ∞
−∞

(tI − Ã)−1B̃ dσ(t)B̃∗(tI −A∗)−1

=
(
B̃1

0

)
β(B̃∗1 , 0) +

∫ ∞
−∞

(
(tI − Ã11)−1B̃1

0

)
dσ(t)(B̃∗1(tI − Ã∗11)−1, 0)

=
(
W̃11 0

0 0

)
= W̃ .

The inverse similarity transformation leads to the integral representation of the matrix
W while V 6= 0.

5.4. Let us consider the case where V = 0, i.e., in accordance with definition (5.1)
the case where

(5.7) AW +BC∗ = 0.

In this case Theorem 1 remains true but the previous proof is not valid.
Let the matrix W have ν nonzero (positive) eigenvalues and let Λ be the diagonal

ν × ν-matrix with these eigenvalues as diagonal elements. Then denote by G the N × ν-
matrix the columns of which are the corresponding eigenvectors of W normalized by 1.
Then WG = GΛ and W = GΛG∗. Setting F = GΛ1/2 we immediately obtain W = FF ∗.
Multiplying the both sides of (5.7) by G from the right we arrive at

−AGΛ = BC∗G,

what implies that
(0I −A)F = BH,

where
H = C∗GΛ−1 ∈ Cm×ν .

From this it follows that

W = (0I −A)−1BHH∗B∗(0I −A∗)−1 =
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1,

where the matrix σ(t) is constant on the intervals (−∞, 0) and (0,∞) and has a jump
HH∗ ∈ Cm×m at t = 0. Theorem 1 is proved.

6. Proof of Theorem 2

1) Let

(6.1) W = BβB∗ +
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1.

Set

(6.2) C̃ = ABβ +
∫ ∞
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t)

and check the identity

(6.3) AW −WA∗ = C̃B∗ −BC̃∗.

Indeed, denoting the summands in (6.1) by W1 and W2, the summands in (6.2) by C̃1

and C̃2 we find

C̃1B
∗ −BC̃∗1 = ABβB∗ −BβB∗A∗ = AW1 −W1A

∗
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and

C̃2B
∗ −BC̃∗2

=
∫ ∞
−∞

(tI −A)−1(B dσ(t)B∗(tI −A∗)− (tI −A)B dσ(t)B∗)(tI −A∗)−1

= A

∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1

−
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1A∗

= AW2 −W2A
∗.

This implies (6.3).
Since, together with (6.3), the main matrix identity AW −WA∗ = CB∗ − BC∗ is

true, we have

C̃B∗ −BC̃∗ = CB∗ −BC∗

or

(6.4) (C − C̃)B∗ = B(C − C̃).

Since rankB = m, there exists a nonsingular matrix T for which TB =
(
Im
0

)
. Set

T (C − C̃) =
(
α
a

)
. Multiplying the both sides of (6.4) by T from the left and by T ∗

from the right we obtain
(
α
a

)
(Im 0) =

(
Im
0

)
(α∗ a∗), which implies α = α∗ and

a = 0. Consequently, T (C − C̃) =
(
Im
0

)
α = TBα, i.e., C = Bα + C̃. The first

assertion of the theorem is proved.

2) Let AW −WA∗ = CB∗ −BC∗,

C = Bα+ABβ +
∫ ∞
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t)

and the spectra of the matrices A and A∗ do not intersect. Introduce the matrix

W̃ = BβB∗ +
∫ ∞
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1.

It is easy to check that AW̃ − W̃A∗ = CB∗ − BC∗ and, since this equation possesses a
unique solution with respect to the unknown W , we conclude that W = W̃ . Theorem 2
is proved.

7. Interpolation characteristics for associated Rm-functions

7.1. Let all the eigenvalues of the matrix A be non-real, let zj be one of them with
the corresponding lower Jordan cell Aj . Let also

Bj =


bj0
bj1
...
bjnj

 , Cj =


cj0
cj1
...
cjnj


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and Wjj be the corresponding blocks of B, C and W ≥ 0, rankB = m. According to
Theorem 1, the following representation is true:

W = BβB∗ +
∫ ∞
−∞

(tI −A)−1Bdσ(t)B∗(tI −A∗)−1,

which, due to Theorem 2, implies that

C = Bα+ABβ +
∫ ∞
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t),

which in turn implies

(7.1) Cj = Bjα+AjBjβ +
∫ ∞
−∞

(tInj+1 −Aj)−1 − t(1 + t2)−1Inj+1)B dσ(t),

j = 1, 2, . . . , ν. From (7.1) we conclude that the Rm-function

w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t)

associated with the quadruple (A, B, C, W ) is also associated with the quadruples (Aj ,
Bj , Cj , Wjj), j = 1, 2, . . . , ν.

Taking into account that

(tInj+1 −Aj)−1 − t(1 + t2)−1Inj+1

=



1
t−zj

− t
1+t2 0 . . . 0 0

1
(t−zj)2

1
t−zj

− t
1+t2

. . . 0 0

1
(t−zj)3

1
(t−zj)2

. . . 0 0
...

...
. . . . . .

...
1

(t−zj)(nj+1)
1

(t−zj)
nj . . . 1

(t−zj)2
1

t−zj
− t

1+t2


we obtain from (7.1) that

(7.2)


cj0 = bj0w(zj),

cj1 = bj0
w′(zj)

1! + bj1w(zj),
. . . . . . . . . .

cjnj
= bj0

w(nj)(zj)
nj !

+ bj1
w(nj−1)(zj)

(nj−1)! + · · ·+ bjnj
w(zj).

Introducing the polynomials

bj(z) =
nj∑
k=0

bjk(z − zj)k, cj(z) =
nj∑
k=0

cjk(z − zj)k

rewrite relations (7.2) in an equivalent form,

(7.3) bj(z)w(z) = cj(z) + o((z − zj)nj ), z → zj .

We arrive at the so-called left-sided tangential problem at the node zj of multiplicity
nj + 1. If the node zj lies in the lower half-plane C−, one can consider the node ζj =
zj ∈ C+ with the help of the transformation

(bj(z)w(z))∗ = (cj(z) + o((z − zj)nj ))∗,

i.e., to pass to a right-sided tangential problem at the node ζj of multiplicity nj + 1,

w(z)βj(z) = γj(z) + o((z − ζj)nj ),
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where βj(z) =
∑nj

k=0(bjk)∗(z − ζj)k, γj(z) =
∑nj

k=0(cjk)∗(z − ζj)k. However, in the sequel
we will not use this transformation. Thus, all the one-sided tangential problems will be
left-sided.

If zj 6= zk for each k = 1, 2, . . . , ν then we have already used in problem (7.3) all
the data contained in Bj , Cj and the blocks Wjk can be uniquely determined from the
equations AjWjk −WjkA

∗
j = CjB

∗
k − BjC∗k and they do not contain new interpolation

data corresponding to the node zj .
Let us notice that all the steps of the above proof are invertible, therefore, (7.3) and

(7.1) are equivalent.

7.2. Now we consider the case where zj = zk for some k.
We keep the assumption that the matrix A is reduced to its lower Jordan form, A =

diag(A1, A2, . . . , Aν), where Aj is the lower Jordan cell corresponding to the eigenvalue
zj . If zj = zk, then according to what was proved in Sec. 3, the last row (vnj ,0, vnj ,1, . . . ,
vnj ,nk

) of the block Wjk (nj ≥ nk) does not depend on the matrices Aj , Bj , Cj , Bk, Ck
and the elements of this last row must determine additional interpolation conditions for
the associated Rm-functions.

Let

(7.4) w(z) =
∞∑
p=0

wjp(z − zj)p

be the expansion of the associated Rm-function and

(7.5) bj(z)w(z) =
nj∑
p=0

cjp(z − zj)p +
∞∑
p=0

cjp(z − zj)p.

The right-hand side of (7.5) is split into two groups of summands in order to underline
that the coefficients cjp in the first group are common for all associated Rm-functions
while it is not true for the coefficients in the second group. Taking into account (7.4)
and (7.5) we can write

(7.6) cjp =
p∑
q=0

bjqw
j
p−q, p = 0, 1 . . . , bjq = 0 if q > nj .

Let us express elements of the last row (vnj ,0, vnj ,1, . . . , vnj ,nk
) of the block Wjk in terms

of the coefficients of decomposition (7.5) and the coefficients of the polynomial

(b(z))∗ =
nk∑
p=0

(bkp)∗(z − zk)p =
nk∑
p=0

(bkp)∗(z − zj)p

using the representation

(7.7) Wjk = BjβB
∗
k +

∫ ∞
−∞

(tInj+1 −Aj)−1Bjdσ(t)B∗k(tInk+1 −A∗k)−1.

Since the last row of the matrix (tInj+1 −Aj)−1Bj has the form
nj∑
p=0

bjp
(t− zj)nj+1−p

and the r-th column of the matrix B∗k(tInk+1 −A∗k)−1 is
nk∑
q=0

(bjq)
∗

(t− zj)nk+2+r−p ,
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taking into account that
∞∫
−∞

1
(t− z)2

dσ(t) = w′(zj)− β = wj1 − β,

∞∫
−∞

1
(t− z)p+1

dσ(t) = w(p)(zj)/p! = wjp, p = 2, 3 . . . ,

we obtain from (7.7) the following relations:

vnj ,r =

(
nj∑
p=0

bjpw
j
nj+r+1−p

)
(bk0)∗+

(
nj∑
p=0

bjpw
j
nj+r−p

)
(bk1)∗+· · ·+

(
nj∑
p=0

bjpw
j
nj+1−p

)
(bkr )∗.

Using (7.6) we can write

(7.8) vnj ,r =
r∑
p=0

cjnj+1+r−p(b
k
p)∗, r = 0, 1, . . . , nk.

Let us consider the product

bj(z)w(z)(bk(z))∗ =

( ∞∑
p=0

cjp(z − zj)p
)

nk∑
q=0

(bkq )∗(z − zj)q =
∞∑
p=0

d(j,k)
p (z − zj)p,

where

(7.9) d(j,k)
p =

p∑
q=0

cjp−q(b
k
q )∗, p = 0, 1, . . . , bkq = 0 if q > nk.

Equality (7.9) shows that for p ≤ nj the coefficients d(j,k)
p are uniquely defined by the

interpolation data which are contained in Bj , Bk, Cj , Ck. Then, for r = 0, 1, . . . , nk we
have

(7.10)

d
(j,k)
nj+1+r =

nj+1+r∑
q=0

cjnj+1+r−q(b
k
q )∗ =

nk∑
q=0

cjnj+1+r−q(b
k
q )∗

=
r∑
q=0

cjnj+1+r−q(b
k
q )∗ +

nk∑
q=r+1

cjnj+1+r−q(b
k
q )∗.

With account of (7.8) we obtain

d
(j,k)
nj+1+r = vnj ,r +

nk∑
q=r+1

cjnj+1+r−q(b
k
q )∗, r = 0, 1, . . . , nk,

which shows that the coefficients d(j,k)
nj+1, d(j,k)

nj+2 , . . . , d(j,k)
nj+nk+1 are uniquely determined

by the last row of the block Wjk and the interpolation data contained in Bj ,Bk, Cj , Ck.
Consequently, additional interpolation conditions for zj = zk are of the form

(7.11) bj(z)w(z)(bk(z))∗ = dj,k(z) + o((z − zj)nj+nk+1), z → zj ,

where

dj,k(z) =
nj+nk+1∑
p=0

d(j,k)
p (z − zj)p.

7.3. Let us show that the inverse statement is also true, i.e., every Rm-function

(7.12) w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t),
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which is a solution of the above stated interpolation problem, is also associated with a
properly constructed quadruple (A, B, C,W ).

Let ν non-real nodes of interpolation {zj}ν1 be given. To each node we attribute its
multiplicity nj + 1 and the pair of polynomials

bj(z) =
nj∑
p=0

bjp(z − zj)p, cj(z) =
nj∑
p=0

cjp(z − zj)p

with the coefficients from C1×m. Moreover, if zj = zk let the scalar polynomial

dj,k(z) =
nj+nk+1∑
p=0

d(j,k)
p (z − zj)p

be given. Without loss of generality it is possible to assume that nj ≥ nk, otherwise we
can reach the desired inequalities by changing the enumeration of the nodes. Suppose
that the Rm-function given by (7.10) satisfy the conditions

(7.13) bj(z)w(z) = cj(z) + o((z − zj)nj ), z → zj , j = 1, 2, . . . , ν

and, in the case where zj = zk, it satisfies also the conditions

bj(z)w(z)(bk(z))∗ = dj,k(z) + o((z − zj)nj+nk+1), z → zj .

Let us construct the quadruple (A,B,C,W ).
We denote by Aj , j = 1, 2, . . . , ν the lower Jordan cell of order nj + 1 with zj on

the main diagonal, by A the block-diagonal matrix A = diag(A1, A2, . . . , Anu), and let
N =

∑ν
j=1(nj + 1). Then we set

Bj =

 bj0
...
bnj

 ∈ C(nj+1)×m, Cj =

 cj0
...
cnj

 ∈ C(nj+1)×m,

B =

 B1

...
Bν

 ∈ CN×m, C =

 C1

...
Cν

 ∈ CN×m.

If zj 6= zk then using the algorithm of Sec. 3.2 it is possible to construct the block
Wjk ∈ C(nj+1)×(nk+1). According to the way of constructing the relation

(7.14) AjWjk −WjkA
∗
k = CjB

∗
k −BjC∗k

holds true automatically. If zj 6= zk for all j, k = 1, 2, . . . , ν, i.e., the spectra of the
matrices A and A∗ do not intersect, then (7.14) implies that the matrix W satisfies the
relation

AW −WA∗ = CB∗ −BC∗.
As it was shown in Sec. 7.1, relations (7.13) are equivalent to representations (7.1) for
j = 1, 2, . . . , ν and, consequently, to the representation

C = Bα+ABβ +

∞∫
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t),

which, according to Theorem 2, in the case under consideration is equivalent to

W = BβB∗ +

∞∫
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1.
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If zj = zk for some values of j and k then, in order to construct the block Wj,k, it is
necessary for the last row (vnj ,0, vnj ,1, . . . , vnj ,nk

) to be given. Setting

(7.15) vnj ,r = d
(j,k)
nj+1+r −

nk∑
q=r+1

cjnj+1+r−q(b
j
q,k)∗

we construct such blocks and using them compose the matrix W = (Wj,k)νj,k=1 that
satisfies

AW −WA∗ = CB∗ −BC∗

by the construction. Moreover, let us introduce the matrix

W̃ = BβB∗ +

∞∫
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1

and prove that W = W̃ . If zj 6= zk then, as it is shown above, Wjk = W̃jk. If zj = zk
then according to (7.8) the elements of the last row, ṽnj ,0, ṽnj ,1, . . . , ṽnj ,nk

, of the block
W̃jk are of the form

ṽnj ,r =
r∑
p=0

cjnj+1+r−p(b
k
p)∗, r = 0, 1, . . . , nk.

On the other hand, formula (7.10) obtained directly from the expansion

bj(z)w(z)(bk(z))∗ =
∞∑
p=0

d(j,k)
p (z − zj)p

with account of (7.15) leads to

vnj ,r =
r∑
p=0

cjnj+1+r−p(b
k
p)∗, r = 0, 1, . . . , nk,

which implies that ṽnj .r = vnj .r. Consequently, Wjk = W̃jk and W = W̃ . Q.E.D.
Simultaneously we conclude that for solvability of the inverse problems stated in

Sec. 7.3 it is necessary and sufficient that the generalized Pick matrix W be Hermite
non-negative.

8. Main matrix inequality

V. P. Potapov’s method is based on the so-called main matrix inequality (MMI) with
respect to the matrix-valued function w(z). The set of solutions of the MMI coincides
with the set of solutions of the interpolation problem we consider. Here in the framework
of the proposed approach the MMI will be obtained the set of solutions of which coincides
with the set of associated matrix-valued functions and, consequently, with the set of
solutions of the corresponding interpolation problem.

8.1. Let a quadruple (A,B,C,W ) satisfy the relation AW −WA∗ = CB∗−BC∗ and
W ≥ 0.

For z ∈ C+ we introduce the matrices

A(z) =
(
A 0
0 zIm

)
, B =

(
B
Im

)
, C(z) =

(
C
v(z)

)
,

W(z) =
(

W W12(z)
W21(z) W22(z)

)
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and choose W12(z),W21(z),W22(z) in order that the relations

(8.1) A(z)W(z)−W(z)(A(z))∗ = C(z)B∗ −B(C(z))∗

be satisfied. Comparing the blocks in the left-hand and the right-hand sides we obtain
(if z does not belong to the spectrum of A) that

W(z) =
(

W (A− zI)−1(C −B(v(z))∗)
(C∗ − v(z)B∗)(A∗ − zI)−1 v(z)−(v(z))∗

z−z

)
.

8.2. Theorem 3. An Rm-function w(z) is associated with the quadruple (A,B,C,W )
if and only if it is a solution of the MMI

(8.2)
(

W (A− zI)−1(C −B(w(z))∗)
(C∗ − w(z)B∗)(A∗ − zI)−1 w(z)−(w(z))∗

z−z

)
≥ 0.

for Im z > 0.

Proof. Let a point z0 do not belong to the spectrum of A. If W(z0) ≥ 0 then taking into
account that rank B = m we arrive at the following representation:

(8.3) W(z0) = BβB∗ +

∞∫
−∞

(tI −A(z0))−1B dσ(t)B∗(tI − (A(z0))∗)−1

and, consequently,

(8.4) C(z0) = Bα+ A(z0)Bβ +
∫ ∞
−∞

((tI −A(z0))−1 − t(1 + t2)−1I)B dσ(t)

is valid. Representation (8.3) implies

(8.5) W = BβB∗ +

∞∫
−∞

(tI −A)−1B dσ(t)B∗(tI −A∗)−1

while (8.4) implies

C = Bα+ABβ +
∫ ∞
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t)

and

v(z0) = α+ βz0 +
∫ ∞
−∞

((t− z0)−1 − t(1 + t2)−1) dσ(t).

Thus, the Rm-function

w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t)

is associated with the quadruple (A,B,C,W ) and v(z0) is its value at z0.
Conversely, let w(z) be an Rm-function,

w(z) = α+ βz +
∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1) dσ(t)

associated with the quadruple (A,B,C,W ) with W ≥ 0. Then

(8.6) W22(z) =
w(z)− (w(z))∗

z − z
= β +

∞∫
−∞

dσ(t)
|t− z|2

,
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,

C −B(w(z))∗ = Bα+ABβ +
∫ ∞
−∞

((tI −A)−1 − t(1 + t2)−1I)B dσ(t)

−
(
Bα+Bβz +

∫ ∞
−∞

((t− z)−1 − t(1 + t2)−1)B dσ(t)
)

= (A− zI)−1
(
Bβ +

∫ ∞
−∞

(tI −A)−1(t− z)−1B dσ(t)
)

and

(8.7) W12(z) = Bβ +
∫ ∞
−∞

(tI −A)−1(t− z)−1B dσ(t).

This formula allows to define the value of W12(z) for those z for which z belong to the
spectrum of A. Taking into account (8.6), (8.7) and that W21(z) = (W12(z))∗ we obtain

W(z) =
(
B
Im

)
β

(
B
Im

)∗
+
∫ ∞
−∞

(
tI −A 0

0 (t− z)Im

)−1(
B
Im

)
dσ(t)

(
B
Im

)∗(
tI −A∗ o

0 (t− z)Im

)−1

≥ 0.

�

9. Proposition on nonnegative block matrix

Proposition 4. (See, e.g. [13], p. 223–224). Let a Hermitian matrix H ∈ CM×M be
split into the blocks

H =
(
H11 H12

H21 H22

)
, H11 ∈ CN×N .

The inequality H ≥ 0 is equivalent to the following three conditions:
1) The matrix H11 is positive semidefinite.
2) The equation

(9.1) H11X = H12

is solvable.
3) Each solution X of equation (9.1) satisfies the inequality

(9.2) lH22 −X∗H11X ≥ 0.

Corollary. If there exists H−1
11 then the inequality H ≥ 0 is equivalent to the following

two conditions:
1) H11 ≥ 0,
2) H22 −H21H

−1
11 H12 ≥ 0.

10. Parametrization of the set of associated Rm-functions in the case of
W > 0

10.1. Let us introduce the matrix

J =
(

0 −iIm
iIm 0

)
∈ C2m×2m.

It is easy to see that J∗ = J = J−1 and that a holomorphic in C+ function w(z) of order
m belongs to Rm if and only if

(10.1) (w(z), Im)J(w(z), Im)∗ ≥ 0, z ∈ C+.
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Multiplying (10.1) from the left by a meromorphic in C+ matrix-valued function Q(z),
which takes values in Cm×m, and from the right by Q∗(z) we arrive at the inequality

(10.2) (P (z), Q(z))J(P (z), Q(z))∗ ≥ 0, z ∈ C+.

Definition. A pair (P (z), Q(z)) of Cm×m-valued functions, which are meromorphic in
C+, is said to be an Rm-pair if (10.2) is valid for the values of z ∈ C+ for which both
P (z) and Q(z) are defined.

Definition. Pairs (P (z), Q(z)) and (P̃ (z), Q̃(z)) are said to be equivalent if there ex-
ists an invertible Cm×m-matrix-valued function u(z) meromorphic in C+ for which
(P̃ (z), Q̃(z)) = u(z)(P (z), Q(z)).

Evidently, if (P (z), Q(z)) is an Rm-pair, then such are all the pairs equivalent to it.
If the matrix-valued function Q(z) involved in an Rm-pair is invertible then this pair
is equivalent to the pair (w(z), Im) where w(z) = (Q(z))−1P (z) ∈ Rm (all the singular
points of (Q(z))−1P (z) in C+ are removable).

Definition. A pair (P (z), Q(z)) is said to be non-degenerate if for f ∈ Cm×1 the
equalities f∗P (z) = 0, f∗Q(z) = 0 imply f = 0.

Instead of the MMI for matrix-valued functions w(z), we will consider the MMI for
non-degenerate pairs of matrix-valued functions (P (z), Q(z)),

(10.3)
(

W (A− zI)−1(C(Q(z))∗ −B(P (z))∗)
(Q(z)C∗ − P (z)B∗)(A∗ − zI)−1 P (z)(Q(z))∗−Q(z)(P (z))∗

z−z

)
≥ 0.

If the matrix-valued function Q(z) is invertible then multiplying (10.3) by T (z) =(
IN 0
0 (Q(z))−1

)
from the left and by (T (z))∗ from the right we obtain the MMI for

w(z).

Lemma. If rankB = m and the pair (P (z), Q(z)) satisfying (10.3) is non-degenerate
then the matrix-valued function Q(z) is invertible.

Proof. Let f∗Q(z) = 0 (f ∈ Cm×1) for some z in the domains of P (z), Q(z) and

(A− zI)−1. Multiplying the both sides of (10.3) on the right by T =
(
g 0
0 f

)
, where

g is an arbitrary vector from CN×1, and on the left by T ∗ we obtain the inequality(
g∗Wg −g∗(A− zI)−1B(P (z))∗f

−f∗P (z)B∗(A∗ − zI)−1g 0

)
≥ 0,

which implies g∗(A − zI)−1B(P (z))∗f = 0. Since g is an arbitrary vector, we have
B(P (z))∗f = 0 and since rankB = m we conclude that f∗P (z) = 0, i.e., f = 0.
Therefore, Q(z)−1 exists. �

Note that if we omit the requirement rankB = m then the formulations of the inter-
polation problems must be more complicated [12].

10.2. To simplify notations we denote K = (C, B), R(z) = (P (z), Q(z)). Then the
main matrix identity takes the form

(10.4) AW −WA∗ = iKJK∗

and the MMI for R(z) is

(10.5)
(

W i(A− zI)−1KJ(R(z))∗

−iR(z)JK∗(A∗ − zI)−1 iR(z)J(R(z))∗

z−z

)
≥ 0.



PROBLEMS FOR GENERALIZED PICK MATRIX 379

Since W > 0, inequality (10.5) according to Proposition 4 is equivalent to

R(z){J − z − z
i

JK∗(A∗ − zI)−1W−1(A− zI)−1KJ}(R(z))∗ ≥ 0.

It turns out that the matrix in parentheses can be factorized as it was done by V. P. Potapov
when he was considering a matrix version of Nevanlinna-Pick problem

(10.6) J − z − z
i

JK∗(A∗ − zI)−1W−1(A− zI)−1KJ = A(z)J(A(z))∗.

Moreover the following factorization holds true:

(10.7) J − z − ζ
i

JK∗(A∗ − zI)−1W−1(A− ζI)−1KJ = A(z)J(A(ζ))∗.

Assuming this factorization to hold we can find the matrix-valued function A(z) by fixing
its value at some point ζ0. It is convenient to set A(∞) = I2m. From (10.7) at ζ = ∞
we obtain

(10.8) A(z) = I2m + iJK∗(A∗ − zI)−1W−1K.

Direct calculations with a use of main identity (10.4) and the equalities

(A− ζI)−1A = I + ζ(A− ζI)−1, A∗(A∗ − zI)−1 = I + z(A∗ − zI)−1

confirm validity of factorization (10.7).
Note that for ζ = z equality (10.7) becomes A(z)J(A(z)∗ = J , what implies

A(z)J(A(z)∗J = I2m.

Therefore, for B(z) = (A(z))−1 we obtain

(10.9) B(z) = J(A(z))∗J = I2m − iJK∗W−1(A− zI)−1K.

If we split B(z) into blocks bjk(z) (j, k = 1, 2) of order m,

B(z) =
(
b11(z) b12(z)
b21(z) b22(z)

)
,

then
b11(z) = Im −B∗W−1(A− zI)−1C, b12(z) = −B∗W−1(A− zI)−1B,

b21(z) = C∗W−1(A− zI)−1C, b22(z‘) = Im + C∗W−1(A− zI)−1B.

10.3. Now the MMI for the pairs (P (z), Q(z)) looks as follows:

(10.10) (P (z), Q(z))A(z)J(A(z))∗(P (z), Q(z))∗ ≥ 0.

Let us put

(10.11) (P (z), Q(z))A(z) = (p(z), q(z)).

It is evident that the matrix-valued functions p(z) and q(z) are meromorphic in C+, the
pair (p(z), q(z)) is an Rm-pair and is non-degenerate if and only if such is (P (z), Q(z)).
Conversely, let (p(z), q(z)) be an arbitrary non-degenerate Rm-pair. Let us put

(P (z), Q(z)) = (p(z), q(z))B(z).

Then (10.11) and (10.10) are true, so (P (z), Q(z)) meets the MMI and is non-degenerate.
If the pairs (P1(z), Q1(z)) and (P2(z), Q2(z)) have invertible entries Q1(z) and Q2(z)

such that (Q1(z))−1P1(z) = (Q2(z))−1P2(z)(= w(z)) then these pairs are equivalent
because each of them is equivalent to (w(z), Im). In this case the corresponding pairs
(p1(z), q1(z)), (p2(z), q2(z)) are also equivalent.

These considerations lead to the following theorem.
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Theorem 4. Let

AW −WA∗ = CB∗ −BC∗, W > 0, and rankB = m.

Then the formula

w(z) = (p(z)b12(z) + q(z)b22(z))−1(p(z)b11(z) + q(z)b21(z))

gives a one-to-one correspondence between the set of associated with (A,B,C,W ) Rm-
functions w(z) and the set of the equivalence of arbitrary non-degenerate Rm-pairs
(p(z), q(z)).

11. Parametrization of the set of associated Rm-functions in the case
W ≥ 0, rankW = r < N

11.1. Without loss of generality we can assume that the matrix W has the form

(11.1) W =
(
W1 0
0 0

)
, where W1 > 0, W1 ∈ Cr×r.

Then we split the rest of the matrices into corresponding blocks,
(11.2)

A =
(

A1 A12

A21 A2

)
, B =

(
B1

B2

)
, B =

(
C1

C2

)
, A1 ∈ Cr×r, B1, C1 ∈ Cr×m.

Comparing block-wise parts of the main matrix identity we obtain

(11.3)
A1W1 −W1A

∗
1 = C1B

∗
1 −B1C

∗
1 , −W1A

∗
21 = C1B

∗
2 −B1C

∗
2 ,

A21W1 = C2B
∗
1 −B2C

∗
1 , C2B

∗
2 −B2C

∗
2 = 0.

According to Proposition 4, MMI (9.3) is valid if and only if
1) W ≥ 0 (this is assumed).
2) The equation

(11.4) WX = (A− zI)−1(C(Q(z))∗ −B(P (z))∗)

is solvable.
3) For each such solution X the following inequality is valid:

(11.5)
P (z)(Q(z))∗ −Q(z)(P (z))∗

z − z
−X∗WX ≥ 0.

Splitting X ∈ CN×m into the blocks X =
(
X1

X2

)
,

X1 ∈ Cr×m, we rewrite (11.4) as(
A1 − zI A12

A21 A2 − zI

)(
W1 0
0 0

)(
X1

X2

)
=
(
C1

C2

)
(Q(Z))∗ −

(
B1

B2

)
(P (Z))∗,

what implies

(11.6) (A1 − zI)W1X1 = C1(Q(z))∗ −B1(P (z))∗,

(11.7) A21W1X1 = C2(Q(z))∗ −B2(P (z))∗.

Therefore,

(11.8) X1 = W−1(A1 − zI)−1(C1(Q(z))∗ −B1(P (z))∗),

where P (z) and Q(z) must satisfy (11.7), which using (11.8) and (11.3) can be written
in the form

(11.9)
(C2B

∗
1 −B2C

∗
1 )W−1(A1 − zI)−1(C1(Q(z))∗ −B1(P (z))∗)

= (C2(Q(z))∗ −B2(P (z))∗),
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X2 is an arbitrary matrix from C(N−r)×m.

11.2. Inequality (11.5) with the found values of X takes the form
(11.10)

P (z)(Q(z))∗−Q(z)(P (z)∗)
z−z

−(Q(z)C∗1−P (z)B∗1)(A∗1−zI)−1W−1
1 (A1−zI)−1(C1(Q(z))∗−B1(P (z))∗)≥0.

This is the MMI for the quadruple (A1, B1, C1,W1), since

P (z)(Q(z))∗ −Q(z)(P (z)∗)
z − z

=
iR(z)‘J(R(z))∗

z − z
,

Q(z)C∗1 − P (z)B∗1 = −iR(z)JK∗1 , C1(Q(z))∗ −B1(P (z))∗ = iK1J(R(z))∗,
where R(z) = (P (z), Q(z)), K1 = (C1, B1) (see (10.6)). So solutions of (11.10) can be
parametrized by means of the formula

(P (z), Q(z)) = (p(z), q(z))B1(z),

where (p(z), q(z)) is an arbitrary non-degenerate Rm-pair, B1(z) is the matrix obtained
by changing K for K1 = (C1, B1), W for W1, A for A1 in (10.9)

(11.11) B1(z) = I2m − iJK∗1W−1
1 (A1 − zI)−1K1.

11.3. Let us clarify what conditions on the Rm-pair (p(z), q(z)) are imposed by
condition (11.9). Condition (11.9) can be written as follows:

(−B2, C2)
(
−C∗1
B∗1

)
W−1

1 (A1−zI)−1(−B1, C1)
(

(P (z))∗

(Q(z))∗

)
= (−B2, C2)

(
(P (z))∗

(Q(z))∗

)
or

(P (z), Q(z))
(
I2m −

(
−B∗1
C∗1

)
(A∗1 − zI)−1W−1

1 (C1, B1)
)(

−B∗2
C∗2

)
= 0.

It should be noted (see (10.10)) that

I2m −
(
−B∗1
C1

)
(A∗1 − zI)−1W−1

1 (C1, B1)

= I2m + iJK∗1 (A∗1 − zI)−1W−1
1 K1 = A1(z) = (B1(z))−1

therefore, condition (11.9) is equivalent to the condition

(11.12) p(z)B∗2 = q(z)C∗2 .

Let us show that the set of non-degenerate Rm-pairs satisfying (11.12) is not empty.
Equation C2B

∗
2 −B2C

∗
2 = 0 (see (11.3)) is equivalent to

(B2 + iC2)(B2 + iC2)∗ = (B2 − iC2)(B2 − iC2)∗.

Therefore, there exists a unitary matrix u ∈ Cm×m such that B2 + iC2 = (B2 − iC2)u
and, consequently,

p0B
∗
2 = q0C

∗
2 ,

where p0 = i(I−u), q0 == I+u. It is easy to see that the pair (p0, q0) is non-degenerate
and is an Rm-pair, because p0q

∗
0 − q0p∗0 = 0.

Now we state the final result of this section in terms of (11.2) and (11.10).

Theorem 5. Let AW −WA∗ = CB∗ −BC∗, W ≥ 0, then the formula

w(z) = (p(z)b(1)12 (z) + q(z)b(1)22 (z))−1(p(z)b(1)11 (z) + q(z)b(1)21 (z))

establishes a one-to-one correspondence between the set of Rm-functions associated with
(A,B,C,W ) and the set of those classes of equivalence of non-degenerate Rm-pairs
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(p(z), q(z)) which satisfy the condition p(z)B∗2 = q(z)C∗2 . Here b(1)jk (z) are m order blocks
of the matrix B1(z).
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