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ON THE NUMBER OF NEGATIVE EIGENVALUES OF A
MULTI-DIMENSIONAL SCHRÖDINGER OPERATOR WITH POINT

INTERACTIONS

OSAMU OGURISU

Abstract. We prove that the number N of negative eigenvalues of a Schrödinger
operator L with finitely many points of δ-interactions on Rd (d ≤ 3) is equal to

the number of negative eigenvalues of a certain class of matrix M up to a constant.

This M is expressed in terms of distances between the interaction points and the
intensities. As applications, we obtain sufficient and necessary conditions for L to

satisfy N = m,n, n for d = 1, 2, 3, respectively, and some estimates of the minimum

and maximum of N for fixed intensities. Here, we denote by n and m the numbers
of interaction points and negative intensities, respectively.

1. Introduction and Main Theorem

We examine the number N of negative eigenvalues of a Schrödinger operator L with
finitely many points of δ-interactions on Rd (d ≤ 3). We denote by n and m be the
numbers of interaction points and negative intensities, respectively. The fact that N ≤ n
is one of the classical results [1]. Regarding some recent results on R1, in [3] S. Albeverio
and L. Nizhnik gave necessary and sufficient conditions for L to satisfy N = n in the
case of m = n. Moreover, in [2] they gave an elegant ‘algorithm’ for determining N .
This yields the result obtained in [3] and gives necessary and sufficient conditions for
L to satisfy N = n. In [13, 14] the author proved that N ≤ m and gave a necessary
and sufficient condition for L to satisfy N = m. In [8, 9] N. I. Goloshchapova and
L. L. Oridoroga proved that N is equal to the number of negative eigenvalues of a
certain class of finite Jacobi matrix and gave independently a necessary and sufficient
condition for L to satisfy N = m.

We consider the operator on R2 and R3, since in a multi-dimensional case the formulas
for N are unknown. We prove that N is equal to the number of negative eigenvalues of
a certain class of matrix M up to a constant, M being related to the Green function of
L, and give some applications.

Let us denote by L
(d)
Y,α a Schrödinger operator acting in L2(Rd) with point δ-inter-

actions specified with the points of interactions Y = {y1, y2, . . . , yn} ⊂ Rd (yi 6= yj
if i 6= j) and the intensities α = {α1, α2, . . . , αn}. Here, α ⊂ R for d = 2, 3 and
α ⊂ (−∞,+∞] \ {0} for d = 1. It is well-known that L(d)

Y,α are self-adjoint with domains
characterized in Part II of [1] for each d = 1, 2, 3, respectively. Throughout this paper
we assume that the domains of L(d)

Y,α are these ones. Their spectra contain the positive

semiaxis, where they are absolutely continuous, and N(L(d)
Y,α) ≤ n. In this paper, we
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denote the number of negative eigenvalues of a self-adjoint operator T by N(T ) and that
of an Hermitian matrix M by N(M).

We first state our main theorem and a corollary. Let m = |{αi < 0; 1 ≤ i ≤ n}|,
di,j = |yi − yj | and

M (1) =
(
−δi,j
αi

+
di,j
2

)n
i,j=1

,

M (2) =
(
αiδi,j +

log di,j
2π

(1− δi,j)
)n
i,j=1

,

M (3) =
(
αiδi,j −

1− δi,j
4πdi,j

)n
i,j=1

,

P =
(
δi,j −

1
n

)n
i,j=1

.

We denote the Kronecker delta by δi,j and adopt the convention that ci,i(1 − δi,i) = 0
for any ci,i.

Theorem 1. The following hold.
(i) N(L(1)

Y,α) = N(PM (1)P ) + 1 +m− n.

(ii) N(L(2)
Y,α) = N(PM (2)P ) + 1.

(iii) N(L(3)
Y,α) = N(M (3)).

We prove this theorem in the following sections for each d. In each section, we
study some properties of the discrete eigenvalues of L(d)

Y,α; we obtain sufficient and nec-

essary conditions for L(d)
Y,α to satisfy N(L(d)

Y,α) = m,n, n for d = 1, 2, 3, respectively, and

some bounds of N(L(d)
∗,α) = max{N(L(d)

Y,α);Y } and N(L(d)
∗,α) = min{N(L(d)

Y,α);Y }. Here,

N(L(d)
∗,α) (resp. N(L(d)

∗,α)) stands for the maximum (resp. minimum) number of N(L(d)
Y,α)

when n and α are fixed and the points of interactions Y are moved.

Corollary 2. Fix α. Then the following hold.
(i) N(L(1)

∗,α) = m and N(L(1)
∗,α) ≤ 1.

(ii) N(L(2)
∗,α) = n and N(L(2)

∗,α) = 1.
(iii) N(L(3)

∗,α) ≥ m+ 5q + br/2c with q = b(n−m)/7c and r = n−m− 7q, and

N(L(3)
∗,α) ≤

{
dm/12e+ 1, if m = 7, 9, 10, 11 (mod 12),
dm/12e, otherwise.

Here, bxc is the largest integer not greater than x and dxe is the smallest integer not
less than x. The second half of (i) is optimal in the sense stated in Section 4. However,
it is not known yet whether (iii) is also so. In the final section, we give some more
applications and discussion.

We remark on the boundary conditions for L(d)
Y,α. Let Ed(x) be a fundamental solution

of ∆:

E1(x) = −|x|
2
, E2(x) = − 1

2π
log |x|, E3(x) =

1
4π|x|

.

Then L
(d)
Y,α is defined on functions ψ(x) that belong to W 2

2 (Rd, X) and in the neighbor-
hood of xk have a singularity of Ed(x), and we have

M (1) = (−δi,j/αi + Êd(di,j))ni,j=1, M (d) = (αiδi,j + Êd(di,j))ni,j=1

for d = 2, 3 with Êd(0) = 0 and Êd(x) = Ed(x) (x 6= 0).
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In the rest of this section, we give some notations and then mention the relation
between M (d) and the Green function of L(d)

Y,α, that is, the kernel of its resolvent (see [1])

(1) (L(d)
Y,α − k

2)−1 = G
(d)
k +

n∑
j,j′=1

[
Γ(d)
α,Y (k)

]−1

j,j′
(G(d)

k (· − yj′), ·)G(d)
k (· − yj)

for k2 ∈ ρ(L(d)
Y,α) and =k > 0. Here, G(d)

k is the Green function of −∆ on Rd and Γ(d)
α,Y (k)

is an n× n matrix. In the following sections, we give explicit expressions of Γ(d)
α,Y (k) and

see that

M (3) = Γ(3)(0), PM (d)P = lim
λ→0+

PΓ(d)
α,Y (
√
−1λ)P (d = 1, 2).

Our results are based on the following theorem.

Theorem 3. (Theorems 1.1.4, 2.1.3, 4.2 in Part II of [1]). The number −λ2, λ > 0, is
an eigenvalue of L(d)

Y,α if and only if det Γ(d)
α,Y (
√
−1λ) = 0. In addition, the multiplicity

of the eigenvalue −λ2 is equal to the multiplicity of the eigenvalue zero of Γ(d)
α,Y (
√
−1λ).

For further exposition, we introduce the following notations. We denote by En the
n × n identity matrix, by Jn the n × n all-one matrix and by 1n ∈ Rn the all-one
vector. Note that 1n is an eigenvector of Jn belonging to the eigenvalue n, and P is the
orthogonal projection onto the orthogonal complement subspace of 1n. This implies that
PJn = JnP = 0.

For convenience of the reader, we mention Weyl’s perturbation and monotonicity
theorems ([4, § III.2]); let A and B be Hermitian matrices and λi(A) be the eigenvalues
of A with decreasing order, λi(A) ≥ λi+1(A). Then it holds that maxi |λi(A)−λi(B)| ≤
‖A−B‖. If B is positive definite, then λi(A+B) > λi(A) for all i.

The author would like to thank the referees for their many useful remarks and sug-
gestions.

2. Three-dimensional case

In this section we write LY,α = L
(3)
Y,α, N = N(L(3)

Y,α), N = N(L(3)
∗,α), N = N(L(3)

∗,α) and

M = M (3) for brevity. The matrix Γ(3)
α,Y (k) in (1) is as follows:

Γ(3)
α,Y (k) =

((
αi −

√
−1k
4π

)
δi,j − G̃k(di,j)

)n
i,j=1

with =k > 0, G̃k(x) = e
√
−1k|x|/4π|x| (x 6= 0) and G̃k(0) = 0. See § II.1.1 of [1]. Assume

that λ ≥ 0 and let

Γ(λ) =
((

αi +
λ

4π

)
δi,j −

e−λdi,j

4πdi,j
(1− δi,j)

)n
i,j=1

and µi(λ) (1 ≤ i ≤ n) denote the eigenvalues of Γ(λ). Note that Γ(λ) = Γ(3)
α,Y (
√
−1λ) for

λ > 0 and M = Γ(0).

Proposition 4. (i) All µi(λ) are continuous on [0,∞). (ii) All µi(λ) are monotone
increasing on (0,∞). (iii) Each µi(λ) has at most one zero in (0,∞). (iv) N(Γ(λ)) is
monotone non-increasing on [0,∞).

Proof. [13, Proposition 1] implies (i). We can find (ii) in [1, Appendix F]. (iii) and (iv)
immediately follow from (ii). �

The following is Theorem 1 (iii).
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Theorem 5. It holds that N = N(M). In particular, N ≤ n.

Proof. Since limλ→∞ Γ(λ)/λ = En/4π, all µi(λ) are positive for sufficiently large λ.
If µi(0) < 0, then this µi(λ) has one zero. Since N(M) eigenvalues µi(0) of M are
negative, the function det Γ(λ) has N(M) zeros, counting multiplicities. Thus, we obtain
N = N(M) by Theorem 3. �

Corollary 6. Let τ = ‖((1− δi,j)/4πdi,j)ni,j=1‖.
(i) If m ≥ 1, then N ≥ 1. If m ≤ n− 1, then N ≤ n− 1.
(ii) N = n if and only if M is negative definite. In particular, if N = n, then m = n.

If αi < −τ for all i, then N = n.
(iii) N = 0 if and only if M is non-negative definite. In particular, if N = 0, then

m = 0. If αi > τ for all i, then N = 0.

Proof. Since 〈ei,Mei〉 = αi for the i-th unit vector ei in Cn, if αi < 0, then N(M) ≥ 1
and if αi > 0, then N(M) ≤ n − 1. If m ≤ n− 1 and no αi is positive, then some
αi = 0. In this case, we can see 〈ei − εej ,M(ei − εej)〉 = ε/2πdi,j + ε2αj > 0 for j 6= i
and sufficiently small ε > 0. This implies N(M) ≤ n− 1. Thus, we obtain (i).

Consider (ii). M is negative definite if and only if N(M) = n. Thus, the first
assertion holds. The second follows from (i). The assumption of the third implies that
M is negative definite. We can prove (iii) in a way similar to that above. �

Example 7. Let n = 2 and c = detM . Then the following hold:

N =

 2, if m = 2 and c > 0,
0, if m = 0 and c > 0,
1, otherwise.

Let n = 3 or 4 and assume that αi = α and |yi − yj | = w (i 6= j). Then the distinct
eigenvalues of M are α− (n− 1)/4πw and α+ 1/4πw, and their multiplicities are 1 and
n− 1, respectively. Thus, we have

N =

 n, if α < −1/4πw,
1, if − 1/4πw ≤ α < (n− 1)/4πw,
0, otherwise.

The following theorem shows that if the distance of some pair of interactions is suffi-
ciently small, then LY,α has at least one negative eigenvalue.

Theorem 8. Assume that the distance d1,2 of a pair {y1, y2} of points of interaction
with intensities {α1, α2} is sufficiently small and that the pair lie far enough from the
other points of interactions Y ′ = {yi; i = 3, 4, . . . , n} with the intensities α′ = {αi; i =
3, 4, . . . , n}. Then it holds that

(2) N(LY,α) ≥ N(LY ′,α′) + 1.

Proof. Assume that d1,2 < 1/4π
√
|α1α2| and let

M1 =

(
α1 − 1

4πd1,2

− 1
4πd1,2

α2

)
, M2 =

(
αiδi,j −

1− δi,j
4πdi,j

)n
i,j=3

.

Then N(M1) = 1, N(M2) = N(LY ′,α′) and ‖M −M1 ⊕M2‖ ≤ nK with

K = max{1/4πdi,j ; i = 1, 2, j = 3, 4, . . . , n}
. Since we can assume that

nK < min{|λ|;λ is a negative eigenvalue of M1 ⊕M2},
we obtain N(M) ≥ N(M1) +N(M2). Therefore, we obtain (2). �
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Corollary 9. N ≥ b(n+m)/2c and N ≤ dm/4e.

Proof. Consider the first assertion. We can assume that αi > 0 for i ≤ n−m without
loss of generality. Assume that all of the distances d2i−1,2i of the pairs {y2i−1, y2i}
with i ≤ b(n − m)/2c are sufficiently small and that these pairs and the other points
yi (i > 2b(n − m)/2c) lie far enough from each other. Then we can see N(M) ≥
b(n −m)/2c + m = b(n + m)/2c in a similar fashion in the proof of Theorem 8. Thus,
we obtain N ≥ b(n+m)/2c.

Consider the second assertion. In this proof, we denote by M(Y ′) the corresponding
matrix for LY ′,α′ with a subset Y ′ ⊂ Y and the corresponding intensities α′ ⊂ α. We
put N(M(∅)) = 0.

We can assume that αi < 0 for i ≤ m without loss of generality. Divide Y into the
subsets Yi = {yj ; 4i−3 ≤ j ≤ 4i, 1 ≤ j ≤ m} with 1 ≤ i ≤ dm/4e and Y+ = {yi;m+1 ≤
i ≤ n}. Assume that the distances |yj−yj′ | are constant for any yj , yj′ ∈ Yi (yj 6= yj′) and
sufficiently small. Then N(M(Yi)) = 1 for 1 ≤ i ≤ dm/4e. (cf. Example 7.) In addition,
we assume that all of the subsets Yi and the points of Y+ lie far enough from each other.
Then we can see that N(M(Y+)) = 0 and N(M(Y )) =

∑dm/4e
i=1 N(M(Yi)) = dm/4e.

Thus, we obtain N ≤ dm/4e. �

Example 10. Let 2 ≤ n ≤ 4 and fix α with m = 0. Let Mn = (ai,j)ni,j=1 with ai,i = 0
and ai,j = aj,i < 0. Then we can easily check that 1 ≤ N(Mn) ≤ bn/2c for any ai,j . This
implies that N(M) ≤ bn/2c and N(M) = bn/2c for some di,j . Thus, we have N = bn/2c
if 2 ≤ n ≤ 4 and m = 0.

Remark 11. One of the referees suggested the author M. E. Dudkin’s papers [5, 6]. He
studied N(LY,α) in cases in which point interactions lie on the vertices of regular n-gons
and regular polyhedra with an equal coupling constant α. By his results, we can see that
if Y is a regular n-gons (n = 3, 4, 5, 6, 8) or a regular icosahedron (n = 12) and negative α
is sufficiently small, it holds that N(LY,α) = 1. Therefore, we can improve the estimate
of N

N ≤

{
dm/12e+ 1, if m = 7, 9, 10, 11 (mod 12),
dm/12e, otherwise.

Similarly, if Y is a regular 7-gons and positive α is sufficiently small, then N(LY,α) = 5.
Therefore, we can improve the estimate of N

N ≥ m+ 5q + br/2c with q = b(n−m)/7c, r = n−m− 7q.

3. Two-dimensional case

In this section, we write LY,α = L
(2)
Y,α, N = N(L(2)

Y,α), N = N(L(2)
∗,α), N = N(L(2)

∗,α) and

M = M (2) for brevity. The matrix Γ(2)
α,Y (k) in (1) is as follows:

Γ(2)
α,Y (k) =

(
2παi −Ψ(1) + log(k/2

√
−1)

2π
δi,j − G̃k(di,j)

)n
i,j=1

with =k > 0, G̃k(x) = (
√
−1/4)H(1)

0 (k|x|) (x 6= 0) and G̃k(0) = 0. Here, H(1)
0 (x) is the

first kind of Hankel function with order 0 and the number −Ψ(1) is the Euler constant.
See Chapter II.4 in [1]. Assume that λ > 0 and let

Γ(λ) = Γ(2)
α,Y (
√
−1λ)

=
(

2παi −Ψ(1) + log(λ/2)
2π

δi,j −
1

2π
K0(di,jλ)(1− δi,j)

)n
i,j=1
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and µi(λ) (1 ≤ i ≤ n) denote the eigenvalues of Γ(λ). Here, we use the fact that
H

(1)
0 (
√
−1x) = −(2

√
−1/π)K0(x) for x > 0, where K0(x) is the third kind of Bessel

function with order 0.

Proposition 12. (i) All µi(λ) are continuous on (0,∞). (ii) All µi(λ) are monotone
increasing on (0,∞). (iii) Each µi(λ) has at most one zero in (0,∞). (iv) N(Γ(λ)) is
monotone non-increasing on (0,∞).

Proof. [10, Theorem 6.8] implies (i). We can find (ii) in [1, Appendix F]. (iii) and (iv)
immediately follow from (ii). �

Since K0(x) ∼ − log x (x→ 0+) and limx→∞K0(x) = 0, we can see that

(3) lim
λ→0+

1
log λ

Γ(λ) =
1

2π
Jn, lim

λ→∞

1
log λ

Γ(λ) =
1

2π
En.

Using (3) we can obtain the known result, 1 ≤ N ≤ n, as in the proof of Theorem II.4.2
in [1]; the eigenvalues of Jn are n (with multiplicity 1) and 0 (with multiplicity n − 1).
Thus, at least one µi(λ) is negative for sufficiently small λ. Since all µi(λ) are positive
for sufficiently large λ, det Γ(λ) has at least one zero. In addition Proposition 12 implies
that det Γ(λ) has at most n zeros. Thus, we have 1 ≤ N ≤ n by Theorem 3.

Using (3) we obtain the following key lemma.

Lemma 13. (i) It holds that N = N(Γ(λ0)) for some λ0. In addition, N = N(Γ(λ))
for any λ ≤ λ0; (ii) N = n if and only if Γ(λ0) is negative definite for some λ0.

Proof. Let λi be the zero of µi(λ) if it exists, and λ0 < min{λi, 1}. Put k = N(Γ(λ0)).
Then the number of negative µi(λ0) is equal to k. Thus, each of these k negative µi(λ)
has one zero, because all µi(λ) are positive for sufficiently large λ. Therefore, det Γ(λ) has
k zeros, counting multiplicities. Thus, we obtain N = k by Theorem 3. (ii) immediately
follows from (i). �

Since Γ(λ) diverges as λ → 0+, it is difficult to determine the quantity N(Γ(λ0)).
Fortunately, PΓ(λ)P converges as λ→ 0+.

Proposition 14. It holds that limλ→0+ PΓ(λ)P = PMP .

Proof. SinceK0(λ) = 2π r(λ)+O(λ2) with r(λ) = (− log(λ/2)+Ψ(1))/2π (cf. [7, § 7.2.5]),
we have Γ(λ) = M − r(λ)Jn +O(λ2). Thus, we have PΓ(λ)P = PMP +O(λ2). �

The following is Theorem 1 (ii).

Theorem 15. It holds that N = N(PMP ) + 1.

In the rest of this section, we write q = N(PMP ) for brevity.

Proof. We first prove that N(Γ(λ)) ≤ q + 1. Since dΓ(λ)/dλ is positive definite by [1,
Appendix F], dPΓ(λ)P/dλ is non-negative definite. This implies that N(PΓ(λ)P ) is
monotone non-increasing. Thus, N(PΓ(λ)P ) ≤ q. Since PΓ(λ)P is a compression of
Γ(λ) to (n−1)-dimensional subspace, we obtain N(Γ(λ)) ≤ q+1 by Cauchy’s interlacing
theorem [4, Corollary III.1.5].

Let us prove that N(Γ(λ0)) ≥ q + 1 for some λ0. We put I(λ; f) = 〈Γ(λ)f, f〉 and
ξ = 1n/

√
n and let ϕ1, ϕ2, . . . , ϕq be linearly independent eigenvectors of PMP belonging

to negative eigenvalues. We examine the existence of λ0 such that I(λ0;ψ) < 0 for any
linear combination ψ of ξ and ϕi. If q = 0, then this is trivial. Thus, we assume that
q ≥ 1.
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We denote by −ν the largest negative eigenvalue of PMP . Let ϕ be a normalized
linear combination of ϕi. Since there exists λ1 such that ‖PMP − PΓ(λ)P‖ < ν/2 for
any λ < λ1, we have

I(λ;ϕ) = 〈PMPϕ,ϕ〉+ 〈(PΓ(λ)P − PMP )ϕ,ϕ〉
≤ −ν + ‖PΓ(λ)P − PMP‖ ≤ −ν/2

for any λ ≤ λ1. Let (a, b) ∈ C2 \ {(0, 0)} and λ ≤ λ1. We have

I(λ; aϕ+ bξ) = |a|2I(λ;ϕ) + 〈Γ(λ)aϕ, bξ〉+ 〈Γ(λ)bξ, aϕ〉+ |b|2I(λ; ξ)

≤ −(ν/2)|a|2 + 2|ab|‖M‖+ |b|2I(λ; ξ)

= −(ν/2)(|a| − 2|b|‖M‖/ν)2 + |b|2(2‖M‖2/ν + I(λ; ξ)).

The first term is non-positive. Since I(λ; ξ)→ −∞ as λ→ 0, the second term is negative
for some λ0 ≤ λ1. Since both 2‖M‖2/ν and I(λ; ξ) are independent of a, b, ϕ and λ1, so
is λ0. Therefore, N(Γ(λ0)) ≥ q + 1. This completes the proof. �

Corollary 16. N = 1 and N = n.

Proof. Let w > 0 and put yj = (jw, 0) ∈ R2. Since di,j = |i− j|w, we have

M = Q+
logw
2π

(Jn − En) with Q =
(
αiδi,j +

log |i− j|
2π

(1− δi,j)
)
,

and thus PMP = PQP−(logw/2π)P . Therefore, if w is sufficiently large, then q = n−1,
and thus N = n. Similarly, if w is sufficiently small, then q = 0, and thus N = 1.
Consequently, N = 1 and N = n. �

Example 17. Let n = 2. We have

PMP = cP with c =
α1 + α2

2
− log d1,2

2π
.

Thus, if c < 0, then q = 1, else q = 0. Hence, if c < 0, then N = 2, else N = 1. Let
n = 3 and assume that αi = α and |yi − yj | = w (i 6= j). Then we have

PMP = cP with c = α− logw
2π

.

Thus, if c < 0, then q = 2, else q = 0. Hence, if c < 0, then N = 3, else N = 1.

4. One-dimensional case revisited

In this section, we write LY,α = L
(1)
Y,α, N = N(L(1)

Y,α), N = N(L(1)
∗,α), N = N(L(1)

∗,α)
and M = M (1) for brevity. Though we already know some sufficient and necessary
conditions for LY,α to satisfy N = m and algorithms for determining N , it seems to be
worthwhile to discuss LY,α using the method proposed in this paper. Since our discussion
on LY,α = L

(1)
Y,α is very similar to that on L

(2)
Y,α, we give only an outline.

The matrix Γ(1)
α,Y (k) in (1) is as follows:

Γ(1)
α,Y (k) = −

(
δi,j
αi

+
√
−1

2k
e
√
−1kdi,j

)n
i,j=1

with =k > 0. See § II.2.1 in [1]. Assume that λ > 0 and let

Γ(λ) = Γ(1)
α,Y (
√
−1λ) = −

(
δi,j
αi

+
e−λdi,j

2λ

)n
i,j=1

and µi(λ) (1 ≤ i ≤ n) denote the eigenvalues of Γ(λ).



390 OSAMU OGURISU

Proposition 18. (i) All µi(λ) are continuous on (0,∞). (ii) All µi(λ) are monotone
increasing on (0,∞). (iii) Each µi(λ) has at most one zero in (0,∞). (iv) N(Γ(λ)) is
monotone non-increasing on (0,∞).
(v) limλ→∞ µi(λ) = −1/αi for suitable numbering of µi(λ).

Proof. [10, Theorem 6.8] implies (i). We can find (ii) in [1, Appendix F]. (iii) and (iv)
immediately follow from (ii). Since limλ→∞ Γ(λ) = (−δi,j/αi)ni,j=1, we obtain (v) by [13,
Proposition 3]. �

Lemma 19. (i) It holds that N = N(Γ(λ0)) + m − n for some λ0. In addition, N =
N(Γ(λ)) +m−n for any λ ≤ λ0. In particular, N ≤ m. (ii) N = m if and only if Γ(λ0)
is negative definite for some λ0 > 0.

Proof. Let λi be the zero of µi(λ) if it exists, and λ0 < min{λi, 1}. Put k = N(Γ(λ0)).
Then the number of non-negative µi(λ0) is equal to n−k. By Proposition 18, the number
of positive µi(λ) is equal to m for sufficiently large λ. Thus, m−(n−k) eigenvalues µi(λ)
has one zero. Therefore, det Γ(λ) has k +m− n zeros. Thus, we obtain N = k +m− n
by Theorem 3. (ii) immediately follows from (i). �

We remark that the author proved that “N = m if and only if M(λ0) is positive
definite for some λ0 > 0” in previous papers [13, 14]. The matrix M(λ) in these papers
is equal to −λnΓ(λ).

The following is Theorem 1 (i).

Theorem 20. It holds that N = N(PMP ) + 1 +m− n.

Proof. Using the fact Γ(λ) = M−(1/2π)Jn+O(λ), we can prove N(Γ(λ0)) = N(PMP )+
1 for sufficiently small λ0 in the same fashion as that in the proof of Theorem 15. There-
fore Lemma 19 implies the desired result. �

Corollary 21. N = m and N ≤ 1.

Proof. We already know that N ≤ m and that N = m if all of the distances di,j are
sufficiently large by [13, Theorem 2]. Thus, N = m. We assume m > 0 and examine
N . Assume that di,j are small enough. Then N(PMP ) = N(−PA−1P ) with A =
diag(α1, α2, . . . , αn). Since N(−A−1) = n−m and −PA−1P is a compression of −A−1

to an (n − 1)-dimensional subspace, we obtain N(−PA−1P ) ≤ n − m by Cauchy’s
interlacing theorem. Therefore, Theorem 20 implies N ≤ 1. Thus, N ≤ 1. �

We cannot write N as any expression of n and m as below. In this sense, the estimate
of N is optimal; consider the case where n = 2 and m = 1 with α1 > 0 and α2 < 0.
If α1 > −α2, then N = 0, otherwise N = 1. We can easily check this example by
Albeverio-Nizhnik’s algorithm.

Remark 22. As mentioned in Introduction, N. I. Goloshchapova and L. L. Oridoroga
proved that N is equal to the number of negative eigenvalues of a certain class of finite
Jacobi matrix in [8, 9]. Their arguments are based on the concept of boundary triplets and
the corresponding Weyl functions developed in [11], in which different spectral properties
of 1-dimensional Schrödinger operators with an infinite number of δ and δ′ interactions
have been investigated.

5. Discussion

In this section, we give two applications and discuss δ′-interactions and how to deter-
mine N(M). Let Γ(d)(λ;Y, α) denote the matrix Γ(λ) for L(d)

Y,α.
The first application shows a kind of dilatation property of LY,α.
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Theorem 23. Let θ > 0. We put Y ′ = {θy1, θy2, . . . , θyn} and

α′ =
{
{α1/θ, α2/θ, . . . , αn/θ}, if d = 1, 3,
{α1 + log θ

2π , α2 + log θ
2π , . . . , αn + log θ

2π }, if d = 2.

Then the following hold for all d = 1, 2, 3 :

N(L(d)
Y ′,α′) = N(L(d)

Y,α) and σd(L(d)
Y ′,α′) =

1
θ
σd(L(d)

Y,α).

Proof. The first assertion immediately follows from Theorem 1. The second follows from
the fact that Γ(d)(λ;Y ′, α′) = θ2−dΓ(d)(θλ;Y, α). �

The second application is an extension of Proposition II.1.1.5 in [1].

Theorem 24. Let 1 ≤ d ≤ 3 and fix Y . Let N(−λ2, α) denote the number of eigen-
values (counting multiplicities) of L(d)

Y,α less than or equal to −λ2. Assume that α =
{α1, α2, . . . , αn} and β = {β1, β2, . . . , βn} satisfy that αi ≤ βi for all i. Then N(−λ2, α) ≥
N(−λ2, β).

Proof. We can see that N(−λ2, α) is equal to the number of zeros of
det Γ(λ;Y, α) on [λ,∞). Thus, N(−λ2, α) = N(Γ(λ − 0;Y, α)). Let µi(λ) and νi(λ)
be the eigenvalues of Γ(λ;Y, α) and Γ(λ;Y, β) with deceasing order, respectively. Since
Γ(λ;Y, β)−Γ(λ;Y, α) = ((βi−αi)δi,j)ni,j=1 is non-negative definite, it holds that µi(λ) ≤
νi(λ). Thus, N(Γ(λ;Y, α)) ≥ N(Γ(λ;Y, β)). This implies the desired result. �

Let us examine N(L̃) of a one-dimensional Schrödineger operator L̃ = L̃Y,β with
finitely many points of δ′-interactions; here, we use the same definition in [1, 8, 9]. Let
m̃ = |{βj < 0; 1 ≤ j ≤ n}|.

Theorem 25 (Goloshchapova-Oridoroga [8, 9]). We have N(L̃) = m̃.

We can prove this theorem using our method; let

Γ̃(λ) = Γ̃β,Y (
√
−1λ) = [(βjλ2)−1δi,j + e−λdi,j/2λ]ni,j=1.

We already know that −λ2, λ > 0, is an eigenvalue of L̃ if and only if det Γ̃(λ) = 0 [1].
Since Γ̃(λ) is positive definite for sufficiently large λ, N(Γ̃(λ)) = m̃ for sufficiently small λ,
and all eigenvalues of λ2Γ̃(λ) are monotone increasing (We can prove that d(λ2Γ̃(λ))/dλ
is positive definite by tedious calculation.), det Γ̃(λ) always has m̃ zeros, counting multi-
plicities. This implies Theorem 25. In addition, we can see the dilatation property, too;
σd(L̃Y ′,β′) = (1/θ)σd(L̃Y,β) with Y ′ = {θy1, θy2, . . . , θyn} and β′ = {θβ1, θβ2, . . . , θβn}.

We comment on how to determine N(M). We can find an algorithm for doing it in
elementary linear algebra [15]; let Dk be the leading principal minors of M with order
k. The number of sign changes of the sequence, (1, D1, D2, . . . , Dn), is equal to N(M).
However, this algorithm is ineffective for our purpose, because it is tedious to calculate
Dk. On the other hand, S. Albeverio and L. Nizhnik gave an effective algorithm for
determining N(L(1)

Y,α) in [2]. We must investigate more effective ones for determining

N(L(2)
Y,α) and N(L(3)

Y,α).

Remark 26. One of the referees informed the author that [12] give a complete description
of the number of negative eigenvalues of one dimensional Schröodinger operator with
infinite number of δ′-interactions.
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