EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS OF SECOND ORDER SEMILINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACE

YA. V. GORBATENKO

Abstract

We consider the Cauchy problem for second order semilinear differential equations in Banach space. Sufficient conditions of local and global existence and uniqueness of mild solutions are presented.

1. Introduction

Let X be a complex Banach space, A a closed densely defined linear operator. We consider the following semilinear differential equation:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}(t)+A x(t)=f(t, x(t)) \tag{1}
\end{equation*}
$$

where the function $x(\cdot)$ takes values in X, and f maps some open subset of $\mathrm{R} \times X$ to X. Equations of type (1) are considered in [1], where sufficient conditions of existence and uniqueness of solutions are presented for a broad class of functions f, including discontinuous functions. However, there are examples of functions f for which these results cannot be applied, e.g., $f_{1}(t, x)=x^{3}$ and $f_{2}(t, x)=x \cdot x^{\prime}$ on $X=L_{2}(\mathrm{R})$.

In this paper we apply Henry's method [2] to second order semilinear equation (1) and prove several theorems about sufficient conditions of existence and uniqueness of solutions of Cauchy problems for a class of continuous functions f. As shown below, this class includes f_{1} and f_{2} in $X=L_{2}(\mathrm{R})$ if $A x=-x^{\prime \prime}$ (defined on $x \in X$ such that $x^{\prime \prime}$, understood in the sense of distributions, belongs to X).

2. Preliminaries

Let $C(t)$ be an operator cosine function with generator $-A$. Linear operator $-A$ is also a generator of an analytic semigroup $T(t)$. At first let us consider the case when $\sigma(A) \subset\{\lambda \mid \operatorname{Re} \lambda>0\}$. For $\alpha>0$ define

$$
A^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} s^{\alpha-1} T(s) d s
$$

(see [2, p. 24]).
Operator $A^{-\alpha}$ is bounded in X and has an inverse [2, Theorem 1.4.2, p. 25].
Define $A^{\alpha}=\left(A^{-\alpha}\right)^{-1}$. A^{α} is closed and densely defined. For arbitrary α, β, we have $A^{\alpha} A^{\beta}=A^{\beta} A^{\alpha}=A^{\alpha+\beta}$ on $D\left(A^{\alpha}\right) \cap D\left(A^{\beta}\right) \cap D\left(A^{\alpha+\beta}\right)$; if $\alpha>\beta$, then $D\left(A^{\alpha}\right) \subset D\left(A^{\beta}\right)$ [2, p. 25-26].

Now consider the case when $\sigma(A) \not \subset\{\lambda \mid \operatorname{Re} \lambda>0\}$. Let us denote $\omega=-\inf \operatorname{Re} \sigma(A)$, then for $b>\omega$ we have $\sigma(A+b I) \subset\{\lambda \mid \operatorname{Re} \lambda>0\}$. Define: $A_{b}=A+b I, A_{b}^{\alpha}=\left(A_{b}\right)^{\alpha}$,

Key words and phrases. Semilinear differential eqquation, cosine function.
$X_{b}^{\alpha}=D\left(A_{b}^{\alpha}\right)$, for $x \in X_{b}^{\alpha}$ denote $\|x\|_{\alpha}=\left\|A_{b}^{\alpha} x\right\|$. Then

$$
\begin{equation*}
A_{b}^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} s^{\alpha-1} e^{-s b} T(s) d s \tag{2}
\end{equation*}
$$

Lemma 1. ([2, Theorem 1.4.6, p. 28; Theorem 1.4.8, p. 29]). The space X_{b}^{α} does not depend on the choice of b such that $\sigma(A+b I) \subset\{\lambda \mid \operatorname{Re} \lambda>0\} . X^{\alpha}=X_{b}^{\alpha}$ is a Banach space in the norm $\|\cdot\|_{\alpha}$, and for different b the corresponding norms $\|\cdot\|_{\alpha}$ are equivalent.
Example 1. Let $X=L_{2}(\mathrm{R}), A x=-x^{\prime \prime}$, where $D(A)$ is the set of all $x \in X$ such that $x^{\prime \prime}$ (understood in the sense of distributions) belongs to $L_{2}(\mathrm{R}) ; \alpha=1 / 2$. Then $X^{1 / 2}=H^{1}(\mathrm{R})$ in the sense that they coincide as subsets of $X=L_{2}(\mathrm{R})$, and the corresponding norms are equivalent ([2, p. 77]; [3, Theorem V.3, p. 135]).
Lemma 2. Let $C(t), S(t), T(t)$ be, respectively, cosine function, sine function and a semigroup with the generator $-A$. Then for any $s \geq 0, t \geq 0, \alpha>0$ and $b>\omega$, the following relations hold:

$$
\begin{gather*}
T(s) C(t)=C(t) T(s) \tag{3}\\
A_{b}^{-\alpha} C(t)=C(t) A_{b}^{-\alpha}, \quad A_{b}^{-\alpha} S(t)=S(t) A_{b}^{-\alpha} \tag{4}
\end{gather*}
$$

and for $x \in D\left(A_{b}^{\alpha}\right)$

$$
\begin{array}{ll}
C(t) x \in D\left(A_{b}^{\alpha}\right), & A_{b}^{\alpha} C(t) x=C(t) A_{b}^{\alpha} x \\
S(t) x \in D\left(A_{b}^{\alpha}\right), & A_{b}^{\alpha} S(t) x=S(t) A_{b}^{\alpha} x \tag{5}
\end{array}
$$

Proof. Since the semigroup $T(t)$ is analytic,

$$
T(s)=\frac{1}{2 \pi i} \oint_{\Gamma} e^{\lambda s} R(\lambda ;-A) d \lambda
$$

where Γ is a contour in the resolvent set of the operator $-A$ with $\arg \lambda \rightarrow \pm \theta$ as $|\lambda| \rightarrow \infty$ for some $\theta \in(\pi / 2 ; \pi)$. Also we have $R(\lambda ;-A) C(t)=C(t) R(\lambda ;-A)$. Hence

$$
T(s) C(t)=\frac{1}{2 \pi i} \oint_{\Gamma} e^{\lambda s} R(\lambda ;-A) C(t) d \lambda=\frac{1}{2 \pi i} \oint_{\Gamma} e^{\lambda s} C(t) R(\lambda ;-A) d \lambda=C(t) T(s)
$$

and (3) is proved.
Relations (4) are immediate consequences of (2) and (3).
Relations (5) are easily obtained from (4), as well as the following statement: if bounded linear operators B_{1}, B_{2} commute, B_{1}^{-1} exists and $x \in D\left(B_{1}^{-1}\right)$, then $B_{2} B_{1}^{-1} x=$ $B_{1}^{-1} B_{1} B_{2} B_{1}^{-1} x=B_{1}^{-1} B_{2} B_{1} B_{1}^{-1} x=B_{1}^{-1} B_{2} x$ and $B_{2} x \in D\left(B_{1}^{-1}\right)$.

In what follows we assume that the following holds.
Assumption 1. ([4, Assumption 5.1, p. 63]). Let $b>\omega$. Then $S(t) X \in D\left(A_{b}^{1 / 2}\right)$, and $A_{b}^{1 / 2} S(t)$ is a strongly continuous function of the argument t on $-\infty<t<+\infty$.
Lemma 3. ([4, Lemma 5.2, p. 63; Theorem 5.4, p. 65; eq. 5.12, p. 65]). If Assumption 1 holds, then $\forall b>\omega \quad \exists C_{1 / 2}>0 \forall t \geq 0$

$$
\left\|A_{b}^{1 / 2} S(t)\right\| \leq C_{1 / 2}(1+t) e^{\omega t}
$$

Assumption 1 holds for any generator of the cosine function in any complex Lebesgue space $L_{p}(Y, \mu), 1<p<\infty[4$, Theorem 6.1, p. 71; Theorem 6.3, p. 73].
Theorem 1. (analogous to [2, Theorem 1.4.3, p. 26]). Under Assumption 1, for any $\alpha \in[0 ; 1 / 2]$ we have the following:

1) there exists $C_{\alpha}>0$ such that for every $t \geq 0,\|S(t)\|_{\alpha} \leq C_{\alpha}(1+t) e^{\omega t}$;
2) for $\forall x_{0} \in D\left(A_{b}^{\alpha}\right), x_{1} \in X$ we have that $\left\|C(t) x_{0}+S(t) x_{1}-x_{0}\right\|_{\alpha} \longrightarrow_{t \rightarrow 0} 0$.

Proof. To prove the first statement we use Lemma 3

$$
\begin{aligned}
\|S(t)\|_{\alpha} & =\left\|A_{b}^{\alpha} S(t)\right\| \leq\left\|A_{b}^{1 / 2} S(t) A_{b}^{-(1 / 2-\alpha)}\right\| \\
& \leq C_{1 / 2}(1+t) e^{\omega t} \cdot\left\|A_{b}^{-(1 / 2-\alpha)}\right\|=C_{\alpha}(1+t) e^{\omega t}
\end{aligned}
$$

The second statement is implied by the following:

$$
\begin{aligned}
A_{b}^{\alpha}\left(C(t) x_{0}+S(t) x_{1}-x_{0}\right) & =(C(t)-I) A_{b}^{\alpha} x_{0}+A_{b}^{1 / 2} S(t) A_{b}^{-(1 / 2-\alpha)} x_{1} \\
= & (C(t)-I) y_{0}+A_{b}^{1 / 2} S(t) y_{1} \xrightarrow[t \rightarrow 0]{\longrightarrow}(C(0)-I) y_{0}+A_{b}^{1 / 2} S(0) y_{1}=0
\end{aligned}
$$

because $C(t)$ and $A_{b}^{1 / 2} S(t)$ are strongly continuous functions.
Note, however, that the operators $A_{b}^{\alpha} S(t), \alpha>1 / 2$ and $A_{b}^{\alpha} C(t), \alpha>0$, can be unbounded.
Example 2. Let $X=L_{2}(\mathrm{R}), A x=-x^{\prime \prime}$ as in Example 1. Then $\forall x_{0} \in H^{1}(\mathrm{R}), x_{1} \in X$

$$
\begin{gathered}
\left(C(t) x_{0}\right)(s)=\frac{1}{2}\left(x_{0}(s+t)+x_{0}(s-t)\right) \\
\left(S(t) x_{1}\right)(s)=\frac{1}{2} \int_{s-t}^{s+t} x_{1}(\xi) d \xi
\end{gathered}
$$

Take $\alpha=1 / 2$, then $\forall t>0$ the operator $A_{b}^{\alpha} C(t)$ is unbounded. Consider, for example,

$$
x_{n}(s)= \begin{cases}\sin n \frac{2 \pi s}{t}, & 0 \leq s \leq t \\ 0, & \text { otherwise }\end{cases}
$$

then $\left\{\left\|x_{n}\right\|, n=0,1, \ldots\right\}$ is bounded, but

$$
\left\|A_{b}^{\alpha} C(t) x_{n}\right\|=\left\|C(t) x_{n}\right\|_{\alpha} \geq \text { const } \times\left\|C(t) x_{n}\right\|_{H^{1}} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty
$$

Take $\alpha=1$, then $\forall t>0$ the operator $A_{b}^{\alpha} S(t)$ is unbounded,

$$
\begin{aligned}
\left(A S(t) x_{1}\right)(s) & =\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}} \int_{s-t}^{s+t} x_{1}(\xi) d \xi=\frac{1}{2} \frac{\partial}{\partial s}\left(x_{1}(s+t)-x_{1}(s-t)\right) \\
& =\frac{1}{2}\left(x_{1}^{\prime}(s+t)-x_{1}^{\prime}(s-t)\right)
\end{aligned}
$$

3. SuFficient conditions of local existence and uniqueness of mild

 SOLUTIONSFor functions defined on some interval $\left[t_{0} ; t_{1}\right]$ or semiaxis $\left[t_{0} ;+\infty\right)$ and taking values in a Banach space X consider the following semilinear equation:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}(t)+A x(t)=f(t, x(t)) \tag{6}
\end{equation*}
$$

where the function f maps some open set $U \subset \mathrm{R} \times X^{\alpha}$ to X, for fixed $\alpha \in[0 ; 1 / 2]$, and state the following Cauchy problem for it:

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} \in D\left(A_{b}^{\alpha}\right), \quad x^{\prime}\left(t_{0}\right)=x_{1} \in X \tag{7}
\end{equation*}
$$

A classical solution of the problem (6)-(7) on $\left[t_{0} ; t_{1}\right]$ is a function $x:\left[t_{0} ; t_{1}\right] \rightarrow X$ that is twice continuously differentiable, $x(t) \in D(A)$ for all $t \in\left[t_{0} ; t_{1}\right]$, and satisfies (6) and (7).

A mild solution of the problem (6)-(7) on $\left[t_{0} ; t_{1}\right]$ is a continuous function $x:\left[t_{0} ; t_{1}\right] \rightarrow$ X that satisfies, on $\left[t_{0} ; t_{1}\right]$, the equation

$$
\begin{equation*}
x(t)=C\left(t-t_{0}\right) x_{0}+S\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t} S(t-\tau) f(\tau, x(\tau)) d \tau \tag{8}
\end{equation*}
$$

A classical solution of the problem (6)-(7) is also a mild solution ([1, p. 436]). The converse doesn't always hold, since the mild solution may fail to be twice continuously differentiable.

Theorem 2. Let $U \subset \mathrm{R} \times X^{\alpha}$ be an open set and $f: U \rightarrow X$ a continuous function that satisfies a local Lipschitz condition, for every point $\left(t_{1}, x_{1}\right) \in U$ there exists $K>0$ and a neighborhood $U_{1} \subset U$ of the point $\left(t_{1}, x_{1}\right)$ such that for $x, y \in U_{1}$ the inequality

$$
\|f(t, x)-f(s, y)\| \leq K\left(|t-s|+\|x-y\|_{\alpha}\right)
$$

holds. Then for each pair $\left(t_{0}, x_{0}\right)$ from U and $x_{1} \in X$ there exists $t_{1}>t_{0}$ such that problem (6)-(7) has a unique mild solution on $\left[t_{0} ; t_{1}\right]$ with $x\left(t_{0}\right)=x_{0} \in D\left(A_{b}^{\alpha}\right), x^{\prime}\left(t_{0}\right)=$ $x_{1} \in X$.
(This theorem is analogous to [2, Theorem 3.3.3, p. 54])
Proof. Let $V(\tau, \delta)=\left\{(t, x) \mid t \in\left[t_{0} ; t_{0}+\tau\right],\left\|x-x_{0}\right\|_{\alpha} \leq \delta\right\}$. Choose τ, δ such that $V(\tau, \delta) \subset U$ and for $(t, x),(t, y) \in V(\tau, \delta)$ the following holds: $\|f(t, x)-f(t, y)\| \leq$ $K\|x-y\|_{\alpha}$. Also let $B=\max _{t \in\left[t_{0} ; t_{0}+\tau\right]}\left\|f\left(t, x_{0}\right)\right\|$.

Using Theorem 1, choose $t_{1} \in\left(t_{0}, t_{0}+\tau\right]$ such that for $t \in\left[t_{0} ; t_{1}\right]$,

$$
\left\|C\left(t-t_{0}\right) x_{0}+S\left(t-t_{0}\right) x_{1}-x_{0}\right\|_{\alpha} \leq \delta / 2
$$

and

$$
C_{\alpha}\left(1+t_{1}\right) e^{\omega t_{1}}\left(t_{1}-t_{0}\right)(B+K \delta) \leq \delta / 2
$$

Now, define $M=\left\{x \in C\left(\left[t_{0} ; t_{1}\right] ; X^{\alpha}\right) \mid \sup _{t_{0} \leq t \leq t_{1}}\left\|x(t)-x_{0}\right\|_{\alpha} \leq \delta\right\}$ with the usual sup-norm $|\|x\||=\sup _{t_{0} \leq t \leq t_{1}}\|x(t)\|_{\alpha}$. This is a complete metric space.

Consider a map $G: \bar{M} \rightarrow C\left(\left[t_{0} ; t_{1}\right] ; X^{\alpha}\right)$ defined for $x \in M$ as follows:

$$
G(x)(t)=C\left(t-t_{0}\right) x_{0}+S\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t} S(t-s) f(s, x(s)) d s
$$

First let us show that G maps M into itself. For any $x \in M$,

$$
\begin{aligned}
\left\|G(x)(t)-x_{0}\right\|_{\alpha} & \leq\left\|C\left(t-t_{0}\right) x_{0}+S\left(t-t_{0}\right) x_{1}-x_{0}\right\|_{\alpha} \\
& +\int_{t_{0}}^{t}\|S(t-s)\|_{\alpha}\|f(s, x(s))\| d s \\
& \leq \delta / 2+\left(t-t_{0}\right)\left(C_{\alpha}(1+t) e^{\omega t}\right)(B+K \delta) \leq \delta / 2+\delta / 2=\delta
\end{aligned}
$$

Now, let us show that G is a strict contraction (using Theorem 1), for any $x, y \in M$,

$$
\begin{aligned}
\|G(x)(t)-G(y)(t)\|_{\alpha} & \leq \int_{t_{0}}^{t}\|S(t-s)\|_{\alpha}\|f(s, x(s))-f(s, y(s))\| d s \\
& \leq\left(C_{\alpha}\left(1+t_{1}\right) e^{\omega t_{1}}\left(t_{1}-t_{0}\right) K\right)|\|x-y\|| \leq \frac{1}{2}|\|x-y\||
\end{aligned}
$$

Therefore, $|\|G(x)-G(y)\|| \leq \frac{1}{2}|\|x-y\||$.
So, $G: M \rightarrow M$ is a strict contraction. By the contraction mapping theorem there exists a unique element $x \in M$ satisfying $G(x)(t)=x(t)$, i.e., relation (8). This element is the sought-for solution.

Example 3. Consider the following equation:

$$
\frac{\partial^{2} x}{\partial t^{2}}=\frac{\partial^{2} x}{\partial s^{2}}+x \frac{\partial x}{\partial s}
$$

We rewrite it as

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+A x=f(t, x) \tag{9}
\end{equation*}
$$

where $x(t)$ is a function taking values in $X=L_{2}(\mathrm{R}) ; A x=-x^{\prime \prime}$ as in Example 1, $f(t, x)=x \cdot x^{\prime}$. Let us state the Cauchy problem for it,

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} \in X^{1 / 2}, \quad x^{\prime}\left(t_{0}\right)=x_{1} \tag{10}
\end{equation*}
$$

Now we will prove that the function $f(t, x)$ satisfies the conditions of Theorem 2 with $\alpha=1 / 2$ 。
Lemma 4. Let $X=L_{2}(\mathrm{R}), A x=x^{\prime \prime}, \alpha=1 / 2$ as in Example 1. Then
(1) $\exists C_{1}>0 \quad \forall x \in X^{1 / 2}: \quad\|x\|_{L_{\infty}} \leq C_{1}\|x\|_{\alpha}$;
(2) $\exists C_{2}>0 \quad \forall x \in X^{1 / 2}: \quad\|x\|_{L_{2}} \leq C_{2}\|x\|_{\alpha}$;
(3) $\exists C_{3}>0 \quad \forall x \in X^{1 / 2}: \quad\left\|\frac{d x}{d s}\right\|_{L_{2}} \leq C_{3}\|x\|_{\alpha}$.

Proof. (1) As noted in Example 1, $X^{1 / 2}=H^{1}(\mathrm{R})$ in the sense that they coincide as subsets of $X=L_{2}(\mathrm{R})$, and the corresponding norms are equivalent. And $H^{1}(\mathrm{R})$ is continuously embedded into $L_{\infty}(\mathrm{R})$ (even into $C(\mathrm{R})$), see [2, p. 9].
(2) Let $x \in X^{1 / 2}$. Then $\|x\|_{L_{2}}=\left\|A_{b}^{-1 / 2} A_{b}^{1 / 2} x\right\|_{L_{2}} \leq\left\|A_{b}^{-1 / 2}\right\|\|x\|_{\alpha}$. We obtain the needed inequality by denoting $C_{2}=\left\|A_{b}^{-1 / 2}\right\|$.
(3) $\left\|\frac{d x}{d s}\right\|_{L_{2}} \leq\|x\|_{H^{1}}$, and norms $\|\cdot\|_{H^{1}}$ and $\|\cdot\|_{\alpha}$ are equivalent (see part 1 of the proof).

Using Lemma 4, for $x, y \in X^{1 / 2}$ we have

$$
\begin{aligned}
\|f(x)-f(y)\|_{L_{2}} & =\left\|x \frac{d x}{d s}-y \frac{d y}{d s}\right\|_{L_{2}} \leq\left\|x \frac{d x}{d s}-y \frac{d x}{d s}\right\|_{L_{2}}+\left\|y \frac{d x}{d s}-y \frac{d y}{d s}\right\|_{L_{2}} \\
& \leq\|x-y\|_{L_{\infty}}\left\|\frac{d x}{d s}\right\|_{L_{2}}+\|y\|_{L_{\infty}}\left\|\frac{d x}{d s}-\frac{d y}{d s}\right\|_{L_{2}} \\
& \leq C_{1} C_{3}\left(\|x-y\|_{\alpha}\|x\|_{\alpha}+\|y\|_{\alpha}\|x-y\|_{\alpha}\right) \\
& =C_{1} C_{3}\left(\|x\|_{\alpha}+\|y\|_{\alpha}\right)\|x-y\|_{\alpha} .
\end{aligned}
$$

Therefore, by Theorem 2 the problem (9)-(10) has a unique local mild solution.
Theorem 3. Let $U \subset \mathrm{R} \times X^{\alpha}, f: U \rightarrow X$ and $K>0$ be as in Theorem 2, $x(t)$ a mild solution of the problem (6)-(7) on $\left[t_{0} ; t_{1}\right]$ with $x\left(t_{0}\right)=x_{0}, x^{\prime}\left(t_{0}\right)=x_{1}$. Then the following holds.
(1) If $x_{0} \in D\left(A_{b}^{\alpha}\right), x_{1} \in X$, then $x(t) \in D\left(A_{b}^{\alpha}\right)$.
(2) If $x_{0} \in D\left(A_{b}^{1 / 2+\alpha}\right)$ and $x_{1} \in D\left(A_{b}^{\alpha}\right)$, then $x(t)$ is locally Lipschitz as a function $\left[t_{0} ; t_{1}\right] \rightarrow X^{\alpha}$ (and, therefore, as a function $\left.\left[t_{0} ; t_{1}\right] \rightarrow X\right)$.
(3) If $x_{0} \in D(A)$ and $x_{1} \in D\left(A_{b}^{1 / 2}\right)$, then $x^{\prime}(t)$ is locally Lipschitz as a function $\left[t_{0} ; t_{1}\right] \rightarrow X$.

Proof. (1) Take $x_{0} \in D\left(A_{b}^{\alpha}\right), x_{1} \in X$. By Lemma 2 for every $t>t_{0}$ we have that

$$
C\left(t-t_{0}\right) x_{0} \in D\left(A_{b}^{\alpha}\right)
$$

By assumption $1, S\left(t-t_{0}\right) x_{1} \in D\left(A_{b}^{1 / 2}\right)$, but $D\left(A_{b}^{1 / 2}\right) \subset D\left(A_{b}^{\alpha}\right)$. Now,

$$
\int_{t_{0}}^{t} S(t-s) f(s, x(s)) d s \in D\left(A_{b}^{\alpha}\right)
$$

since by Assumption 1, we have $S(t-s) f(s, x(s)) \in D\left(A_{b}^{\alpha}\right)$, and $A_{b}^{\alpha} S(t-s) f(s, x(s))$ is a continuous function of the argument s. Hence,

$$
x(t)=C\left(t-t_{0}\right) x_{0}+S\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t} S(t-s) f(s, x(s)) d s \in D\left(A_{b}^{\alpha}\right)
$$

(2) Define $g(t)=f(t, x(t))$. Take an arbitrary point $t \in\left(t_{0} ; t_{1}\right)$. For sufficiently small $h>0$, we have

$$
\begin{equation*}
\|g(t+h)-g(t)\| \leq K\left(h+\|x(t+h)-x(t)\|_{\alpha}\right) \tag{11}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
& \|x(t+h)-x(t)\|_{\alpha} \\
& \quad \leq\left\|\left(C\left(t-t_{0}+h\right)-C\left(t-t_{0}\right)\right) A_{b}^{\alpha} x_{0}\right\|+\left\|\left(S\left(t-t_{0}+h\right)-S\left(t-t_{0}\right)\right) A_{b}^{\alpha} x_{1}\right\| \\
& \quad+\left\|\int_{t_{0}}^{t+h} A_{b}^{\alpha} S(t+h-\tau) g(\tau) d \tau-\int_{t_{0}}^{t} A_{b}^{\alpha} S(t-\tau) g(\tau) d \tau\right\|
\end{aligned}
$$

Recall that $C^{\prime}(s)=-S(s) A$ and $S^{\prime}(s)=C(s)$. Now,

$$
\begin{aligned}
& \|x(t+h)-x(t)\|_{\alpha} \\
& \quad \leq h\left(\sup _{\tau \in\left[t-t_{0} ; t_{1}-t_{0}\right]}\left\|A_{b}^{1 / 2} S(\tau)\right\|\right)\left\|A_{b}^{1 / 2+\alpha} x_{0}\right\|+h\left(\sup _{\tau \in\left[t-t_{0} ; t_{1}-t_{0}\right]}\|C(\tau)\|\right)\left\|A_{b}^{\alpha} x_{1}\right\| \\
& \quad+\left\|\int_{t_{0}}^{t_{0}+h} A_{b}^{\alpha} S(t+h-\tau) g(\tau) d \tau\right\|+\left\|\int_{t_{0}}^{t} A_{b}^{\alpha} S(t-\tau)(g(\tau+h)-g(\tau)) d \tau\right\| .
\end{aligned}
$$

Therefore we can choose $K_{1}, K_{2}>0$, independent of $t, t+h \in\left(t_{0} ; t_{1}\right)$, such that

$$
\begin{equation*}
\|x(t+h)-x(t)\|_{\alpha} \leq h K_{1}+K_{2} \int_{t_{0}}^{t}\|g(\tau+h)-g(\tau)\| d \tau \tag{12}
\end{equation*}
$$

Now substitute (12) into (11),

$$
\begin{aligned}
\|g(t+h)-g(t)\| & \leq K\left(h+\|x(t+h)-x(t)\|_{\alpha}\right) \\
& \leq K\left(h+h K_{1}+K_{2} \int_{t_{0}}^{t}\|g(\tau+h)-g(\tau)\| d \tau\right) \\
& =h K\left(1+K_{1}\right)+K_{2} K \int_{t_{0}}^{t}\|g(\tau+h)-g(\tau)\| d \tau
\end{aligned}
$$

By the Gronwall inequality for $t_{0}<t<t+h<t_{1}$ we have

$$
\begin{equation*}
\|g(t+h)-g(t)\| \leq h\left(K\left(1+K_{1}\right) e^{K_{2} K t}\right) \tag{13}
\end{equation*}
$$

hence

$$
\|x(t+h)-x(t)\|_{\alpha} \leq h\left(K_{1}+K_{2}\left(t_{1}-t_{0}\right)\left(K\left(1+K_{1}\right) e^{K_{2} K t}\right)\right)
$$

i.e., the functions $g(t)$ and $x(t)$ are locally Lipschitz.
(3) Take $x_{0} \in D(A)$. By differentiating (8) we obtain

$$
\begin{aligned}
x^{\prime}(t) & =C^{\prime}\left(t-t_{0}\right) x_{0}+S^{\prime}\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t} S^{\prime}(t-s) f(s, x(s)) d s \\
& =-S\left(t-t_{0}\right) A x_{0}+C\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t} C(t-s) f(s, x(s)) d s
\end{aligned}
$$

Arguing as in the case of $\|x(t+h)-x(t)\|_{\alpha}$ above, we have

$$
\begin{aligned}
& \left\|x^{\prime}(t+h)-x^{\prime}(t)\right\| \\
& \quad \leq\left\|\left(S\left(t-t_{0}+h\right)-S\left(t-t_{0}\right)\right) A x_{0}\right\|+\left\|\left(C\left(t-t_{0}+h\right)-C\left(t-t_{0}\right)\right) x_{1}\right\| \\
& \quad+\left\|\int_{t_{0}}^{t_{0}+h} C\left(t+h-t_{0}-\tau\right) g(\tau) d \tau\right\|+\left\|\int_{t_{0}}^{t} C(t-\tau)(g(\tau+h)-g(\tau)) d \tau\right\|
\end{aligned}
$$

and for some $K_{3}, K_{4}>0$, independent of $t, t+h \in\left(t_{0} ; t_{1}\right)$,

$$
\begin{equation*}
\left\|x^{\prime}(t+h)-x^{\prime}(t)\right\| \leq h K_{3}+K_{4} \int_{t_{0}}^{t}\|g(\tau+h)-g(\tau)\| d \tau \tag{14}
\end{equation*}
$$

By substituting (13) into (14) we obtain the assertion of the theorem.

4. Sufficient conditions for global existence and uniqueness of mild
 SOLUTIONS

Theorem 4. Let the continuous function $f: \mathrm{R}^{+} \times X^{\alpha} \rightarrow X$ in equation (6) satisfy a global Lipschitz condition, i.e., there exists $K>0$ such that for any $t, s \geq t_{0}$ and $x, y \in X^{\alpha}$, the following inequality holds:

$$
\|f(t, x)-f(s, y)\| \leq K\left(|t-s|+\|x-y\|_{\alpha}\right)
$$

Then $\forall x_{0} \in D\left(A_{b}^{1 / 2}\right), x_{1} \in X$ the problem (6)-(7) has a unique mild solution on $\left[t_{0} ;+\infty\right)$ with $x\left(t_{0}\right)=x_{0}, x^{\prime}\left(t_{0}\right)=x_{1}$.

Note that the theorem requires $x_{0} \in D\left(A_{b}^{1 / 2}\right)$ even if $\alpha<1 / 2$.
Proof. By Theorem 2, $\exists t_{1}>t_{0}$, problem (6)-(7) has a unique mild solution on $\left[t_{0} ; t_{1}\right]$. Denote by \tilde{t}_{1} the supremum of t_{1} such that a mild solution exists and is unique on $\left[t_{0} ; t_{1}\right]$. Then the solution $x(t)$ exists and is unique on $\left[t_{0} ; \tilde{t}_{1}\right)$.

Assume now that $\tilde{t}_{1}<+\infty$. First, we show that the solution is bounded on $\left[t_{0} ; \tilde{t}_{1}\right)$,

$$
\|x(t)\|_{\alpha} \leq\left\|C\left(t-t_{0}\right)\right\|\left\|x_{0}\right\|_{\alpha}+\left\|S\left(t-t_{0}\right)\right\|_{\alpha}\left\|x_{1}\right\|+\int_{t_{0}}^{t}\|S(t-\tau)\|_{\alpha}\|f(\tau, x(\tau))\| d \tau
$$

The functions $C\left(t-t_{0}\right)$ and $A_{b}^{\alpha} S\left(t-t_{0}\right)$ are strongly continuous for every $t \in \mathrm{R}$, so they are bounded on $\left[t_{0} ; \tilde{t}_{1}\right)$. Therefore, $\exists K_{1}>0, K_{2}>0$ such that $\forall t \in\left[t_{0} ; \tilde{t}_{1}\right):\left\|C\left(t-t_{0}\right)\right\|\left\|x_{0}\right\|_{\alpha}$ $+\left\|S\left(t-t_{0}\right)\right\|_{\alpha}\left\|x_{1}\right\| \leq K_{1},\left\|S\left(t-t_{0}\right)\right\|_{\alpha} \leq K_{2}$. Hence,

$$
\begin{equation*}
\|x(t)\|_{\alpha} \leq K_{1}+K_{2} \int_{t_{0}}^{t}\|f(\tau, x(\tau))\| d \tau \tag{15}
\end{equation*}
$$

Furthermore, for $\tau \in\left[t_{0} ; \tilde{t}_{1}\right)$

$$
\begin{aligned}
\|f(\tau, x(\tau))\| & \leq\left\|f(\tau, x(\tau))-f\left(t_{0}, x\left(t_{0}\right)\right)\right\|+\left\|f\left(t_{0}, x\left(t_{0}\right)\right)\right\| \\
& \leq K\left(\left(\tau-t_{0}\right)+\left\|x(\tau)-x\left(t_{0}\right)\right\|_{\alpha}\right)+\left\|f\left(t_{0}, x\left(t_{0}\right)\right)\right\| \\
& \leq\left(K\left(\tilde{t}_{1}-t_{0}\right)+K\left\|x\left(t_{0}\right)\right\|_{\alpha}+\left\|f\left(t_{0}, x\left(t_{0}\right)\right)\right\|\right)+K\|x(\tau)\|_{\alpha} \\
& =K_{3}+K\|x(\tau)\|_{\alpha}
\end{aligned}
$$

(where K_{3} is independent of τ).
Using (15), we obtain

$$
\|x(t)\|_{\alpha} \leq K_{1}+K_{2} K_{3}\left(\tilde{t}_{1}-t_{0}\right)+K_{2} K \int_{t_{0}}^{t}\|x(\tau)\|_{\alpha} d \tau
$$

Therefore, by Gronwall inequality,

$$
\|x(t)\|_{\alpha} \leq\left(K_{1}+K_{2} K_{3}\left(\tilde{t}_{1}-t_{0}\right)\right) e^{K_{2} K t}
$$

So $x(\cdot):\left[t_{0} ; \tilde{t}_{1}\right) \rightarrow X^{\alpha}$ is a bounded continuous function and we can extend it to the point \tilde{t}_{1}, and $x\left(\tilde{t}_{1}\right) \in X^{\alpha}$.

In a similar way it can be shown that the function $x^{\prime}(\cdot):\left[t_{0} ; \tilde{t}_{1}\right) \rightarrow X$ is bounded (noting that $\left.\left(C\left(t-t_{0}\right) x_{0}\right)^{\prime}=-A_{b}^{1 / 2} S(t) A_{b}^{1 / 2} x_{0}-b S(t)\right)$. Hence we have $x^{\prime}\left(\tilde{t}_{1}\right)$. So we are in a position to apply Theorem 2 with initial time \tilde{t}_{1} and conditions $x\left(\tilde{t}_{1}\right), x^{\prime}\left(\tilde{t}_{1}\right)$, which means that we can extend the solution further than \tilde{t}_{1}, which is a contradiction to its maximality. We have therefore proved that $\tilde{t}_{1}=+\infty$.

5. Some particular cases

Theorem 5. Let $f(t, x)=f_{1}(t, x, B x)$, where B is a closed linear operator, relatively bounded with respect to $A_{b}^{\alpha}\left(D\left(A_{b}^{\alpha}\right) \subset D(B)\right.$ and $\exists C_{1}, C_{2} \geq 0 \forall x \in D\left(A_{b}^{\alpha}\right)$ such that $\left.\|B x\| \leq C_{1}\|x\|+C_{2}\left\|A_{b}^{\alpha} x\right\|\right)$. Let the continuous function $f_{1}: \mathrm{R}^{+} \times D(B) \times X \rightarrow X$
satisfy a global Lipschitz condition, i.e., there exists $K>0$ such that $\forall t_{1} \geq t_{0}, t \geq t_{0}, x_{1} \in$ $D(B), x_{2} \in D(B), y_{1} \in X, y_{2} \in X$ the following inequality holds:

$$
\left\|f_{1}\left(t_{1}, x_{1}, y_{1}\right)-f_{1}\left(t_{2}, x_{2}, y_{2}\right)\right\| \leq K\left(\left|t_{1}-t_{2}\right|+\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|\right),
$$

Then $\forall x_{0} \in D\left(A_{b}^{1 / 2}\right), x_{1} \in X$ the problem (6)-(7) has a unique mild solution on $\left[t_{0} ;+\infty\right)$ with $x\left(t_{0}\right)=x_{0}, x^{\prime}\left(t_{0}\right)=x_{1}$.
Proof. It suffices to show that $f(t, x)$ satisfies the conditions of Theorem 4.
Choose $t_{1} \geq t_{0}, t \geq t_{0}, x_{1} \in D(B), x_{2} \in D(B)$. Then

$$
\begin{aligned}
\left\|f\left(t_{1}, x_{1}\right)-f\left(t_{2}, x_{2}\right)\right\| & =\left\|f_{1}\left(t_{1}, x_{1}, B x_{1}\right)-f_{1}\left(t_{2}, x_{2}, B x_{2}\right)\right\| \\
& \leq K\left(\left|t_{1}-t_{2}\right|+\left\|x_{1}-x_{2}\right\|+\left\|B\left(x_{1}-x_{2}\right)\right\|\right) \\
& \leq K\left(\left|t_{1}-t_{2}\right|+\left(1+C_{1}\right)\left\|x_{1}-x_{2}\right\|+C_{2}\left\|A_{b}^{\alpha}\left(x_{1}-x_{2}\right)\right\|\right) \\
& =K\left(\left|t_{1}-t_{2}\right|+\left(\left(1+C_{1}\right)\left\|A_{b}^{-\alpha}\right\|+C_{2}\right)\left\|A_{b}^{\alpha}\left(x_{1}-x_{2}\right)\right\|\right) \\
& =K_{1}\left(\left|t_{1}-t_{2}\right|+\left\|x_{1}-x_{2}\right\|_{\alpha}\right) .
\end{aligned}
$$

Let $X=L_{2}(\mathrm{R}), A x=-x^{\prime \prime}, \alpha=1 / 2, X^{1 / 2}=H^{1}(\mathrm{R})$ as in Example 1. Consider the following Cauchy problem:

$$
\begin{gather*}
\frac{d^{2} x}{d t^{2}}+A x=h(x) g(x), \tag{16}\\
x\left(t_{0}\right)=x_{0}, \quad x^{\prime}\left(t_{0}\right)=x_{1} . \tag{17}
\end{gather*}
$$

Theorem 6. Let $U \subset H^{1}(\mathrm{R})$ be an open set and let the functions $g: U \rightarrow L_{2}(\mathrm{R})$, $h: U \rightarrow L_{\infty}(\mathrm{R})$ satisfy Lipschitz conditions, namely, if $x_{1} \in U$ then there exist $K_{g}>0$, $K_{h}>0$ and a neighborhood $U_{1} \subset U$ of the point x_{1} such that for $x, y \in U_{1}$ the following inequalities hold:

$$
\begin{array}{ll}
\|g(x)-g(y)\|_{L_{\infty}} \leq K_{g}\|x-y\|_{H^{1}}, & \|g(x)\|_{L_{\infty}} \leq K_{g}\|x\|_{H^{1}} \\
\|h(x)-h(y)\|_{L_{2}} \leq K_{h}\|x-y\|_{H^{1}}, & \|h(x)\|_{L_{2}} \leq K_{h}\|x\|_{H^{1}} .
\end{array}
$$

Then for every $t_{0} \in \mathrm{R}, x_{0} \in U$ and $x_{1} \in X$ there exists $t_{1}>t_{0}$ such that the problem (16)-(17) has a unique mild solution on $\left[t_{0} ; t_{1}\right]$.

Proof. To use Theorem 2 it suffices to show that the function $f(x)=g(x) h(x)$ is locally Lipschitz as a function $U \rightarrow L_{2}(\mathrm{R})$.

For any $x, y \in U_{1}$,

$$
\begin{aligned}
\|f(x)-f(y)\|_{L_{2}} & \leq\|g(x) h(x)-g(x) h(y)\|_{L_{2}}+\|g(x) h(y)-g(y) h(y)\|_{L_{2}} \\
& \leq\|g(x)\|_{L_{\infty}}\|h(x)-h(y)\|_{L_{2}}+\|g(x)-g(y)\|_{L_{\infty}}\|h(y)\|_{L_{2}} \\
& \leq K_{g} K_{h}\left(\|x\|_{H^{1}}\|x-y\|_{H^{1}}+\|x-y\|_{H^{1}}\|y\|_{H^{1}}\right) \leq \\
& \leq C K_{g} K_{h}\left(\|x\|_{\alpha}+\|y\|_{\alpha}\right)\|x-y\|_{\alpha},
\end{aligned}
$$

(because $\|\cdot\|_{H^{1}}$ and $\|\cdot\|_{\alpha}$ are equivalent).
Example 4. As in Example 2, for the equation

$$
\begin{equation*}
\frac{\partial^{2} x}{\partial t^{2}}=\frac{\partial^{2} x}{\partial s^{2}}+x \frac{\partial x}{\partial s}+x^{3} \tag{18}
\end{equation*}
$$

let us state the Cauchy problem (16)-(17) with $h(x)=\frac{d x}{d s}+x^{2}, g(x)=x$. Obviously, the function $g(\cdot)$ satisfies the conditions of Theorem 6. Let us check the conditions of Theorem 6 for $h(\cdot)$. We have

$$
\|h(x)-h(y)\|_{L_{2}} \leq C\left(\|x-y\|_{H^{1}}+\|x+y\|_{L_{\infty}}\|x-y\|_{L_{2}}\right) \leq C_{1}\|x-y\|_{H^{1}},
$$

and, by analogy,

$$
\|h(x)\|_{L_{2}} \leq C_{1}\|x\|_{H^{1}} .
$$

So, for given $t_{0}, x_{0} \in H^{1}(\mathrm{R}), x_{1} \in L_{2}(\mathrm{R})$ there exists a unique local mild solution of the problem (16)-(17) for the equation (18).

6. SUFFICIENT CONDITIONS FOR A MILD SOLUTION TO BE CLASSICAL

Now we consider conditions under which a mild solution of the Cauchy problem (6)(7) is also a classical solution. Since our case is close to the case when $C(t)$ possesses a group decomposition, we can prove a theorem with conditions similar to [5, Theorem III.1.5].

Theorem 7. Let $U \subset \mathrm{R} \times X^{\alpha}$, $f: U \rightarrow X$ and $K>0$ be as in Theorem 2, $x_{0} \in$ $D(A), x_{1} \in D\left(A_{b}^{1 / 2}\right)$, and $x(t)$ a the mild solution of the problem (6)-(7) on $\left[t_{0} ; t_{1}\right]$ with $x\left(t_{0}\right)=x_{0}, x^{\prime}\left(t_{0}\right)=x_{1}$. If for every $(\tau, y) \in U, f(\tau, y) \in D\left(A_{b}^{1 / 2}\right)$ and $A_{b}^{1 / 2} f(\cdot, \cdot)$ is a continuous function on U, then $x(t)$ is a classical solution.
Proof. First we note that $C(t) x$ is differentiable for any $x \in D\left(A_{b}^{1 / 2}\right)$ and

$$
\begin{equation*}
C^{\prime}(t) x=-b S(t)-A_{b}^{1 / 2} S(t) A_{b}^{1 / 2} x=-A S(t) x \tag{19}
\end{equation*}
$$

Then we have

$$
x^{\prime}(t)=-S\left(t-t_{0}\right) A x_{0}+C\left(t-t_{0}\right) x_{1}+\int_{t_{0}}^{t} C(t-s) f(s, x(s)) d s
$$

Differentiating with respect to t one more time and using (19) we obtain

$$
x^{\prime \prime}(t)=-A C\left(t-t_{0}\right) x_{0}-A S\left(t-t_{0}\right) x_{1}+f(t, x(t))-\int_{t_{0}}^{t} A S(t-s) f(s, x(s)) d s
$$

Obviously $x^{\prime \prime}(t)$ is continuous, and

$$
x^{\prime \prime}(t)=-A x(t)+f(t, x(t))
$$

7. Conclusion

In the paper we have constructed sufficient conditions for existence and uniqueness of mild solutions of the Cauchy problem (6)-(7) for continuous functions $f: U \rightarrow X$, $U \subset \mathrm{R} \times X^{\alpha}$, satisfying local Lipschitz condition.

References

1. Seppo Heikkila, V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, 1994.
2. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
3. E. M. Stein, Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
4. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Elsevier Science Publishers B. V., Amsterdam, 1985.
5. S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967. (Russian); English transl. Amer. Math. Soc., Providence, RI, 1971.

National Technical University of Ukraine (KPI), 37 Peremogy Prosp., Kyiv, 03056, Ukraine
E-mail address: yaroslav1984@pochta.ru
Received 01/04/2010; Revised 23/06/2010

