EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS OF SECOND ORDER SEMILINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACE

YA. V. GORBATENKO

ABSTRACT. We consider the Cauchy problem for second order semilinear differential equations in Banach space. Sufficient conditions of local and global existence and uniqueness of mild solutions are presented.

1. Introduction

Let X be a complex Banach space, A a closed densely defined linear operator. We consider the following semilinear differential equation:

(1)
$$\frac{d^2x}{dt^2}(t) + Ax(t) = f(t, x(t)),$$

where the function $x(\cdot)$ takes values in X, and f maps some open subset of $\mathbb{R} \times X$ to X. Equations of type (1) are considered in [1], where sufficient conditions of existence and uniqueness of solutions are presented for a broad class of functions f, including discontinuous functions. However, there are examples of functions f for which these results cannot be applied, e.g., $f_1(t,x) = x^3$ and $f_2(t,x) = x \cdot x'$ on $X = L_2(\mathbb{R})$.

In this paper we apply Henry's method [2] to second order semilinear equation (1) and prove several theorems about sufficient conditions of existence and uniqueness of solutions of Cauchy problems for a class of continuous functions f. As shown below, this class includes f_1 and f_2 in $X = L_2(\mathbf{R})$ if Ax = -x'' (defined on $x \in X$ such that x'', understood in the sense of distributions, belongs to X).

2. Preliminaries

Let C(t) be an operator cosine function with generator -A. Linear operator -A is also a generator of an analytic semigroup T(t). At first let us consider the case when $\sigma(A) \subset \{\lambda | \text{Re } \lambda > 0\}$. For $\alpha > 0$ define

$$A^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^\infty s^{\alpha - 1} T(s) \, ds$$

(see [2, p. 24]).

Operator $A^{-\alpha}$ is bounded in X and has an inverse [2, Theorem 1.4.2, p. 25].

Define $A^{\alpha} = (A^{-\alpha})^{-1}$. A^{α} is closed and densely defined. For arbitrary α, β , we have $A^{\alpha}A^{\beta} = A^{\beta}A^{\alpha} = A^{\alpha+\beta}$ on $D(A^{\alpha}) \cap D(A^{\beta}) \cap D(A^{\alpha+\beta})$; if $\alpha > \beta$, then $D(A^{\alpha}) \subset D(A^{\beta})$ [2, p. 25–26].

Now consider the case when $\sigma(A) \not\subset \{\lambda | \operatorname{Re} \lambda > 0\}$. Let us denote $\omega = -\inf \operatorname{Re} \sigma(A)$, then for $b > \omega$ we have $\sigma(A + bI) \subset \{\lambda | \operatorname{Re} \lambda > 0\}$. Define: $A_b = A + bI$, $A_b^{\alpha} = (A_b)^{\alpha}$,

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 47D09; Secondary 34G20, 35L15. Key words and phrases. Semilinear differential equation, cosine function.

 $X_b^{\alpha} = D(A_b^{\alpha})$, for $x \in X_b^{\alpha}$ denote $||x||_{\alpha} = ||A_b^{\alpha}x||$. Then

(2)
$$A_b^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^\infty s^{\alpha - 1} e^{-sb} T(s) \, ds.$$

Lemma 1. ([2, Theorem 1.4.6, p. 28; Theorem 1.4.8, p. 29]). The space X_b^{α} does not depend on the choice of b such that $\sigma(A+bI) \subset \{\lambda | \text{Re } \lambda > 0\}$. $X^{\alpha} = X_b^{\alpha}$ is a Banach space in the norm $\|\cdot\|_{\alpha}$, and for different b the corresponding norms $\|\cdot\|_{\alpha}$ are equivalent.

Example 1. Let $X = L_2(R)$, Ax = -x'', where D(A) is the set of all $x \in X$ such that x'' (understood in the sense of distributions) belongs to $L_2(R)$; $\alpha = \frac{1}{2}$. Then $X^{1/2} = H^1(R)$ in the sense that they coincide as subsets of $X = L_2(R)$, and the corresponding norms are equivalent ([2, p. 77]; [3, Theorem V.3, p. 135]).

Lemma 2. Let C(t), S(t), T(t) be, respectively, cosine function, sine function and a semigroup with the generator -A. Then for any $s \ge 0, t \ge 0, \alpha > 0$ and $b > \omega$, the following relations hold:

(3)
$$T(s)C(t) = C(t)T(s),$$

(4)
$$A_b^{-\alpha}C(t) = C(t)A_b^{-\alpha}, \quad A_b^{-\alpha}S(t) = S(t)A_b^{-\alpha},$$

and for $x \in D(A_b^{\alpha})$

$$C(t)x \in D(A_b^{\alpha}), \quad A_b^{\alpha}C(t)x = C(t)A_b^{\alpha}x,$$

(5)
$$S(t)x \in D(A_b^{\alpha}), \quad A_b^{\alpha}S(t)x = S(t)A_b^{\alpha}x.$$

Proof. Since the semigroup T(t) is analytic,

$$T(s) = \frac{1}{2\pi i} \oint_{\Gamma} e^{\lambda s} R(\lambda; -A) \, d\lambda,$$

where Γ is a contour in the resolvent set of the operator -A with arg $\lambda \to \pm \theta$ as $|\lambda| \to \infty$ for some $\theta \in (\pi/2; \pi)$. Also we have $R(\lambda; -A)C(t) = C(t)R(\lambda; -A)$. Hence

$$T(s)C(t) = \frac{1}{2\pi i} \oint_{\Gamma} e^{\lambda s} R(\lambda; -A)C(t) d\lambda = \frac{1}{2\pi i} \oint_{\Gamma} e^{\lambda s} C(t)R(\lambda; -A) d\lambda = C(t)T(s)$$

and (3) is proved.

Relations (4) are immediate consequences of (2) and (3).

Relations (5) are easily obtained from (4), as well as the following statement: if bounded linear operators B_1 , B_2 commute, B_1^{-1} exists and $x \in D(B_1^{-1})$, then $B_2B_1^{-1}x = B_1^{-1}B_1B_2B_1^{-1}x = B_1^{-1}B_2B_1B_1^{-1}x = B_1^{-1}B_2x$ and $B_2x \in D(B_1^{-1})$.

In what follows we assume that the following holds.

Assumption 1. ([4, Assumption 5.1, p. 63]). Let $b > \omega$. Then $S(t)X \in D(A_b^{1/2})$, and $A_b^{1/2}S(t)$ is a strongly continuous function of the argument t on $-\infty < t < +\infty$.

Lemma 3. ([4, Lemma 5.2, p. 63; Theorem 5.4, p. 65; eq. 5.12, p. 65]). If Assumption 1 holds, then $\forall b > \omega \quad \exists C_{1/2} > 0 \ \forall t \geq 0$

$$||A_b^{1/2}S(t)|| \le C_{1/2}(1+t)e^{\omega t}.$$

Assumption 1 holds for any generator of the cosine function in any complex Lebesgue space $L_p(Y, \mu)$, 1 [4, Theorem 6.1, p. 71; Theorem 6.3, p. 73].

Theorem 1. (analogous to [2, Theorem 1.4.3, p. 26]). Under Assumption 1, for any $\alpha \in \left[0; \frac{1}{2}\right]$ we have the following:

- 1) there exists $C_{\alpha} > 0$ such that for every $t \geq 0$, $||S(t)||_{\alpha} \leq C_{\alpha}(1+t)e^{\omega t}$;
- 2) for $\forall x_0 \in D(A_b^{\alpha}), x_1 \in X$ we have that $\|C(t)x_0 + S(t)x_1 x_0\|_{\alpha} \longrightarrow_{t \to 0} 0$.

Proof. To prove the first statement we use Lemma 3

$$||S(t)||_{\alpha} = ||A_b^{\alpha} S(t)|| \le ||A_b^{1/2} S(t) A_b^{-(1/2-\alpha)}||$$

$$\le C_{1/2} (1+t) e^{\omega t} \cdot ||A_b^{-(1/2-\alpha)}|| = C_{\alpha} (1+t) e^{\omega t}.$$

The second statement is implied by the following:

$$\begin{split} A_b^\alpha \left(C(t) x_0 + S(t) x_1 - x_0 \right) &= \left(C(t) - I \right) A_b^\alpha x_0 + A_b^{1/2} S(t) A_b^{-(1/2 - \alpha)} x_1 \\ &= \left(C(t) - I \right) y_0 + A_b^{1/2} S(t) y_1 \underset{t \to 0}{\longrightarrow} \left(C(0) - I \right) y_0 + A_b^{1/2} S(0) y_1 = 0, \end{split}$$

because C(t) and $A_b^{1/2}S(t)$ are strongly continuous functions.

Note, however, that the operators $A_b^{\alpha}S(t)$, $\alpha>\frac{1}{2}$ and $A_b^{\alpha}C(t)$, $\alpha>0$, can be unbounded.

Example 2. Let $X = L_2(\mathbf{R}), Ax = -x''$ as in Example 1. Then $\forall x_0 \in H^1(\mathbf{R}), x_1 \in X$ $(C(t)x_0)(s) = \frac{1}{2}(x_0(s+t) + x_0(s-t)),$

$$(S(t)x_1)(s) = \frac{1}{2} \int_{s-t}^{s+t} x_1(\xi) d\xi.$$

Take $\alpha = \frac{1}{2}$, then $\forall t > 0$ the operator $A_b^{\alpha}C(t)$ is unbounded. Consider, for example,

$$x_n(s) = \begin{cases} \sin n \frac{2\pi s}{t}, & 0 \le s \le t, \\ 0, & \text{otherwise,} \end{cases}$$

then $\{||x_n||, n = 0, 1, \ldots\}$ is bounded, but

$$||A_b^{\alpha}C(t)x_n|| = ||C(t)x_n||_{\alpha} \ge \operatorname{const} \times ||C(t)x_n||_{H^1} \underset{n \to +\infty}{\longrightarrow} +\infty.$$

Take $\alpha = 1$, then $\forall t > 0$ the operator $A_h^{\alpha} S(t)$ is unbounded,

$$(AS(t)x_1)(s) = \frac{1}{2} \frac{\partial^2}{\partial s^2} \int_{s-t}^{s+t} x_1(\xi) d\xi = \frac{1}{2} \frac{\partial}{\partial s} (x_1(s+t) - x_1(s-t))$$
$$= \frac{1}{2} (x_1'(s+t) - x_1'(s-t)).$$

3. Sufficient conditions of local existence and uniqueness of mild solutions

For functions defined on some interval $[t_0; t_1]$ or semiaxis $[t_0; +\infty)$ and taking values in a Banach space X consider the following semilinear equation:

(6)
$$\frac{d^2x}{dt^2}(t) + Ax(t) = f(t, x(t)),$$

where the function f maps some open set $U \subset \mathbb{R} \times X^{\alpha}$ to X, for fixed $\alpha \in \left[0, \frac{1}{2}\right]$, and state the following Cauchy problem for it:

(7)
$$x(t_0) = x_0 \in D(A_h^{\alpha}), \quad x'(t_0) = x_1 \in X.$$

A classical solution of the problem (6)–(7) on $[t_0; t_1]$ is a function $x : [t_0; t_1] \to X$ that is twice continuously differentiable, $x(t) \in D(A)$ for all $t \in [t_0; t_1]$, and satisfies (6) and (7).

A mild solution of the problem (6)–(7) on $[t_0; t_1]$ is a continuous function $x : [t_0; t_1] \to X$ that satisfies, on $[t_0; t_1]$, the equation

(8)
$$x(t) = C(t - t_0)x_0 + S(t - t_0)x_1 + \int_{t_0}^t S(t - \tau)f(\tau, x(\tau)) d\tau.$$

A classical solution of the problem (6)–(7) is also a mild solution ([1, p. 436]). The converse doesn't always hold, since the mild solution may fail to be twice continuously differentiable.

Theorem 2. Let $U \subset \mathbb{R} \times X^{\alpha}$ be an open set and $f: U \to X$ a continuous function that satisfies a local Lipschitz condition, for every point $(t_1, x_1) \in U$ there exists K > 0 and a neighborhood $U_1 \subset U$ of the point (t_1, x_1) such that for $x, y \in U_1$ the inequality

$$||f(t,x) - f(s,y)|| \le K(|t-s| + ||x-y||_{\alpha})$$

holds. Then for each pair (t_0, x_0) from U and $x_1 \in X$ there exists $t_1 > t_0$ such that problem (6)-(7) has a unique mild solution on $[t_0;t_1]$ with $x(t_0)=x_0\in D(A_h^{\alpha}), x'(t_0)=x_0\in D(A_h^{\alpha})$ $x_1 \in X$.

(This theorem is analogous to [2, Theorem 3.3.3, p. 54])

Proof. Let $V(\tau, \delta) = \{(t, x) | t \in [t_0; t_0 + \tau], ||x - x_0||_{\alpha} \leq \delta\}$. Choose τ, δ such that $V(\tau,\delta) \subset U$ and for $(t,x),(t,y) \in V(\tau,\delta)$ the following holds: $||f(t,x)-f(t,y)|| \leq$ $K \|x - y\|_{\alpha}$. Also let $B = \max_{t \in [t_0; t_0 + \tau]} \|f(t, x_0)\|$.

Using Theorem 1, choose $t_1 \in (t_0, t_0 + \tau]$ such that for $t \in [t_0; t_1]$,

$$||C(t-t_0)x_0 + S(t-t_0)x_1 - x_0||_{\alpha} \le \delta/2$$

and

$$C_{\alpha}(1+t_1)e^{\omega t_1}(t_1-t_0)(B+K\delta) \le \delta/2.$$

Now, define $M = \left\{ x \in C([t_0; t_1]; X^{\alpha}) | \sup_{t_0 \le t \le t_1} \|x(t) - x_0\|_{\alpha} \le \delta \right\}$ with the usual sup-norm $|||x||| = \sup_{t_0 \le t \le t_1} ||x(t)||_{\alpha}$. This is a complete metric space. Consider a map $G: M \to C([t_0; t_1]; X^{\alpha})$ defined for $x \in M$ as follows:

$$G(x)(t) = C(t - t_0)x_0 + S(t - t_0)x_1 + \int_{t_0}^t S(t - s)f(s, x(s)) ds.$$

First let us show that G maps M into itself. For any $x \in M$,

$$||G(x)(t) - x_0||_{\alpha} \le ||C(t - t_0)x_0 + S(t - t_0)x_1 - x_0||_{\alpha}$$

$$+ \int_{t_0}^{t} ||S(t - s)||_{\alpha} ||f(s, x(s))|| ds$$

$$\le \frac{\delta}{2} + (t - t_0) \left(C_{\alpha}(1 + t)e^{\omega t} \right) (B + K\delta) \le \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Now, let us show that G is a strict contraction (using Theorem 1), for any $x, y \in M$,

$$\begin{split} \|G(x)(t) - G(y)(t)\|_{\alpha} & \leq \int_{t_0}^{t} \|S(t-s)\|_{\alpha} \|f(s,x(s)) - f(s,y(s))\| \, ds \\ & \leq \left(C_{\alpha}(1+t_1)e^{\omega t_1} \left(t_1 - t_0 \right) K \right) |\|x-y\|| \leq \frac{1}{2} \left| \|x-y\| \right|. \end{split}$$

Therefore, $|||G(x) - G(y)||| \le \frac{1}{2} |||x - y|||$.

So, $G: M \to M$ is a strict contraction. By the contraction mapping theorem there exists a unique element $x \in M$ satisfying G(x)(t) = x(t), i.e., relation (8). This element is the sought-for solution.

Example 3. Consider the following equation:

$$\frac{\partial^2 x}{\partial t^2} = \frac{\partial^2 x}{\partial s^2} + x \frac{\partial x}{\partial s}.$$

We rewrite it as

(9)
$$\frac{d^2x}{dt^2} + Ax = f(t, x),$$

where x(t) is a function taking values in $X = L_2(R)$; Ax = -x'' as in Example 1, $f(t,x) = x \cdot x'$. Let us state the Cauchy problem for it

(10)
$$x(t_0) = x_0 \in X^{1/2}, \quad x'(t_0) = x_1.$$

Now we will prove that the function f(t,x) satisfies the conditions of Theorem 2 with $\alpha = \frac{1}{2}$.

Lemma 4. Let $X = L_2(R)$, Ax = x'', $\alpha = \frac{1}{2}$ as in Example 1. Then

- $(1) \ \exists C_1 > 0 \quad \forall x \in X^{1/2}: \quad \left\|x\right\|_{_{L_{\infty}}} \leq C_1 \left\|x\right\|_{\alpha};$
- $\begin{array}{lll} (2) & \exists C_2 > 0 & \forall x \in X^{1/2}: & \|x\|_{L_2} \le C_2 \|x\|_{\alpha}; \\ (3) & \exists C_3 > 0 & \forall x \in X^{1/2}: & \left\|\frac{dx}{ds}\right\|_{L_2} \le C_3 \|x\|_{\alpha} \end{array}$

(1) As noted in Example 1, $X^{1/2} = H^1(\mathbf{R})$ in the sense that they coincide as subsets of $X = L_2(R)$, and the corresponding norms are equivalent. And $H^1(R)$ is continuously embedded into $L_{\infty}(R)$ (even into C(R)), see [2, p. 9].

- (2) Let $x \in X^{1/2}$. Then $||x||_{L_2} = ||A_b^{-1/2} A_b^{1/2} x||_{L_2} \le ||A_b^{-1/2}|| ||x||_{\alpha}$. We obtain the needed inequality by denoting $C_2 = ||A_b^{-1}||$
- (3) $\left\|\frac{dx}{ds}\right\|_{L_2} \leq \|x\|_{H^1}$, and norms $\|\cdot\|_{H^1}$ and $\|\cdot\|_{\alpha}$ are equivalent (see part 1 of the

Using Lemma 4, for $x, y \in X^{1/2}$ we have

 $||f(x) - f(y)||_{L_2} = ||x\frac{dx}{ds} - y\frac{dy}{ds}||_{L_2} \le ||x\frac{dx}{ds} - y\frac{dx}{ds}||_{L_2} + ||y\frac{dx}{ds} - y\frac{dy}{ds}||_{L_2}$ $\leq \|x - y\|_{L_{\infty}} \left\| \frac{dx}{ds} \right\|_{L_{\infty}} + \|y\|_{L_{\infty}} \left\| \frac{dx}{ds} - \frac{dy}{ds} \right\|_{L_{\infty}}$ $\leq C_1 C_3 (\|x-y\|_{\alpha} \|x\|_{\alpha} + \|y\|_{\alpha} \|x-y\|_{\alpha})$ $= C_1 C_3 (\|x\|_{\alpha} + \|y\|_{\alpha}) \|x - y\|_{\alpha}.$

Therefore, by Theorem 2 the problem (9)–(10) has a unique local mild solution.

Theorem 3. Let $U \subset \mathbb{R} \times X^{\alpha}$, $f: U \to X$ and K > 0 be as in Theorem 2, x(t) a mild solution of the problem (6)–(7) on $[t_0;t_1]$ with $x(t_0)=x_0, x'(t_0)=x_1$. Then the following holds.

- (1) If x₀ ∈ D(A_b^α), x₁ ∈ X, then x(t) ∈ D(A_b^α).
 (2) If x₀ ∈ D(A_b^{1/2+α}) and x₁ ∈ D(A_b^α), then x(t) is locally Lipschitz as a function [t₀; t₁] → X^α (and, therefore, as a function [t₀; t₁] → X).
- (3) If $x_0 \in D(A)$ and $x_1 \in D(A_b^{1/2})$, then x'(t) is locally Lipschitz as a function $[t_0;t_1] \to X$.

Proof. (1) Take $x_0 \in D(A_b^{\alpha}), x_1 \in X$. By Lemma 2 for every $t > t_0$ we have that

$$C(t-t_0)x_0 \in D(A_h^{\alpha}).$$

By assumption 1, $S(t-t_0)x_1 \in D(A_h^{1/2})$, but $D(A_h^{1/2}) \subset D(A_h^{\alpha})$. Now,

$$\int_{t_a}^{t} S(t-s)f(s,x(s)) ds \in D(A_b^{\alpha}),$$

since by Assumption 1, we have $S(t-s)f(s,x(s)) \in D(A_h^\alpha)$, and $A_h^\alpha S(t-s)f(s,x(s))$ is a continuous function of the argument s. Hence,

$$x(t) = C(t - t_0)x_0 + S(t - t_0)x_1 + \int_{t_0}^t S(t - s)f(s, x(s)) ds \in D(A_b^{\alpha}).$$

(2) Define g(t) = f(t, x(t)). Take an arbitrary point $t \in (t_0; t_1)$. For sufficiently small h > 0, we have

(11)
$$||g(t+h) - g(t)|| \le K (h + ||x(t+h) - x(t)||_{\alpha}).$$

Therefore,

$$\begin{split} &\|x(t+h) - x(t)\|_{\alpha} \\ &\leq \|(C(t-t_0+h) - C(t-t_0)) \, A_b^{\alpha} x_0\| + \|(S(t-t_0+h) - S(t-t_0)) \, A_b^{\alpha} x_1\| \\ &+ \Big\| \int_{t_0}^{t+h} A_b^{\alpha} S(t+h-\tau) g(\tau) \, d\tau - \int_{t_0}^t A_b^{\alpha} S(t-\tau) g(\tau) \, d\tau \Big\|. \end{split}$$

Recall that C'(s) = -S(s)A and S'(s) = C(s). Now,

$$\begin{aligned} & \|x(t+h) - x(t)\|_{\alpha} \\ & \leq h \Big(\sup_{\tau \in [t-t_0; t_1 - t_0]} \left\| A_b^{1/2} S(\tau) \right\| \Big) \left\| A_b^{1/2 + \alpha} x_0 \right\| + h \Big(\sup_{\tau \in [t-t_0; t_1 - t_0]} \|C(\tau)\| \Big) \|A_b^{\alpha} x_1\| \\ & + \left\| \int_{t_0}^{t_0 + h} A_b^{\alpha} S(t+h-\tau) g(\tau) \, d\tau \right\| + \left\| \int_{t_0}^{t} A_b^{\alpha} S(t-\tau) \left(g(\tau+h) - g(\tau) \right) \, d\tau \right\|. \end{aligned}$$

Therefore we can choose $K_1, K_2 > 0$, independent of $t, t + h \in (t_0; t_1)$, such that

(12)
$$||x(t+h) - x(t)||_{\alpha} \le hK_1 + K_2 \int_{t_0}^t ||g(\tau + h) - g(\tau)|| d\tau.$$

Now substitute (12) into (11),

$$\begin{split} \|g(t+h) - g(t)\| &\leq K \left(h + \|x(t+h) - x(t)\|_{\alpha} \right) \\ &\leq K \left(h + hK_1 + K_2 \int_{t_0}^t \|g(\tau+h) - g(\tau)\| \, d\tau \right) \\ &= hK \left(1 + K_1 \right) + K_2 K \int_{t_0}^t \|g(\tau+h) - g(\tau)\| \, d\tau. \end{split}$$

By the Gronwall inequality for $t_0 < t < t + h < t_1$ we have

(13)
$$||g(t+h) - g(t)|| \le h \left(K \left(1 + K_1 \right) e^{K_2 K t} \right),$$

hence

$$||x(t+h)-x(t)||_{\alpha} \le h \left(K_1 + K_2(t_1-t_0)(K(1+K_1)e^{K_2Kt})\right),$$

i.e., the functions g(t) and x(t) are locally Lipschitz.

(3) Take $x_0 \in D(A)$. By differentiating (8) we obtain

$$x'(t) = C'(t - t_0)x_0 + S'(t - t_0)x_1 + \int_{t_0}^t S'(t - s)f(s, x(s)) ds$$
$$= -S(t - t_0)Ax_0 + C(t - t_0)x_1 + \int_{t_0}^t C(t - s)f(s, x(s)) ds.$$

Arguing as in the case of $||x(t+h) - x(t)||_{\alpha}$ above, we have

$$||x'(t+h) - x'(t)|| \le ||(S(t-t_0+h) - S(t-t_0)) Ax_0|| + ||(C(t-t_0+h) - C(t-t_0)) x_1|| + ||\int_{t_0}^{t_0+h} C(t+h-t_0-\tau)g(\tau) d\tau|| + ||\int_{t_0}^t C(t-\tau) (g(\tau+h) - g(\tau)) d\tau||,$$

and for some $K_3, K_4 > 0$, independent of $t, t + h \in (t_0; t_1)$,

(14)
$$||x'(t+h) - x'(t)|| \le hK_3 + K_4 \int_{t_0}^t ||g(\tau+h) - g(\tau)|| d\tau.$$

By substituting (13) into (14) we obtain the assertion of the theorem.

4. Sufficient conditions for global existence and uniqueness of mild solutions

Theorem 4. Let the continuous function $f: \mathbb{R}^+ \times X^{\alpha} \to X$ in equation (6) satisfy a global Lipschitz condition, i.e., there exists K > 0 such that for any $t, s \geq t_0$ and $x, y \in X^{\alpha}$, the following inequality holds:

$$||f(t,x) - f(s,y)|| \le K(|t-s| + ||x-y||_{\alpha}).$$

Then $\forall x_0 \in D(A_b^{1/2})$, $x_1 \in X$ the problem (6)-(7) has a unique mild solution on $[t_0; +\infty)$ with $x(t_0) = x_0$, $x'(t_0) = x_1$.

Note that the theorem requires $x_0 \in D(A_h^{1/2})$ even if $\alpha < 1/2$.

Proof. By Theorem 2, $\exists t_1 > t_0$, problem (6)–(7) has a unique mild solution on $[t_0; t_1]$. Denote by \tilde{t}_1 the supremum of t_1 such that a mild solution exists and is unique on $[t_0; t_1]$. Then the solution x(t) exists and is unique on $[t_0; \tilde{t}_1)$.

Assume now that $\tilde{t}_1 < +\infty$. First, we show that the solution is bounded on $[t_0; \tilde{t}_1)$,

$$||x(t)||_{\alpha} \le ||C(t-t_0)|| ||x_0||_{\alpha} + ||S(t-t_0)||_{\alpha} ||x_1|| + \int_{t_0}^{t} ||S(t-\tau)||_{\alpha} ||f(\tau,x(\tau))|| d\tau.$$

The functions $C(t-t_0)$ and $A_b^{\alpha}S(t-t_0)$ are strongly continuous for every $t \in \mathbb{R}$, so they are bounded on $[t_0; \tilde{t}_1)$. Therefore, $\exists K_1 > 0, K_2 > 0$ such that $\forall t \in [t_0; \tilde{t}_1)$: $\|C(t-t_0)\| \|x_0\|_{\alpha} + \|S(t-t_0)\|_{\alpha} \|x_1\| \le K_1$, $\|S(t-t_0)\|_{\alpha} \le K_2$. Hence,

(15)
$$||x(t)||_{\alpha} \le K_1 + K_2 \int_{t_0}^t ||f(\tau, x(\tau))|| d\tau.$$

Furthermore, for $\tau \in [t_0; \tilde{t}_1)$

$$||f(\tau, x(\tau))|| \le ||f(\tau, x(\tau)) - f(t_0, x(t_0))|| + ||f(t_0, x(t_0))||$$

$$\le K ((\tau - t_0) + ||x(\tau) - x(t_0)||_{\alpha}) + ||f(t_0, x(t_0))||$$

$$\le (K (\tilde{t}_1 - t_0) + K ||x(t_0)||_{\alpha} + ||f(t_0, x(t_0))||) + K ||x(\tau)||_{\alpha}$$

$$= K_3 + K ||x(\tau)||_{\alpha}$$

(where K_3 is independent of τ).

Using (15), we obtain

$$||x(t)||_{\alpha} \le K_1 + K_2 K_3 (\tilde{t}_1 - t_0) + K_2 K \int_{t_0}^t ||x(\tau)||_{\alpha} d\tau.$$

Therefore, by Gronwall inequality,

$$||x(t)||_{\alpha} \le (K_1 + K_2 K_3 (\tilde{t}_1 - t_0)) e^{K_2 K t}.$$

So $x(\cdot):[t_0;\tilde{t}_1)\to X^{\alpha}$ is a bounded continuous function and we can extend it to the point \tilde{t}_1 , and $x(\tilde{t}_1)\in X^{\alpha}$.

In a similar way it can be shown that the function $x'(\cdot):[t_0;\tilde{t}_1)\to X$ is bounded (noting that $(C(t-t_0)x_0)'=-A_b^{1/2}S(t)A_b^{1/2}x_0-bS(t))$. Hence we have $x'(\tilde{t}_1)$. So we are in a position to apply Theorem 2 with initial time \tilde{t}_1 and conditions $x(\tilde{t}_1),x'(\tilde{t}_1)$, which means that we can extend the solution further than \tilde{t}_1 , which is a contradiction to its maximality. We have therefore proved that $\tilde{t}_1=+\infty$.

5. Some particular cases

Theorem 5. Let $f(t,x) = f_1(t,x,Bx)$, where B is a closed linear operator, relatively bounded with respect to A_b^{α} ($D(A_b^{\alpha}) \subset D(B)$ and $\exists C_1, C_2 \geq 0 \ \forall x \in D(A_b^{\alpha})$ such that $\|Bx\| \leq C_1 \|x\| + C_2 \|A_b^{\alpha}x\|$). Let the continuous function $f_1 : \mathbb{R}^+ \times D(B) \times X \to X$

satisfy a global Lipschitz condition, i.e., there exists K > 0 such that $\forall t_1 \geq t_0, t \geq t_0, x_1 \in D(B), x_2 \in D(B), y_1 \in X, y_2 \in X$ the following inequality holds:

$$||f_1(t_1, x_1, y_1) - f_1(t_2, x_2, y_2)|| \le K(|t_1 - t_2| + ||x_1 - x_2|| + ||y_1 - y_2||),$$

Then $\forall x_0 \in D(A_b^{1/2})$, $x_1 \in X$ the problem (6)-(7) has a unique mild solution on $[t_0; +\infty)$ with $x(t_0) = x_0$, $x'(t_0) = x_1$.

Proof. It suffices to show that f(t,x) satisfies the conditions of Theorem 4.

Choose $t_1 \ge t_0, t \ge t_0, x_1 \in D(B), x_2 \in D(B)$. Then

$$||f(t_{1}, x_{1}) - f(t_{2}, x_{2})|| = ||f_{1}(t_{1}, x_{1}, Bx_{1}) - f_{1}(t_{2}, x_{2}, Bx_{2})||$$

$$\leq K (|t_{1} - t_{2}| + ||x_{1} - x_{2}|| + ||B(x_{1} - x_{2})||)$$

$$\leq K (|t_{1} - t_{2}| + (1 + C_{1}) ||x_{1} - x_{2}|| + C_{2} ||A_{b}^{\alpha}(x_{1} - x_{2})||)$$

$$= K (|t_{1} - t_{2}| + ((1 + C_{1}) ||A_{b}^{-\alpha}|| + C_{2}) ||A_{b}^{\alpha}(x_{1} - x_{2})||)$$

$$= K_{1} (|t_{1} - t_{2}| + ||x_{1} - x_{2}||_{\alpha}).$$

Let $X = L_2(\mathbf{R})$, Ax = -x'', $\alpha = \frac{1}{2}$, $X^{1/2} = H^1(\mathbf{R})$ as in Example 1. Consider the following Cauchy problem:

(16)
$$\frac{d^2x}{dt^2} + Ax = h(x)g(x),$$

(17)
$$x(t_0) = x_0, \quad x'(t_0) = x_1.$$

Theorem 6. Let $U \subset H^1(\mathbb{R})$ be an open set and let the functions $g: U \to L_2(\mathbb{R})$, $h: U \to L_\infty(\mathbb{R})$ satisfy Lipschitz conditions, namely, if $x_1 \in U$ then there exist $K_g > 0$, $K_h > 0$ and a neighborhood $U_1 \subset U$ of the point x_1 such that for $x, y \in U_1$ the following inequalities hold:

$$\begin{split} & \|g(x) - g(y)\|_{L_{\infty}} \leq K_g \, \|x - y\|_{H^1} \,, \quad \|g(x)\|_{L_{\infty}} \leq K_g \, \|x\|_{H^1} \,, \\ & \|h(x) - h(y)\|_{L_2} \leq K_h \, \|x - y\|_{H^1} \,, \quad \|h(x)\|_{L_2} \leq K_h \, \|x\|_{H^1} \,. \end{split}$$

Then for every $t_0 \in \mathbb{R}$, $x_0 \in U$ and $x_1 \in X$ there exists $t_1 > t_0$ such that the problem (16)–(17) has a unique mild solution on $[t_0; t_1]$.

Proof. To use Theorem 2 it suffices to show that the function f(x) = g(x)h(x) is locally Lipschitz as a function $U \to L_2(\mathbb{R})$.

For any $x, y \in U_1$,

$$\begin{split} \|f(x)-f(y)\|_{L_{2}} &\leq \|g(x)h(x)-g(x)h(y)\|_{L_{2}} + \|g(x)h(y)-g(y)h(y)\|_{L_{2}} \\ &\leq \|g(x)\|_{L_{\infty}} \|h(x)-h(y)\|_{L_{2}} + \|g(x)-g(y)\|_{L_{\infty}} \|h(y)\|_{L_{2}} \\ &\leq K_{g}K_{h} \left(\|x\|_{H^{1}} \|x-y\|_{H^{1}} + \|x-y\|_{H^{1}} \|y\|_{H^{1}}\right) \leq \\ &\leq CK_{g}K_{h} \left(\|x\|_{\alpha} + \|y\|_{\alpha}\right) \|x-y\|_{\alpha} \,, \end{split}$$

(because $\|\cdot\|_{H^1}$ and $\|\cdot\|_{\alpha}$ are equivalent).

Example 4. As in Example 2, for the equation

(18)
$$\frac{\partial^2 x}{\partial t^2} = \frac{\partial^2 x}{\partial s^2} + x \frac{\partial x}{\partial s} + x^3$$

let us state the Cauchy problem (16)–(17) with $h(x) = \frac{dx}{ds} + x^2$, g(x) = x. Obviously, the function $g(\cdot)$ satisfies the conditions of Theorem 6. Let us check the conditions of Theorem 6 for $h(\cdot)$. We have

$$\|h(x) - h(y)\|_{L_2} \le C \left(\|x - y\|_{H^1} + \|x + y\|_{L_\infty} \|x - y\|_{L_2} \right) \le C_1 \|x - y\|_{H^1},$$

and, by analogy,

$$||h(x)||_{L_2} \le C_1 ||x||_{H^1}$$
.

So, for given $t_0, x_0 \in H^1(\mathbb{R}), x_1 \in L_2(\mathbb{R})$ there exists a unique local mild solution of the problem (16)–(17) for the equation (18).

6. Sufficient conditions for a mild solution to be classical

Now we consider conditions under which a mild solution of the Cauchy problem (6)–(7) is also a classical solution. Since our case is close to the case when C(t) possesses a group decomposition, we can prove a theorem with conditions similar to [5, Theorem III.1.5].

Theorem 7. Let $U \subset \mathbb{R} \times X^{\alpha}$, $f: U \to X$ and K > 0 be as in Theorem 2, $x_0 \in D(A)$, $x_1 \in D(A_b^{1/2})$, and x(t) a the mild solution of the problem (6)–(7) on $[t_0; t_1]$ with $x(t_0) = x_0$, $x'(t_0) = x_1$. If for every $(\tau, y) \in U$, $f(\tau, y) \in D(A_b^{1/2})$ and $A_b^{1/2} f(\cdot, \cdot)$ is a continuous function on U, then x(t) is a classical solution.

Proof. First we note that C(t) x is differentiable for any $x \in D(A_h^{1/2})$ and

(19)
$$C'(t) x = -bS(t) - A_b^{1/2} S(t) A_b^{1/2} x = -AS(t) x.$$

Then we have

$$x'(t) = -S(t - t_0) Ax_0 + C(t - t_0) x_1 + \int_{t_0}^{t} C(t - s) f(s, x(s)) ds.$$

Differentiating with respect to t one more time and using (19) we obtain

$$x''(t) = -AC(t - t_0)x_0 - AS(t - t_0)x_1 + f(t, x(t)) - \int_{t_0}^t AS(t - s)f(s, x(s))ds.$$

Obviously x''(t) is continuous, and

$$x''(t) = -Ax(t) + f(t, x(t)).$$

7. Conclusion

In the paper we have constructed sufficient conditions for existence and uniqueness of mild solutions of the Cauchy problem (6)–(7) for continuous functions $f: U \to X$, $U \subset \mathbb{R} \times X^{\alpha}$, satisfying local Lipschitz condition.

References

- Seppo Heikkila, V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, 1994.
- D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin— Heidelberg—New York, 1981.
- 3. E. M. Stein, Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
- 4. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Elsevier Science Publishers B. V., Amsterdam, 1985.
- S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, 1967. (Russian);
 English transl. Amer. Math. Soc., Providence, RI, 1971.

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE (KPI), 37 PEREMOGY PROSP., KYIV, 03056, UKRAINE $E\text{-}mail\ address$: yaroslav1984@pochta.ru

Received 01/04/2010; Revised 23/06/2010