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EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS OF
SECOND ORDER SEMILINEAR DIFFERENTIAL EQUATIONS IN

BANACH SPACE

YA. V. GORBATENKO

Abstract. We consider the Cauchy problem for second order semilinear differential

equations in Banach space. Sufficient conditions of local and global existence and

uniqueness of mild solutions are presented.

1. Introduction

Let X be a complex Banach space, A a closed densely defined linear operator. We
consider the following semilinear differential equation:

(1)
d2x

dt2
(t) +Ax(t) = f(t, x(t)),

where the function x(·) takes values in X, and f maps some open subset of R × X to
X. Equations of type (1) are considered in [1], where sufficient conditions of existence
and uniqueness of solutions are presented for a broad class of functions f , including
discontinuous functions. However, there are examples of functions f for which these
results cannot be applied, e.g., f1(t, x) = x3 and f2(t, x) = x · x′ on X = L2(R).

In this paper we apply Henry’s method [2] to second order semilinear equation (1)
and prove several theorems about sufficient conditions of existence and uniqueness of
solutions of Cauchy problems for a class of continuous functions f . As shown below, this
class includes f1 and f2 in X = L2(R) if Ax = −x′′ (defined on x ∈ X such that x′′,
understood in the sense of distributions, belongs to X).

2. Preliminaries

Let C(t) be an operator cosine function with generator −A. Linear operator −A is
also a generator of an analytic semigroup T (t). At first let us consider the case when
σ(A) ⊂ {λ|Reλ > 0}. For α > 0 define

A−α =
1

Γ(α)

∫ ∞
0

sα−1T (s) ds

(see [2, p. 24]).
Operator A−α is bounded in X and has an inverse [2, Theorem 1.4.2, p. 25].
Define Aα = (A−α)−1. Aα is closed and densely defined. For arbitrary α, β, we have

AαAβ = AβAα = Aα+β on D(Aα) ∩D(Aβ) ∩D(Aα+β); if α > β, then D(Aα) ⊂ D(Aβ)
[2, p. 25–26].

Now consider the case when σ(A) 6⊂ {λ|Reλ > 0}. Let us denote ω = − inf Reσ(A),
then for b > ω we have σ(A + bI) ⊂ {λ|Reλ > 0}. Define: Ab = A + bI, Aαb = (Ab)

α,
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Xα
b = D(Aαb ), for x ∈ Xα

b denote ‖x‖α = ‖Aαb x‖. Then

(2) A−αb =
1

Γ(α)

∫ ∞
0

sα−1e−sbT (s) ds.

Lemma 1. ([2, Theorem 1.4.6, p. 28; Theorem 1.4.8, p. 29]). The space Xα
b does not

depend on the choice of b such that σ(A + bI) ⊂ {λ|Reλ > 0}. Xα = Xα
b is a Banach

space in the norm ‖·‖α, and for different b the corresponding norms ‖·‖α are equivalent.

Example 1. Let X = L2(R), Ax = −x′′, where D(A) is the set of all x ∈ X such that x′′

(understood in the sense of distributions) belongs to L2(R); α = 1/2. Then X1/2 = H1(R)
in the sense that they coincide as subsets of X = L2(R), and the corresponding norms
are equivalent ([2, p. 77]; [3, Theorem V.3, p. 135]).

Lemma 2. Let C(t), S(t), T (t) be, respectively, cosine function, sine function and a
semigroup with the generator −A. Then for any s ≥ 0, t ≥ 0, α > 0 and b > ω, the
following relations hold:

(3) T (s)C(t) = C(t)T (s),

(4) A−αb C(t) = C(t)A−αb , A−αb S(t) = S(t)A−αb ,

and for x ∈ D(Aαb )
C(t)x ∈ D(Aαb ), Aαb C(t)x = C(t)Aαb x,

(5) S(t)x ∈ D(Aαb ), Aαb S(t)x = S(t)Aαb x.

Proof. Since the semigroup T (t) is analytic,

T (s) =
1

2πi

∮
Γ

eλsR(λ;−A) dλ,

where Γ is a contour in the resolvent set of the operator −A with arg λ→ ±θ as |λ| → ∞
for some θ ∈ (π/2;π). Also we have R(λ;−A)C(t) = C(t)R(λ;−A). Hence

T (s)C(t) =
1

2πi

∮
Γ

eλsR(λ;−A)C(t) dλ =
1

2πi

∮
Γ

eλsC(t)R(λ;−A) dλ = C(t)T (s)

and (3) is proved.
Relations (4) are immediate consequences of (2) and (3).
Relations (5) are easily obtained from (4), as well as the following statement: if

bounded linear operators B1, B2 commute, B−1
1 exists and x ∈ D(B−1

1 ), then B2B
−1
1 x =

B−1
1 B1B2B

−1
1 x = B−1

1 B2B1B
−1
1 x = B−1

1 B2x and B2x ∈ D(B−1
1 ). �

In what follows we assume that the following holds.

Assumption 1. ([4, Assumption 5.1, p. 63]). Let b > ω. Then S(t)X ∈ D(A1/2
b ), and

A
1/2
b S(t) is a strongly continuous function of the argument t on −∞ < t < +∞.

Lemma 3. ([4, Lemma 5.2, p. 63; Theorem 5.4, p. 65; eq. 5.12, p. 65]). If Assumption
1 holds, then ∀b > ω ∃C1/2 > 0 ∀t ≥ 0∥∥∥A1/2

b S(t)
∥∥∥ ≤ C1/2(1 + t)eωt.

Assumption 1 holds for any generator of the cosine function in any complex Lebesgue
space Lp (Y, µ) , 1 < p <∞ [4, Theorem 6.1, p. 71; Theorem 6.3, p. 73].

Theorem 1. (analogous to [2, Theorem 1.4.3, p. 26]). Under Assumption 1, for any
α ∈

[
0; 1/2

]
we have the following:

1) there exists Cα > 0 such that for every t ≥ 0, ‖S(t)‖α ≤ Cα(1 + t)eωt;
2) for ∀x0 ∈ D(Aαb ), x1 ∈ X we have that ‖C(t)x0 + S(t)x1 − x0‖α −→t→0 0.
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Proof. To prove the first statement we use Lemma 3

‖S(t)‖α = ‖Aαb S(t)‖ ≤
∥∥∥A1/2

b S(t)A−(1/2−α)
b

∥∥∥
≤ C1/2(1 + t)eωt ·

∥∥∥A−(1/2−α)
b

∥∥∥ = Cα(1 + t)eωt.

The second statement is implied by the following:

Aαb (C(t)x0 + S(t)x1 − x0) = (C(t)− I)Aαb x0 +A
1/2
b S(t)A−(1/2−α)

b x1

= (C(t)− I)y0 +A
1/2
b S(t)y1 −→

t→0
(C(0)− I)y0 +A

1/2
b S(0)y1 = 0,

because C(t) and A
1/2
b S(t) are strongly continuous functions. �

Note, however, that the operators Aαb S(t), α > 1/2 and Aαb C(t), α > 0, can be
unbounded.

Example 2. Let X = L2(R), Ax = −x′′ as in Example 1. Then ∀x0 ∈ H1(R), x1 ∈ X

(C(t)x0) (s) =
1
2

(x0(s+ t) + x0(s− t)) ,

(S(t)x1) (s) =
1
2

∫ s+t

s−t
x1(ξ) dξ.

Take α = 1/2, then ∀t > 0 the operator Aαb C(t) is unbounded. Consider, for example,

xn(s) =
{

sinn 2πs
t , 0 ≤ s ≤ t,

0, otherwise,

then {‖xn‖ , n = 0, 1, . . .} is bounded, but

‖Aαb C(t)xn‖ = ‖C(t)xn‖α ≥ const× ‖C(t)xn‖H1 −→
n→+∞

+∞.

Take α = 1, then ∀t > 0 the operator Aαb S(t) is unbounded,

(AS(t)x1) (s) =
1
2
∂2

∂s2

∫ s+t

s−t
x1(ξ) dξ =

1
2
∂

∂s
(x1(s+ t)− x1(s− t))

=
1
2

(x′1(s+ t)− x′1(s− t)) .

3. Sufficient conditions of local existence and uniqueness of mild
solutions

For functions defined on some interval [t0; t1] or semiaxis [t0; +∞) and taking values
in a Banach space X consider the following semilinear equation:

(6)
d2x

dt2
(t) +Ax(t) = f(t, x(t)),

where the function f maps some open set U ⊂ R×Xα to X, for fixed α ∈
[
0; 1/2

]
, and

state the following Cauchy problem for it:

(7) x(t0) = x0 ∈ D(Aαb ), x′(t0) = x1 ∈ X.
A classical solution of the problem (6)–(7) on [t0; t1] is a function x : [t0; t1]→ X that is
twice continuously differentiable, x(t) ∈ D(A) for all t ∈ [t0; t1], and satisfies (6) and (7).

A mild solution of the problem (6)–(7) on [t0; t1] is a continuous function x : [t0; t1]→
X that satisfies, on [t0; t1], the equation

(8) x(t) = C(t− t0)x0 + S(t− t0)x1 +
∫ t

t0

S(t− τ)f(τ, x(τ)) dτ.
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A classical solution of the problem (6)–(7) is also a mild solution ([1, p. 436]). The
converse doesn’t always hold, since the mild solution may fail to be twice continuously
differentiable.

Theorem 2. Let U ⊂ R×Xα be an open set and f : U → X a continuous function that
satisfies a local Lipschitz condition, for every point (t1, x1) ∈ U there exists K > 0 and
a neighborhood U1 ⊂ U of the point (t1, x1) such that for x, y ∈ U1 the inequality

‖f(t, x)− f(s, y)‖ ≤ K (|t− s|+ ‖x− y‖α)

holds. Then for each pair (t0, x0) from U and x1 ∈ X there exists t1 > t0 such that
problem (6)–(7) has a unique mild solution on [t0; t1] with x(t0) = x0 ∈ D(Aαb ), x′(t0) =
x1 ∈ X.

(This theorem is analogous to [2, Theorem 3.3.3, p. 54])

Proof. Let V (τ, δ) = {(t, x)|t ∈ [t0; t0 + τ ] , ‖x− x0‖α ≤ δ}. Choose τ, δ such that
V (τ, δ) ⊂ U and for (t, x), (t, y) ∈ V (τ, δ) the following holds: ‖f(t, x)− f(t, y)‖ ≤
K ‖x− y‖α. Also let B = maxt∈[t0;t0+τ ] ‖f(t, x0)‖.

Using Theorem 1, choose t1 ∈ (t0, t0 + τ ] such that for t ∈ [t0; t1],

‖C(t− t0)x0 + S(t− t0)x1 − x0‖α ≤ δ/2

and
Cα(1 + t1)eωt1(t1 − t0)(B +Kδ) ≤ δ/2.

Now, define M =
{
x ∈ C([t0; t1];Xα)| supt0≤t≤t1 ‖x(t)− x0‖α ≤ δ

}
with the usual

sup-norm |‖x‖| = supt0≤t≤t1 ‖x(t)‖α. This is a complete metric space.
Consider a map G : M → C([t0; t1];Xα) defined for x ∈M as follows:

G(x)(t) = C(t− t0)x0 + S(t− t0)x1 +
∫ t

t0

S(t− s)f(s, x(s)) ds.

First let us show that G maps M into itself. For any x ∈M ,

‖G(x)(t)− x0‖α ≤ ‖C(t− t0)x0 + S(t− t0)x1 − x0‖α

+
∫ t

t0

‖S(t− s)‖α ‖f(s, x(s))‖ ds

≤ δ/2 + (t− t0)
(
Cα(1 + t)eωt

)
(B +Kδ) ≤ δ/2 + δ/2 = δ.

Now, let us show that G is a strict contraction (using Theorem 1), for any x, y ∈M ,

‖G(x)(t)−G(y)(t)‖α ≤
∫ t

t0

‖S(t− s)‖α ‖f(s, x(s))− f(s, y(s))‖ ds

≤
(
Cα(1 + t1)eωt1 (t1 − t0)K

)
|‖x− y‖| ≤ 1

2
|‖x− y‖| .

Therefore, |‖G(x)−G(y)‖| ≤ 1
2 |‖x− y‖|.

So, G : M → M is a strict contraction. By the contraction mapping theorem there
exists a unique element x ∈M satisfying G(x)(t) = x(t), i.e., relation (8). This element
is the sought-for solution. �

Example 3. Consider the following equation:

∂2x

∂t2
=
∂2x

∂s2
+ x

∂x

∂s
.

We rewrite it as

(9)
d2x

dt2
+Ax = f(t, x),
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where x(t) is a function taking values in X = L2(R); Ax = −x′′ as in Example 1,
f(t, x) = x · x′. Let us state the Cauchy problem for it,

(10) x(t0) = x0 ∈ X1/2, x′(t0) = x1.

Now we will prove that the function f(t, x) satisfies the conditions of Theorem 2 with
α = 1/2.

Lemma 4. Let X = L2(R), Ax = x′′, α = 1/2 as in Example 1. Then

(1) ∃C1 > 0 ∀x ∈ X1/2 : ‖x‖
L∞
≤ C1 ‖x‖α ;

(2) ∃C2 > 0 ∀x ∈ X1/2 : ‖x‖L2
≤ C2 ‖x‖α ;

(3) ∃C3 > 0 ∀x ∈ X1/2 :
∥∥dx
ds

∥∥
L2
≤ C3 ‖x‖α .

Proof. (1) As noted in Example 1, X1/2 = H1(R) in the sense that they coincide as
subsets of X = L2(R), and the corresponding norms are equivalent. And H1(R)
is continuously embedded into L∞(R) (even into C(R)), see [2, p. 9].

(2) Let x ∈ X1/2. Then ‖x‖L2
=
∥∥∥A−1/2

b A
1/2
b x

∥∥∥
L2

≤
∥∥∥A−1/2

b

∥∥∥ ‖x‖α. We obtain the

needed inequality by denoting C2 =
∥∥∥A−1/2

b

∥∥∥.

(3)
∥∥dx
ds

∥∥
L2
≤ ‖x‖H1 , and norms ‖·‖H1 and ‖·‖α are equivalent (see part 1 of the

proof).
�

Using Lemma 4, for x, y ∈ X1/2 we have

‖f(x)− f(y)‖L2
=
∥∥∥∥xdxds − y dyds

∥∥∥∥
L2

≤
∥∥∥∥xdxds − y dxds

∥∥∥∥
L2

+
∥∥∥∥y dxds − y dyds

∥∥∥∥
L2

≤ ‖x− y‖L∞

∥∥∥∥dxds
∥∥∥∥
L2

+ ‖y‖L∞

∥∥∥∥dxds − dy

ds

∥∥∥∥
L2

≤ C1C3 (‖x− y‖α ‖x‖α + ‖y‖α ‖x− y‖α)

= C1C3 (‖x‖α + ‖y‖α) ‖x− y‖α .

Therefore, by Theorem 2 the problem (9)–(10) has a unique local mild solution.

Theorem 3. Let U ⊂ R × Xα, f : U → X and K > 0 be as in Theorem 2, x(t) a
mild solution of the problem (6)–(7) on [t0; t1] with x(t0) = x0, x′(t0) = x1. Then the
following holds.

(1) If x0 ∈ D(Aαb ), x1 ∈ X, then x(t) ∈ D(Aαb ).
(2) If x0 ∈ D(A1/2+α

b ) and x1 ∈ D(Aαb ), then x(t) is locally Lipschitz as a function
[t0; t1]→ Xα (and, therefore, as a function [t0; t1]→ X).

(3) If x0 ∈ D(A) and x1 ∈ D(A1/2
b ), then x′(t) is locally Lipschitz as a function

[t0; t1]→ X.

Proof. (1) Take x0 ∈ D(Aαb ), x1 ∈ X. By Lemma 2 for every t > t0 we have that

C(t− t0)x0 ∈ D(Aαb ).

By assumption 1, S(t− t0)x1 ∈ D(A1/2
b ), but D(A1/2

b ) ⊂ D(Aαb ). Now,∫ t

t0

S(t− s)f(s, x(s)) ds ∈ D(Aαb ),

since by Assumption 1, we have S(t− s)f(s, x(s)) ∈ D(Aαb ), and Aαb S(t− s)f(s, x(s)) is
a continuous function of the argument s. Hence,

x(t) = C(t− t0)x0 + S(t− t0)x1 +
∫ t

t0

S(t− s)f(s, x(s)) ds ∈ D(Aαb ).
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(2) Define g(t) = f(t, x(t)). Take an arbitrary point t ∈ (t0; t1). For sufficiently small
h > 0, we have

(11) ‖g(t+ h)− g(t)‖ ≤ K (h+ ‖x(t+ h)− x(t)‖α) .

Therefore,
‖x(t+ h)− x(t)‖α
≤ ‖(C(t− t0 + h)− C(t− t0))Aαb x0‖+ ‖(S(t− t0 + h)− S(t− t0))Aαb x1‖

+
∥∥∥∫ t+h

t0

Aαb S(t+ h− τ)g(τ) dτ −
∫ t

t0

Aαb S(t− τ)g(τ) dτ
∥∥∥.

Recall that C ′(s) = −S(s)A and S′(s) = C(s). Now,

‖x(t+ h)− x(t)‖α
≤ h

(
sup

τ∈[t−t0;t1−t0]

∥∥∥A1/2
b S(τ)

∥∥∥)∥∥∥A1/2+α
b x0

∥∥∥+ h
(

sup
τ∈[t−t0;t1−t0]

‖C(τ)‖
)
‖Aαb x1‖

+
∥∥∥∫ t0+h

t0

Aαb S(t+ h− τ)g(τ) dτ
∥∥∥+

∥∥∥∫ t

t0

Aαb S(t− τ) (g(τ + h)− g(τ)) dτ
∥∥∥.

Therefore we can choose K1,K2 > 0, independent of t, t+ h ∈ (t0; t1), such that

(12) ‖x(t+ h)− x(t)‖α ≤ hK1 +K2

∫ t

t0

‖g(τ + h)− g(τ)‖ dτ.

Now substitute (12) into (11),

‖g(t+ h)− g(t)‖ ≤ K (h+ ‖x(t+ h)− x(t)‖α)

≤ K
(
h+ hK1 +K2

∫ t

t0

‖g(τ + h)− g(τ)‖ dτ
)

= hK (1 +K1) +K2K

∫ t

t0

‖g(τ + h)− g(τ)‖ dτ.

By the Gronwall inequality for t0 < t < t+ h < t1 we have

(13) ‖g(t+ h)− g(t)‖ ≤ h
(
K (1 +K1) eK2Kt

)
,

hence
‖x(t+ h)− x(t)‖α ≤ h

(
K1 +K2(t1 − t0)(K(1 +K1)eK2Kt)

)
,

i.e., the functions g(t) and x(t) are locally Lipschitz.
(3) Take x0 ∈ D(A). By differentiating (8) we obtain

x′(t) = C ′(t− t0)x0 + S′(t− t0)x1 +
∫ t

t0

S′(t− s)f(s, x(s)) ds

= −S(t− t0)Ax0 + C(t− t0)x1 +
∫ t

t0

C(t− s)f(s, x(s)) ds.

Arguing as in the case of ‖x(t+ h)− x(t)‖α above, we have

‖x′(t+ h)− x′(t)‖
≤ ‖(S(t− t0 + h)− S(t− t0))Ax0‖+ ‖(C(t− t0 + h)− C(t− t0))x1‖

+
∥∥∥∫ t0+h

t0

C(t+ h− t0 − τ)g(τ) dτ
∥∥∥+

∥∥∥∫ t

t0

C(t− τ) (g(τ + h)− g(τ)) dτ
∥∥∥,

and for some K3,K4 > 0, independent of t, t+ h ∈ (t0; t1),

(14) ‖x′(t+ h)− x′(t)‖ ≤ hK3 +K4

∫ t

t0

‖g(τ + h)− g(τ)‖ dτ.

By substituting (13) into (14) we obtain the assertion of the theorem. �
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4. Sufficient conditions for global existence and uniqueness of mild
solutions

Theorem 4. Let the continuous function f : R+ × Xα → X in equation (6) satisfy
a global Lipschitz condition, i.e., there exists K > 0 such that for any t, s ≥ t0 and
x, y ∈ Xα, the following inequality holds:

‖f(t, x)− f(s, y)‖ ≤ K (|t− s|+ ‖x− y‖α) .

Then ∀x0 ∈ D(A1/2
b ), x1 ∈ X the problem (6)-(7) has a unique mild solution on [t0; +∞)

with x(t0) = x0, x′(t0) = x1.

Note that the theorem requires x0 ∈ D(A1/2
b ) even if α < 1/2.

Proof. By Theorem 2, ∃t1 > t0, problem (6)–(7) has a unique mild solution on [t0; t1].
Denote by t̃1 the supremum of t1 such that a mild solution exists and is unique on [t0; t1].
Then the solution x(t) exists and is unique on [t0; t̃1).

Assume now that t̃1 < +∞. First, we show that the solution is bounded on [t0; t̃1),

‖x(t)‖α ≤ ‖C(t− t0)‖ ‖x0‖α + ‖S(t− t0)‖α ‖x1‖+
∫ t

t0

‖S(t− τ)‖α ‖f(τ, x(τ))‖ dτ.

The functions C(t−t0) and Aαb S(t−t0) are strongly continuous for every t ∈ R, so they are
bounded on [t0; t̃1). Therefore, ∃K1 > 0,K2 > 0 such that ∀t ∈ [t0; t̃1): ‖C(t− t0)‖ ‖x0‖α
+ ‖S(t− t0)‖α ‖x1‖ ≤ K1, ‖S(t− t0)‖α ≤ K2. Hence,

(15) ‖x(t)‖α ≤ K1 +K2

∫ t

t0

‖f(τ, x(τ))‖ dτ.

Furthermore, for τ ∈ [t0; t̃1)

‖f(τ, x(τ))‖ ≤ ‖f(τ, x(τ))− f(t0, x(t0))‖+ ‖f(t0, x(t0))‖
≤ K ((τ − t0) + ‖x(τ)− x(t0)‖α) + ‖f(t0, x(t0))‖
≤
(
K
(
t̃1 − t0

)
+K ‖x(t0)‖α + ‖f(t0, x(t0))‖

)
+K ‖x(τ)‖α

= K3 +K ‖x(τ)‖α
(where K3 is independent of τ).

Using (15), we obtain

‖x(t)‖α ≤ K1 +K2K3(t̃1 − t0) +K2K

∫ t

t0

‖x(τ)‖α dτ.

Therefore, by Gronwall inequality,

‖x(t)‖α ≤
(
K1 +K2K3(t̃1 − t0)

)
eK2Kt.

So x(·) : [t0; t̃1) → Xα is a bounded continuous function and we can extend it to the
point t̃1, and x(t̃1) ∈ Xα.

In a similar way it can be shown that the function x′(·) : [t0; t̃1) → X is bounded
(noting that (C(t− t0)x0)′ = −A1/2

b S(t)A1/2
b x0 − bS(t)). Hence we have x′(t̃1). So we

are in a position to apply Theorem 2 with initial time t̃1 and conditions x(t̃1), x′(t̃1),
which means that we can extend the solution further than t̃1, which is a contradiction
to its maximality. We have therefore proved that t̃1 = +∞. �

5. Some particular cases

Theorem 5. Let f(t, x) = f1(t, x,Bx), where B is a closed linear operator, relatively
bounded with respect to Aαb (D(Aαb ) ⊂ D(B) and ∃C1, C2 ≥ 0 ∀x ∈ D(Aαb ) such that
‖Bx‖ ≤ C1 ‖x‖ + C2 ‖Aαb x‖). Let the continuous function f1 : R+ × D(B) × X → X
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satisfy a global Lipschitz condition, i.e., there exists K > 0 such that ∀t1 ≥ t0, t ≥ t0, x1 ∈
D(B), x2 ∈ D(B), y1 ∈ X, y2 ∈ X the following inequality holds:

‖f1(t1, x1, y1)− f1(t2, x2, y2)‖ ≤ K (|t1 − t2|+ ‖x1 − x2‖+ ‖y1 − y2‖) ,

Then ∀x0 ∈ D(A1/2
b ), x1 ∈ X the problem (6)-(7) has a unique mild solution on [t0; +∞)

with x(t0) = x0, x′(t0) = x1.

Proof. It suffices to show that f(t, x) satisfies the conditions of Theorem 4.
Choose t1 ≥ t0, t ≥ t0, x1 ∈ D(B), x2 ∈ D(B). Then

‖f(t1, x1)− f(t2, x2)‖ = ‖f1(t1, x1, Bx1)− f1(t2, x2, Bx2)‖
≤ K (|t1 − t2|+ ‖x1 − x2‖+ ‖B (x1 − x2)‖)
≤ K (|t1 − t2|+ (1 + C1) ‖x1 − x2‖+ C2 ‖Aαb (x1 − x2)‖)
= K

(
|t1 − t2|+

(
(1 + C1)

∥∥A−αb ∥∥+ C2

)
‖Aαb (x1 − x2)‖

)
= K1 (|t1 − t2|+ ‖x1 − x2‖α) .

�

Let X = L2(R), Ax = −x′′, α = 1/2, X1/2 = H1(R) as in Example 1. Consider the
following Cauchy problem:

(16)
d2x

dt2
+Ax = h(x)g(x),

(17) x(t0) = x0, x′(t0) = x1.

Theorem 6. Let U ⊂ H1(R) be an open set and let the functions g : U → L2(R),
h : U → L∞(R) satisfy Lipschitz conditions, namely, if x1 ∈ U then there exist Kg > 0,
Kh > 0 and a neighborhood U1 ⊂ U of the point x1 such that for x, y ∈ U1 the following
inequalities hold:

‖g(x)− g(y)‖L∞ ≤ Kg ‖x− y‖H1 , ‖g(x)‖L∞ ≤ Kg ‖x‖H1 ,

‖h(x)− h(y)‖L2
≤ Kh ‖x− y‖H1 , ‖h(x)‖L2

≤ Kh ‖x‖H1 .

Then for every t0 ∈ R, x0 ∈ U and x1 ∈ X there exists t1 > t0 such that the problem
(16)–(17) has a unique mild solution on [t0; t1].

Proof. To use Theorem 2 it suffices to show that the function f(x) = g(x)h(x) is locally
Lipschitz as a function U → L2(R).

For any x, y ∈ U1,
‖f(x)− f(y)‖L2

≤ ‖g(x)h(x)− g(x)h(y)‖L2
+ ‖g(x)h(y)− g(y)h(y)‖L2

≤ ‖g(x)‖L∞ ‖h(x)− h(y)‖L2
+ ‖g(x)− g(y)‖L∞ ‖h(y)‖L2

≤ KgKh (‖x‖H1 ‖x− y‖H1 + ‖x− y‖H1 ‖y‖H1) ≤
≤ CKgKh (‖x‖α + ‖y‖α) ‖x− y‖α ,

(because ‖·‖H1 and ‖·‖α are equivalent). �

Example 4. As in Example 2, for the equation

(18)
∂2x

∂t2
=
∂2x

∂s2
+ x

∂x

∂s
+ x3

let us state the Cauchy problem (16)–(17) with h(x) = dx
ds + x2, g(x) = x. Obviously,

the function g(·) satisfies the conditions of Theorem 6. Let us check the conditions of
Theorem 6 for h(·). We have

‖h(x)− h(y)‖L2
≤ C

(
‖x− y‖H1 + ‖x+ y‖L∞ ‖x− y‖L2

)
≤ C1 ‖x− y‖H1 ,

and, by analogy,
‖h(x)‖L2

≤ C1 ‖x‖H1 .
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So, for given t0, x0 ∈ H1(R), x1 ∈ L2(R) there exists a unique local mild solution of the
problem (16)–(17) for the equation (18).

6. Sufficient conditions for a mild solution to be classical

Now we consider conditions under which a mild solution of the Cauchy problem (6)–
(7) is also a classical solution. Since our case is close to the case when C (t) possesses
a group decomposition, we can prove a theorem with conditions similar to [5, Theorem
III.1.5].

Theorem 7. Let U ⊂ R × Xα, f : U → X and K > 0 be as in Theorem 2, x0 ∈
D(A), x1 ∈ D(A1/2

b ), and x(t) a the mild solution of the problem (6)–(7) on [t0; t1] with
x(t0) = x0, x′(t0) = x1. If for every (τ, y) ∈ U , f (τ, y) ∈ D(A1/2

b ) and A
1/2
b f (·, ·) is a

continuous function on U , then x(t) is a classical solution.

Proof. First we note that C (t)x is differentiable for any x ∈ D(A1/2
b ) and

(19) C ′ (t)x = −bS (t)−A1/2
b S (t)A1/2

b x = −AS (t)x.

Then we have

x′ (t) = −S (t− t0)Ax0 + C (t− t0)x1 +
∫ t

t0

C (t− s) f (s, x (s)) ds.

Differentiating with respect to t one more time and using (19) we obtain

x′′ (t) = −AC (t− t0)x0 −AS (t− t0)x1 + f (t, x (t))−
∫ t

t0

AS (t− s) f (s, x (s)) ds.

Obviously x′′ (t) is continuous, and

x′′ (t) = −Ax (t) + f (t, x (t)) .

�

7. Conclusion

In the paper we have constructed sufficient conditions for existence and uniqueness
of mild solutions of the Cauchy problem (6)–(7) for continuous functions f : U → X,
U ⊂ R×Xα, satisfying local Lipschitz condition.
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