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G-FRAMES AND OPERATOR VALUED-FRAMES IN HILBERT
C*-MODULES

SEDIGHE HOSSEINI AND AMIR KHOSRAVI

ABSTRACT. g-frames and fusion frames in Hilbert C*-modules have been defined by
the second author and B. Khosravi in [15] and operator-valued frames in Hilbert
C*-modules have been defined by Kaftal et al in [11]. We show that every operator-
valued frame is a g-frame, we also show that in Hilbert C*-modules tensor product
of orthonormal basis is an orthonormal basis and tensor product of g-frames is a
g-frame, we get some relations between their g-frame operators, and we study tensor
product of operator-valued frames in Hilbert C*-modules.

1. INTRODUCTION

Frames were first introduced in 1946 by Gabor [8], reintroduced in 1986 by Daubechies,
Grossman and Meyer [4], and popularized from then on. Frames have many nice pro-
perties which make them very useful in the characterization of function spaces, signal
processing, image processing, data compression, sampling theory and many other fields.

Later the notion of frames in C*-algebras and frames in Hilbert C*-modules were
introduced and some of their properties were investigated [6, 7, 11, 14, 15]. The second
author and B. Khosravi in [15] introduced g-frames and fusion frames in Hilbert C*-
modules. Since tensor product is useful in the approximation of multi-variate functions
of combinations of univariate ones, in this paper, we study the g-frames in tensor product
of Hilbert C*-modules and we generalize the techniques of [11], [13-16] to C*-modules.
In section 2 we briefly recall the definitions and basic properties of Hilbert C*-modules.
In section 3, we investigate tensor product of Hilbert C*-modules, which is introduced in
[11] and we show that tensor product of orthonormal basis is an orthonormal basis. We
also show that tensor product of g-frames for Hilbert C*-modules H and F, present a
g-frame for H ® F', and tensor product of their g-frame operators is the g-frame operator
of their tensor product g-frame. Finally, we recall the definitions and some properties
of operator-valued frames in Hilbert C*-modules which were introduced in [11] and we
show that every operator-valued frame is a g-frame. We study tensor product of operator-
valued frames, tensor product of frame transforms for Hilbert C*-modules.

Throughout this paper, N and C will denote the set of natural numbers and the set of
complex numbers, respectively. I, J and I It will be countable index sets. A and B will
be unital C*-algebras.

2. PRELIMINARIES

In this section we briefly recall the definitions and basic properties of Hilbert C*-
modules and g-frames in Hilbert C*-modules. For more information about g-frames in
Hilbert spaces and Hilbert C*-modules we refer to [15], [18].
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For a C*-algebra if a € A is positive, we write @ > 0 and AT denotes the set of
positive elements of A. If 0 < a and a < b then we have a? < b2 and if —b < a < bthen
| a|<]| 0] for a,b e A.

Definition 2.1. Let A be a unital C*-algebra and H be a left A-module, such that
the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is
equipped with an A-valued inner product (.,.) : H x H — A that posses the following
properties:

(7) (z,z) > 0 for all x € H and (z,z) = o if and only if x = 0;

(i) (ax +y,2) = a{z,z) + (y,z) for all @ € A and z,y,2z € H;

(#41) (x,y) = (y,z)* for all z,y € H.

For z € H, we define || 2 ||=|| (z,2) ||z, if H is complete with || . ||, it is called a
Hilbert A-module or a Hilbert C*-module over A. For every a in C*-algebra A,we have
| @ |= (a*a)? and the A-valued norm on H is defined by | z |= (z,2)? for z € H.
Throughout this paper V is a Hilbert A-module, W is a Hilbert B-module, and {V; };¢;
is a family of closed submodules of V' and {W,};c; is a family of closed submodules of
W. Now we recall some definitions, see [15], [18]. If H and F are Hilbert A-modules,then
L(H, F) is the collection of all bounded adjointable linear operators from H to F and
we abbreviate L(H, H) by L(H), an operator T' € L(H, F') is a unitary if TT* = I, and
T =1y.

Example 2.2. (a) Let {(H;,(;); : i € I)} be a sequence of Hilbert spaces. Then
(B Hi)i, = {(wi)ier : ¥ € Hy,||(z:)|13 = X, (xi,2:)i < oo} with pointwise operations
and inner product defined by ((x;), (vi)) = >_, (i, ¥i): is a Hilbert space. If H; = H for
each i € I, then we denote (,.;(H;))i, by [>(H,I). So for any sequence {H; : i € I}
of Hilbert spaces, there exists a Hilbert space H = (D, Hi)1, which contains all of the
Hi7S.
(b) Let {V; : ¢ € I be a sequence of Hilbert A-modules and

(Bicr Vi, = {z = (z5) : & € Vi and Y (x4, %) is norm convergent in A}. Then
P,cr Vi), is a Hilbert A-module with A-valued inner product (z,y) = >, (%i, ¥s),
where © = (2;)ier ¥ = (¥i)ier, pointwise operations and the norm defined by || a ||=||

(a,a) |2 .

Definition 2.3. (See [18]). Let H be a Hilbert space, and {V;};¢; is a family of Hilbert
spaces. B(H,V;) is the collection of all adjointable bounded linear operators from H into
V;. A family {A; € B(H,V;)}ier is said to be a g-frame for H with respect to {V; }.er, if
there are real constants 0 < A < B < 0o, such that for all z € H,

(1) Allz P< ) A P< Bz |?.

The optimal constants (i.e. maximal for A and minimal for B) are called g-frame
bounds. The g-frame {A; : ¢ € I} is said to be a tight g-frame if A = B, and said to be a
Parseval g-frame if A = B = 1. The family {A; : i € I} is said to be a g-Bessel sequence
for H with respect to {V;}cr, if the right-hand side inequality of (1) holds.

In [18] it is shown that frames, pseudoframes, oblique frames, outer frames and frames
of subspaces (fusion frames) are a class of g-frames, see examples in [18]. Also in [18]
the g-frame operator Sp is defined by Saf = Y . A7A;f for each f € H and in [16]
the synthesis operator Ty : (B Vi), — H, Ta((yi)i) = >_; Af(y;) and the analysis
operator Ty : H — (B Vi)i,, T*(x) = (A;z);er are defined for every g-Bessel sequence
{A; € B(H,V;) : i € I} and some of their properties were investigated. To generalize
this notion to the situation of Hilbert C*-modules first we recall some definitions. Let A
be a unital C*-algebra and H be a finitely or countably generated Hilbert A-module. A
sequence {f; : ¢ € I} is a frame for H if there exist real constants 0 < A < B < oo such
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that for every f € H,
(2) A(f ) <D U £ (fin ) < B F).

il
A and B are called bounds of the frame, if A = B = A, the frame is called A-tight,
if A= B =1, the frame is a Parseval frame, and if only the right hand inequality is
required, it is called a Bessel sequence, The frame is standard if the series in (2) converges
in norm in A.

Definition 2.4. (See [15]). A sequence {A; € L(H,V;) : i € I} is a g-frame in H with
respect to {V; : i € I'} if there exist constants A, B > 0 such that for every z € H,

(3) Az, x) < Z(Aﬂ,Aﬂ) < Bz, z).

icl
As usual A and B are g-frame bounds of {A; : ¢ € I}. If A = B = A, the g-frame is
called A\-tight and if A = B =1, it is called a Parseval g-frame. The g-frame is standard
if for every x € H, the sum in (3) converges in norm.

In this paper we consider standard g-frames. If {A; : ¢ € I} is a standard g-frame in a
finitely or countably generated Hilbert A-module, then we can define the frame transform
0, the synthesis operator §* and g-frame operator S as follows:

0:H— (@ Vi)is » 0(x) = (Asx)icr
0 : (@ Vi)lz —H, 9*<y) = ZA?(%>7

forall y = (y;) in (P Vi), and S = 00 : H — H is given by S(z) = Y, ATA;(x), for each
x € H. We know that ||0*]| < /D, and 0 : H — 6(H) is invertible and ||§~}|| < %
Moreover S is positive, self adjoint and invertible with | S ||[< D and || S7! ||< %,
see [15].

3. FRAMES IN HILBERT C*-MODULES

Suppose that A, B are C*-algebras and we take A ® B as the completion of A ®a1; B
with the spatial norm see [10]. A ® B is the spatial tensor product of A and B, also
suppose that H is a Hilbert A-module and F is a Hilbert B-module. We want to define
H ® F as a Hilbert (A ® B)-module. Start by forming the algebraic tensor product
H Qg1 F of the vector spaces H, F' (over C ). This is a left module over (A ®,1; B) (the
module action being given by (a ® b)(z ®y) =ax®by (a € A,be B,x € H,y € F)).
For (1,22 € H,y1,y2 € F) we define (x1 ® y1,22 ® y2) = (x1,22) @ {y1,y2). We also
know that for z = Z?:l T @ y; in H ®a15 I we have

(2,2) = Z@uﬂfﬁ ® (yi,yj) >0
and |
(2,2) =0 4iff z=0.

This extends by linearity to an (A ®a1s B)-valued sesquilinear form on H ®a14 F, which
makes H ®a15 F into a semi-inner-product module over the pre-C*-algebra (A ®a B).
The semi-inner-product on H ®g1¢ £ is actually an inner product, see [17]. Then H Ralg I
is an inner-product module over the pre-C*-algebra (A ®a1, B),and we can perform the
double completion discussed in chapter 1 of [17] to conclude that the completion H ® F'
of H Qa1 F' is a Hilbert (A ® B)-module. We call H ® F' the exterior tensor product
of H and F. With H, F as above, we wish to investigate the adjointable operators on
H ® F. Suppose that S € L(H),T € L(F). Define a linear operator S ® T'on H @ F
by S@T(z®y)=Sz®Ty (x€ H,y € F). It is a routine verification that S* ® T™* is
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an adjoint for S ® T, so in fact S® T € L(H ® F'). For more details see [10], [17]. We
note that if a € AT and b € B*, then a ® b € (A® B)". Plainly if a, b are Hermitian
elements of A and a > b, then for every positive element x of B, we have a® z > b ® x.

Definition 3.1. Let H be a Hilbert C*-module over an arbitrary C*-algebra A. An
element v € H is said to be a basic vector if e = (v,v) is a minimal projection in A, in
the sense that eAde = Ce. A system (vy)xea in H is orthonormal if each vy is a basic
vector and (vy,v,) = 0 for all A # p. An orthonormal system (vy)aea in H is said to be
an orthonormal basis for H if it generates a dense submodule of H.

If we consider C*-algebra of compact operators K (H) on some Hilbert space H, then
every Hilbert K (H)-module V possesses an orthonormal basis and all closed submodules
of Hilbert K (H)-modules are orthogonally complemented. Furthermore, if e € K(H) is
an orthogonal one-dimensional projection, then Ve := {ze : x € V} is a Hilbert space
with respect to inner product (z,y) = tr({y,x)) where "tr” means the trace. It is easy
to see that (z,y) = (y,x)e for all x € Ve, y € Ve see [1], [2].

Theorem 3.2. Let H, F be Hilbert C*-modules over a C*-algebra A, let {x;};cr be
an orthonormal basis for H, and {y;};cs be an orthonormal basis for F. Then {z; ®
YjYier jeg is an orthonormal basis for HQ F on A® A.
Proof. We have (x;,x;) = e; for all i € I, e;Ae; = Ce;, (x;,x;) = 01if i £ 1, and (2;)ier
generate a dense submodule of H. Also, (y;,y;) = e; for all j € J, e;Ae; =
(yj,ye) = 01if j # k, and (y;),es generate a dense submodule of F. Now we have

(T: @ yj, 2 @yj) = (Ti, Ti) @ (Yj,yj) = € R ej = e; D ej.
So x; ® y; is a minimal projection in A ® A. We show that the system {z; ® y; }icr jes
is orthonormal in H ® F'

(T3 @ yj, 11 @ yr) = (T4, 71) @ (Y5, Yr) = 0it @ 0, = 0

ifi#lorj+#k.
Now we show that the system {x; ® y;}icr jes is an orthonormal basis for H @ F.
Let :Qye HQF (x€ Hy€F). Sox=lm, .Y a1,

m
y=lm > by

=1
for some ay,...,a, € A and by,...,b,, € A.
Then we have
n m
roy = i Sans i S
i=1 j=1
n,m

= lim > (@i @bj)(x @ y;).
’ i=1,j=1

So {x; ® y;}ier,jes generate a dense submodule of H @ F. O

Our next result is about frame of submodules, so we recall its definition and the
definition of fusion frames.

Definition 3.3. (See [1]). Let V be a countably generated Hilbert K (H)-module and
I C N finite or countable. Let {\; : i € I} be a family of weights. A family of closed
submodules {W; : i € I} of V is a frame of submodules for V' with respect to {\; : i € I'}
if there exist constants C, D > 0 such that for every z € V,

(4) Clr,x) < Zﬁ(ﬂi(@m(ﬂf» < Dz, x),
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where m; € B(V'), denotes the orthogonal projection onto W;, and the sum in the middle
of (4) is in norm. Its frame operator is Sy = > A?m;(z).

Definition 3.4. (See [15]). Let A be a unital C*-algebra. X be a Hilbert A-module, and
let {v; : 4 € I} be a family of weights in A, i.e. each v; is a positive invertible element
from the center of A and let {M; : i € I} be a family of orthogonally complemented
submodules of X. Then {(M;,v;) : 4 € I} is a fusion frame if there exist real constants
0 < C <D < oo such that

Clz,z) < va(m(x),m(x)) < D(z,z), for zeX.

Hence every frame of submodules {W; : ¢ € I} with respect to weights {\; : i € I} is a
fusion frame {(W;, \;) : i € I}, where the weights are real numbers, see [1], [15].

We note that every frame of submodule {W; : i € I'} with respect to weights {\; : i €
I} is a fusion frame {(W;, \;) : ¢ € I}, where the weights are real numbers, see [1], [15].

Lemma 3.5. Let V and W be Hilbert K(H)-modules, let {(V;, \;) : i € I} be a standard
frame of submodules for V' with bounds C, D, frame operator Sy, x, and let {(W;,u;) : j €
J} be a standard frame of submodules for W with bounds C',D’, frame operator Sw,,.
Lete, e’ € K(H) be orthogonal one-dimensional projections. Then {(V;@W;)(e®e’) : i €
I,j € J} is a frame of subspaces for (V @ W)(e®€') with respect to {\jp; i € 1,j € J}
with frame operator

(Sva ® Swu)|(vew)(ewe) = S(vew)(eoe) iy = Sver ® Swe -

Proof. By [15], we have {((V; ® W;),(A\s ® pj)) : ¢ € I,j € J} is a fusion frame for
V @ W with frame bounds CC’, DD’ and frame operator Sy,x ® Sw,,. We know that
e ® €’ is an orthogonal projection and (V' ® W)(e ® €’) is a Hilbert space. Then by [1],
{(V;@W;) :iel,je J}is a frame of submodules with respect to weights {A\;p; :
iel,jeJ}, for Ve W ifand only if {(V;@ W;)(e®e€') :i € I,j € J} is a frame of
subspaces with respect to Ay = {M\p; i € I,j € J}, for (V@ W)(e ® €’) with frame
bounds CC’, DD’ and frame operator (Sqyvew),u)|(Vew)(ese) = S(Vew)(ewe),(Au)-
But S(V®W)(e®e’),(>\/,¢) = SVe,)\ by SW@',/J and

(Sva)ve ® (Swp)we = (Sveww)|(vew)(eze)
which completes the proof. O
Lemma 3.6. Let V,V; be Hilbert K(H)-modules and let {A; € L(V,V;) : i € I} be a

standard g-frame for V. with respect to {V; : i € I} and e € K(H) be an orthogonal
projection of rank 1. Then {A; € L(Ve,Vie) : i € I} is a g-frame for Ve.

Proof. Suppose that {A; € L(V,V;) : i € I} is a standard g-frame for V with frame
bounds A, B, it means that

A<JE, 1:) < Z<Azxa A1x> < B<1‘, $>a
iel
for all z € V. Since (ze,ye) = (ye, ze)e for all xe,ye € Ve, by choosing xe instead of x
in the above inequalities, we get
A(ze,ze) < Z(Aiaze, A;zey < B(ze,ze), forall z €V,

iel
which implies that A(z,z) < >,/ (Ayx, Ayr) < B(x,z), for all x € Ve. Therefore
{A; :i € I'} is a g-frame for the Hilbert space Ve with respect to {Vie : i € I}. O



G-FRAMES AND OPERATOR VALUED-FRAMES IN HILBERT C*-MODULES 15

3.1. G-frames in Hilbert C*-modules. We know that every finitely or countably
generated Hilbert C*-module over a o-unital C*-algebra has a standard Parseval frame,
see [7]. By using this fact we have the following characterization of g-frames, see [18,
Theorem 3.1].

Theorem 3.7. Let H be a Hilbert A-module and F be a Hilbert B-module. Let {A;}icr,
{T'j}jes be standard g-frames in Hilbert C*-modules H, F with respect to {Vi}ier,
{W;}jes, respectively. If S, S’ and S" are the g-frame operators of {Ai}icr,{Tj}jes
and {A; ®T;}icr jes, respectively, then S” =S ® S’.

Proof. Since S is A-linear and S’ is B-linear, and they are bounded, then S® S’ is A® B-
linear. For every x € H and y € F, we have Sz =Y. _; AfA;x and S'y = ZjeJ IZTjy.

el
Therefore
(S®S)zey) =SraSy=> AjAz® Y Iy
iel jeJ
=) Az eTTy =Y (A; @T;)(AxaT,y)
i i\
=Y (A eTHWeT)(roy) =) (Lel) (Ael))(zy).
i i

Now by the uniqueness of g-frame operator, the last expression is equal to S”(z ® y).
Consequently we have (S® S")(z®y) = S (z ® y). From this equality it follows that for
all z = Zzi? zp @yp in H @ug F, (S®S5")z = 5"z Hence the above relation holds for
all zin H® F. So S = S® S’, which is a bounded A ® B-linear, self-adjoint, positive
and invertible operator on H ® F. We also have | S” ||=|| S& S’ [|<|| S ||| S" || - O

For the g-frame operator we have the following result.

Theorem 3.8. If Q € L(H) is an invertible A-linear map and {A;}icr is a g-frame for
H ® F with respect to {V; }ic; with g-frame operator S, then {A;(Q*®I)}icr is a g-frame
for H® F with respect to {V;};er with g-frame operator (Q ® I)S(Q* ® I).

Proof. Since Q € L(H),Q®1 € L(H ® F) with inverse Q! ® I. Tt is obvious that Q® I

is A ® B-linear, adjointable, with adjoint Q* ® I. An easy calculation shows that for
every elementary tensor z ® y,

Qe Dy |I* =l Q) ey |*=] Q@) I’y

<lQIl=*lyllP=lQI*lzeyl*.

So @ ® I is bounded, and therefore it can be extended to H ® F. Similarly for Q* & I.
Hence Q ® I is A ® B-linear, adjointable with adjoint @* ® I, and as we mentioned in
the proof of [15, Theorem 3.2] @Q* is invertible and bounded. Hence for every T € HQ F,
we have

LTI T Il @ DT I QIIT.

Hence Q ® I € L(H ® F'). Now by Theorem 3.2 in [15], we have the result. O

As an application of g-frames we can introduce atomic resolution of bounded A-linear
operators, see [14], [15], [18].

Let H be a Hilbert A-module and {A; € L(H,V;) : i € I} be a g-frame for H with
canonical dual g-frame {A; = A;S~' : i € I}. Then for every f € H, f = S, A*A;f =
> ]\;‘Af If T is a bounded A-linear map on H, then

(5) T =Y TAA =) TAA = AANT = AAT,
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where the convergence is in strong *-topology. (5) is called atomic resolution of operator
T. By using the same proof of Theorem 5.2 in [15] or Proposition 4.2 in [14] we have the
following result:

Proposition 3.9. Let A, B be C*-algebras, H be a Hilbert A-module and K be a Hilbert
B-module. If T =Y"T,T =TT, and S = )_5;S = >_585; are atomic resolutions of
T e L(H) and S € L(K), respectively, where (T;) C L(H), (S;) C L(K), then

TeS=> (Ti®8)(T®8) =Y (IT®S)(T;eS)

K3

3.2. operator-valued frames in Hilbert C*-modules. Let A be a C*-algebra and
E be a Hilbert A-module. For each pair of elements x and y in E, a bounded rank-one
operator is defined by 0, ,(2) = z(y,z) for all z € E. The closed linear span of all
rank-one operators is denoted by K(F). When A = C, K(F) coincides with the ideal
K =K (F) of all compact operators on E. We know that for a Hilbert A-module E, L(E)
is multiplier algebra of K(E), and K(FE) is always a closed ideal of L(F), see [17].

Definition 3.10. We say that T\ — T in strict topology of L(E) if || (T\ = T)S ||— 0
and || S(Ta—T) ||— 0 (for all S €K (E)), where the convergence is in the L(E) norm. We
say that Ty — T in strong*-operator topology if || (Ta—T)¢ ||[— 0 and || (TA—=T)*¢ ||— 0
for £ € H.

We will use the following elementary properties :7y — T strictly if and only if T} — T
strictly, and either of these convergences implies BT\ — BT and T)\B — T B strictly for
all B € L(E). Also, if T\ — T strictly and Sy — S strictly, then T\S\ — T'S strictly.
To avoid unnecessary complications, from now on, we assume that A is a o-unital C*-
algebra.

Definition 3.11. Let A be a o-unital C*-algebra, F be a Hilbert A-module and J be
a countable index set. Let Fy be a projection in M(K(E)) = L(E). Denote by Hg
the submodule EyE and identify L(E, Hg) with EgM (K (E)). A collection {4;},cs C
L(E,Hg) for j € J is called an operator-valued frame on F with range in Hg if the
sum j A3 Aj converges in strict topology (o -strong*-topology) to a bounded invertible
operator on E, denoted by D. {4;},c is called a tight operator-valued frame (resp., a
Parseval operator-valued frame) if D = AI for a positive number A (resp., D = 1I).

Lemma 3.12. FEvery operator-valued frame { A;} with associated operator D is a g-frame
with g-frame operator S = D.

Proof. Since o -strong*-topology is stronger than strong*-topology [3], by using part
(iii) of Remark 2.3 in [11] we conclude that for every x € H, }; A7A;x is convergent to
D(z), and
1 *
m@vx) <O AjAjw,x) = (Ajw, Ajx) <|| D || (z, ).
J

J

Therefore {A;} is a g-frame with g-frame operator S = D. (]

By frame, we will mean an operator-valued frame on a Hilbert C*-module.

Remark 3.13. By Lemma 3.2 of [11] if {A;}jcs is a frame in L(E, Hg), then {B; =
A;D'},cy is a frame in L(E, Hg) and {AjD%l}je.; is a Parseval frame.

Next we show that tensor product of operator-valued frame is an operator-valued
frame.
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Theorem 3.14. Let E,F be Hilbert A-modules, and let Ey € M(K(E)),Fy € M(K(F))
be projections. We put Hg = EoF and Hp = FoF. Let {A;}jcs be a frame in L(E, Hg),
and let {B;}icr be a frame in L(F,Hp). Then {A; ® B;}jcticr is a frame in L(E ®
F,Hg ® Hp). In particular, if {A;};cs and {B;}icr are tight or Parseval frames, then
SO 18 {AJ & Bi}jer]’iej.

Proof. There is a bounded and invertible operator Dp € L(E) such that >, A%A;
converges in strict topology to Dg, and there is a bounded and invertible operator
Dp € L(F) such that ), By B, converges in strict topology to Dp. We have K(E ®
F) = K(F) ® K(F). Let 1,22 € E, y1,y2 € F. Then it is enough to show that
H (Ei,j(Aj ® Bl)*(AJ ®Bl) —Dg ®DF)9931®.1/1,I2®1/2 ||_> 0 and || 9w1®y1,wz®yz (Zi,j (AJ ®
B;)*(A; ® B;) — Dg ® D) ||—= 0. We have 8,0y, 220y, = 1,2, @ Oy, 4., and therefore

I (Y (4;® Bi)*(A; ® B;) = Di @ Dr)ba, @y, waoys |

)

:” (ZA;AJ ® (ZB:BZ - DF))G-”M,%Q ®9y1,y2
J [
+ ((ZA;AJ - DE') ®DF)9Z1,I2 ®0y17y2 ”
J
:” ZA;Ajerlﬂﬂz ® (ZB:BZ - DF)ethn
J [

+ (ZA;A] - DE)axl,arz Y DFeyhyz H
J

S” ZA;Ajerumz ® (ZB:BZ - DF)0y17y2 ”
J [

+ ” (ZA;AJ _DE)GELIQ ®DF9y1,yz ”
J

<UD A5A0a o Il (D BIBi =~ D)8y |

J
+ 1 (3" A5A; = DE)0ay o Il DFOy, s || 0.
J

A similar argument shows that

” 9I1®y1,£2®y2(Z(Aj ® Bl)*(Aj ® BZ) —Dg® DF) ”_) 0.

,J

Since the linear span of 0,0y, 4oy, (1,22 € E,y1,y2 € F) is dense in K(E® F), it
follows that || (32, ;(4; ® B;)*(4; ® B;) = Dp @ Dr)S |- 0VS € K(E® F). O

First we recall some definitions from [11].

Definition 3.15. Assume that {A;};cs is a frame in L(E, Hg) for the Hilbert C*-
module E. Decompose the identity of M(K(FE)) = L(FE), into a strictly converging
sum of mutually orthogonal projections{F;};c; in M(K(E)) with E; ~ Egy > Ey. Let
{L;}jes be partial isometries in M (K (E)) such that L;L* = Ej and L} L; = Ego. Define
the frame transform 64 of the frame {A;};e; as 04=>_, L;A; : E — E, and the range
projection of 84, Ps = 9AD219j‘4 is called the frame projection.

Theorem 3.16. Let {A;},c; be a frame in L(E, EgE) with frame transform 04, frame
projection Py, and {B;}i;cr be a frame in L(F, FoF) with frame transform 0p, frame
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projection Pg. Then 64 ® 0p is the frame transform of the frame {A; ® B;}jcjicr and
Psgp = Pa® Pp.
Proof. There are partial isometries {L,};e; C M(K(E)), and {K;}ier C M(K(F))
such that Ej = LjL;, EO S Eoo = L;Lj, IE = Zj E]‘, 9,4 = Zj LjAj and Fl = K7Kl*,
FO § FOO = KZ*KZ, IF = ZiFi? 63 = Zz Ksz We have EO S EOO, Fo S Foo. It
means EOEOO = EOOEO = E() and FOFOO = FOOFO = Fo. So (EOO & FOO)(EO & F()) =
EooEo ® Foolo = Eo ® Fo = (Eo ® Fo)(Eoo @ Foo).

Consequently (Egg ® Foo) > (Eo ® Fp), and it is obvious that {E; ® F;}jcjicr are
projections in B(F ® F). But

(L @ Ko)(L] @ K7) = LiLj @ KK = By @ Fy = (L @ K (L @ Ko)*,
(Lj @ Ki)(L; @ K;) = LjL; @ K[ K; = (Eoo @ Foo) = (L; ® Ki)"(L; ® K;)
and Zj,iEj ®F = EjEj ®Y., Fi=1g ®Ir. Then

0a@05 =Y LiA;®Y KBi=Y LjA®KB
j i 7yt

J
= (L ® K;)(A; @ B;) = g5
7t

Also we have
Pagp = 9A®BD2@19302®B =04 ®0p)(Da® Dp) (042 0p)"
=04D,'0, @ 05 D505 = Pa ® Pg.
O

Definition 3.17. Two frames {A;}jcs, {Bj}jes in L(E, EoFE) are said to be right-
similar if there exists an invertible element T' € M (K(E)) such that B; = A;T for all
jed.

Lemma 3.18. If {A;}jcs, {B;}jes are right-similar in L(E, Hg) and {C;}icr, {Di}ier
are right-similar in L(F, Hp), then {A; @ C;};; and {Bj ® D;};; are right-similar in
L(E® F, Hg ® Hp).

Proof. Let Ty be an invertible element of M (K (E)) such that B; = A;T; for all j € J
and Ty be an invertible element of M (K (F')) such that D; = C;Ts for all i € I. Then
we have (T} @ Ty) ™! = Ty ' @ Ty *, and M(K(E)) ® M(K(F)) € M(K(F ® F)). But
T'®T, € M(K(E))®M(K(F). Hence Th ® T» is an invertible operator in M(K(EQ F))
such that B; ® D; = A;T1 @ C; Ty = (A; ® C;)(Th ® T,). Consequently {A; ® C;};,; and
{B; ® D;};,; are right-similar in L(E ® F, Hgr @ HF). a
By using Theorem 3.3 in [11] and the above lemma, we have the following result.
Theorem 3.19. Let {A;}icr, {Bi}icr be frames in L(E, Hg) and {C;}, {D;} be frames
in L(F,Hp). Then the following are equivalent:
(1) {4; ® Ci};,i and {B; ® D;};,; are right similar in L(EQ F,Hg ® Hp),
(ii) {A:}, {Bi} are right similar in L(E, Hg) and {C;}, {D;} are right-similar in
L(Fv HF);
(ili) Pagc = Ppap,
(iV) PA = PB cmd Pc' = PD.
Proof. By Theorem 3.3 in [11], (i) is equivalent to (iii) and by Theorem 3.16, (iii) is
equivalent to (iv). Also by Theorem 3.3 in [11], (ii) is equivalent to (iv), and by the
above lemma, (ii) implies (i). So we have the result. O
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