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G-FRAMES AND OPERATOR VALUED-FRAMES IN HILBERT
C*-MODULES

SEDIGHE HOSSEINI AND AMIR KHOSRAVI

Abstract. g-frames and fusion frames in Hilbert C*-modules have been defined by
the second author and B. Khosravi in [15] and operator-valued frames in Hilbert

C*-modules have been defined by Kaftal et al in [11]. We show that every operator-

valued frame is a g-frame, we also show that in Hilbert C*-modules tensor product
of orthonormal basis is an orthonormal basis and tensor product of g-frames is a

g-frame, we get some relations between their g-frame operators, and we study tensor

product of operator-valued frames in Hilbert C*-modules.

1. Introduction

Frames were first introduced in 1946 by Gabor [8], reintroduced in 1986 by Daubechies,
Grossman and Meyer [4], and popularized from then on. Frames have many nice pro-
perties which make them very useful in the characterization of function spaces, signal
processing, image processing, data compression, sampling theory and many other fields.

Later the notion of frames in C*-algebras and frames in Hilbert C*-modules were
introduced and some of their properties were investigated [6, 7, 11, 14, 15]. The second
author and B. Khosravi in [15] introduced g-frames and fusion frames in Hilbert C*-
modules. Since tensor product is useful in the approximation of multi-variate functions
of combinations of univariate ones, in this paper, we study the g-frames in tensor product
of Hilbert C*-modules and we generalize the techniques of [11], [13–16] to C*-modules.
In section 2 we briefly recall the definitions and basic properties of Hilbert C*-modules.
In section 3, we investigate tensor product of Hilbert C*-modules, which is introduced in
[11] and we show that tensor product of orthonormal basis is an orthonormal basis. We
also show that tensor product of g-frames for Hilbert C*-modules H and F , present a
g-frame for H⊗F , and tensor product of their g-frame operators is the g-frame operator
of their tensor product g-frame. Finally, we recall the definitions and some properties
of operator-valued frames in Hilbert C*-modules which were introduced in [11] and we
show that every operator-valued frame is a g-frame. We study tensor product of operator-
valued frames, tensor product of frame transforms for Hilbert C*-modules.

Throughout this paper, N and C will denote the set of natural numbers and the set of
complex numbers, respectively. I, J and I ,js will be countable index sets. A and B will
be unital C*-algebras.

2. Preliminaries

In this section we briefly recall the definitions and basic properties of Hilbert C*-
modules and g-frames in Hilbert C*-modules. For more information about g-frames in
Hilbert spaces and Hilbert C*-modules we refer to [15], [18].

2000 Mathematics Subject Classification. 42C15, 46C05, 46L05.
Key words and phrases. Frame, frame operator, operator-valued frames, tensor product, Hilbert

C*-module, g-frames.

10



G-FRAMES AND OPERATOR VALUED-FRAMES IN HILBERT C*-MODULES 11

For a C*-algebra if a ∈ A is positive, we write a > 0 and A+ denotes the set of
positive elements of A. If 0 6 a and a 6 b then we have a

1
2 6 b

1
2 and if −b 6 a 6 b then

‖ a ‖6‖ b ‖ for a, b ∈ A.

Definition 2.1. Let A be a unital C*-algebra and H be a left A-module, such that
the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is
equipped with an A-valued inner product 〈., .〉 : H ×H −→ A that posses the following
properties:

(i) 〈x, x〉 ≥ 0 for all x ∈ H and 〈x, x〉 = o if and only if x = 0;
(ii) 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉 for all a ∈ A and x, y, z ∈ H;
(iii) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H.

For x ∈ H, we define ‖ x ‖=‖ 〈x, x〉 ‖ 1
2 , if H is complete with ‖ . ‖, it is called a

Hilbert A-module or a Hilbert C*-module over A. For every a in C*-algebra A,we have
| a |= (a∗a)

1
2 and the A-valued norm on H is defined by | x |= 〈x, x〉 12 for x ∈ H.

Throughout this paper V is a Hilbert A-module, W is a Hilbert B-module, and {Vi}i∈I
is a family of closed submodules of V and {Wj}j∈J is a family of closed submodules of
W . Now we recall some definitions, see [15], [18]. If H and F are Hilbert A-modules,then
L(H,F ) is the collection of all bounded adjointable linear operators from H to F and
we abbreviate L(H,H) by L(H), an operator T ∈ L(H,F ) is a unitary if TT ∗ = IF , and
T ∗T = IH .

Example 2.2. (a) Let {(Hi, 〈,̇〉̇i : i ∈ I)} be a sequence of Hilbert spaces. Then
(
⊕
Hi)l2 = {(xi)i∈I : xi ∈ Hi, ||(xi)||22 =

∑
i〈xi, xi〉i < ∞} with pointwise operations

and inner product defined by 〈(xi), (yi)〉 =
∑
i〈xi, yi〉i is a Hilbert space. If Hi = H for

each i ∈ I, then we denote (
⊕

i∈I(Hi))l2 by l2(H, I). So for any sequence {Hi : i ∈ I}
of Hilbert spaces, there exists a Hilbert space H = (

⊕
i∈I Hi)l2 which contains all of the

Hi’s.
(b) Let {Vi : i ∈ I be a sequence of Hilbert A-modules and

(
⊕

i∈I Vi)l2 = {x = (xi) : xi ∈ Vi and
∑
i〈xi, xi〉 is norm convergent in A}. Then

(
⊕

i∈I Vi)l2 is a Hilbert A-module with A-valued inner product 〈x, y〉 =
∑
i∈I〈xi, yi〉,

where x = (xi)i∈I y = (yi)i∈I , pointwise operations and the norm defined by ‖ a ‖=‖
〈a, a〉 ‖ 1

2 .

Definition 2.3. (See [18]). Let H be a Hilbert space, and {Vi}i∈I is a family of Hilbert
spaces. B(H,Vi) is the collection of all adjointable bounded linear operators from H into
Vi. A family {Λi ∈ B(H,Vi)}i∈I is said to be a g-frame for H with respect to {Vi}i∈I , if
there are real constants 0 < A 6 B <∞, such that for all x ∈ H,

A ‖ x ‖2≤
∑
‖ Λix ‖2≤ B ‖ x ‖2 .(1)

The optimal constants (i.e. maximal for A and minimal for B) are called g-frame
bounds. The g-frame {Λi : i ∈ I} is said to be a tight g-frame if A = B, and said to be a
Parseval g-frame if A = B = 1. The family {Λi : i ∈ I} is said to be a g-Bessel sequence
for H with respect to {Vi}i∈I , if the right-hand side inequality of (1) holds.

In [18] it is shown that frames, pseudoframes, oblique frames, outer frames and frames
of subspaces (fusion frames) are a class of g-frames, see examples in [18]. Also in [18]
the g-frame operator SΛ is defined by SΛf =

∑
i Λ∗iΛif for each f ∈ H and in [16]

the synthesis operator TΛ : (
⊕
Vi)l2 → H, TΛ((yi)i) =

∑
i Λ∗i (yi) and the analysis

operator T ∗Λ : H → (
⊕
Vi)l2 , T ∗(x) = (Λix)i∈I are defined for every g-Bessel sequence

{Λi ∈ B(H,Vi) : i ∈ I} and some of their properties were investigated. To generalize
this notion to the situation of Hilbert C*-modules first we recall some definitions. Let A
be a unital C∗-algebra and H be a finitely or countably generated Hilbert A-module. A
sequence {fi : i ∈ I} is a frame for H if there exist real constants 0 < A ≤ B <∞ such
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that for every f ∈ H,

A〈f, f〉 ≤
∑
i∈I
〈f, fi〉〈fi, f〉 ≤ B〈f, f〉.(2)

A and B are called bounds of the frame, if A = B = λ, the frame is called λ-tight,
if A = B = 1, the frame is a Parseval frame, and if only the right hand inequality is
required, it is called a Bessel sequence, The frame is standard if the series in (2) converges
in norm in A.

Definition 2.4. (See [15]). A sequence {Λi ∈ L(H,Vi) : i ∈ I} is a g-frame in H with
respect to {Vi : i ∈ I} if there exist constants A,B > 0 such that for every x ∈ H,

A〈x, x〉 ≤
∑
i∈I
〈Λix,Λix〉 ≤ B〈x, x〉.(3)

As usual A and B are g-frame bounds of {Λi : i ∈ I}. If A = B = λ, the g-frame is
called λ-tight and if A = B = 1, it is called a Parseval g-frame. The g-frame is standard
if for every x ∈ H, the sum in (3) converges in norm.

In this paper we consider standard g-frames. If {Λi : i ∈ I} is a standard g-frame in a
finitely or countably generated Hilbert A-module, then we can define the frame transform
θ, the synthesis operator θ∗ and g-frame operator S as follows:

θ : H → (
⊕

Vi)l2 , θ(x) = (Λix)i∈I

θ∗ : (
⊕

Vi)l2 → H , θ∗(y) =
∑
i

Λ∗i (yi),

for all y = (yi) in (
⊕
Vi)l2 and S = θ∗θ : H → H is given by S(x) =

∑
i Λ∗iΛi(x), for each

x ∈ H. We know that ||θ∗|| ≤
√
D, and θ : H → θ(H) is invertible and ||θ−1|| ≤ 1√

C
.

Moreover S is positive, self adjoint and invertible with ‖ S ‖≤ D and ‖ S−1 ‖≤ 1
C ,

see [15].

3. Frames in Hilbert C*-modules

Suppose that A,B are C*-algebras and we take A⊗B as the completion of A⊗alg B
with the spatial norm see [10]. A ⊗ B is the spatial tensor product of A and B, also
suppose that H is a Hilbert A-module and F is a Hilbert B-module. We want to define
H ⊗ F as a Hilbert (A ⊗ B)-module. Start by forming the algebraic tensor product
H ⊗alg F of the vector spaces H, F (over C ). This is a left module over (A⊗alg B) (the
module action being given by (a ⊗ b)(x ⊗ y) = ax ⊗ by (a ∈ A, b ∈ B, x ∈ H, y ∈ F )).
For (x1, x2 ∈ H, y1, y2 ∈ F ) we define 〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉 ⊗ 〈y1, y2〉. We also
know that for z =

∑n
i=1 xi ⊗ yi in H ⊗alg F we have

〈z, z〉 =
∑
i,j

〈xi, xj〉 ⊗ 〈yi, yj〉 ≥ 0

and

〈z, z〉 = 0 iff z = 0.

This extends by linearity to an (A⊗alg B)-valued sesquilinear form on H ⊗alg F , which
makes H ⊗alg F into a semi-inner-product module over the pre-C*-algebra (A ⊗alg B).
The semi-inner-product on H⊗algF is actually an inner product, see [17]. Then H⊗algF
is an inner-product module over the pre-C*-algebra (A⊗alg B),and we can perform the
double completion discussed in chapter 1 of [17] to conclude that the completion H ⊗ F
of H ⊗alg F is a Hilbert (A ⊗ B)-module. We call H ⊗ F the exterior tensor product
of H and F . With H, F as above, we wish to investigate the adjointable operators on
H ⊗ F . Suppose that S ∈ L(H), T ∈ L(F ). Define a linear operator S ⊗ T on H ⊗ F
by S ⊗ T (x⊗ y) = Sx⊗ Ty (x ∈ H, y ∈ F ). It is a routine verification that S∗ ⊗ T ∗ is
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an adjoint for S ⊗ T , so in fact S ⊗ T ∈ L(H ⊗ F ). For more details see [10], [17]. We
note that if a ∈ A+ and b ∈ B+, then a ⊗ b ∈ (A ⊗ B)+. Plainly if a, b are Hermitian
elements of A and a ≥ b, then for every positive element x of B, we have a⊗ x ≥ b⊗ x.

Definition 3.1. Let H be a Hilbert C*-module over an arbitrary C*-algebra A. An
element v ∈ H is said to be a basic vector if e = 〈v, v〉 is a minimal projection in A, in
the sense that eAe = Ce. A system (vλ)λ∈Λ in H is orthonormal if each vλ is a basic
vector and 〈vλ, vµ〉 = 0 for all λ 6= µ. An orthonormal system (vλ)λ∈Λ in H is said to be
an orthonormal basis for H if it generates a dense submodule of H.

If we consider C∗-algebra of compact operators K(H) on some Hilbert space H, then
every Hilbert K(H)-module V possesses an orthonormal basis and all closed submodules
of Hilbert K(H)-modules are orthogonally complemented. Furthermore, if e ∈ K(H) is
an orthogonal one-dimensional projection, then V e := {xe : x ∈ V } is a Hilbert space
with respect to inner product (x, y) = tr(〈y, x〉) where ”tr” means the trace. It is easy
to see that 〈x, y〉 = (y, x)e for all x ∈ V e, y ∈ V e see [1], [2].

Theorem 3.2. Let H,F be Hilbert C∗-modules over a C∗-algebra A, let {xi}i∈I be
an orthonormal basis for H, and {yj}j∈J be an orthonormal basis for F . Then {xi ⊗
yj}i∈I,j∈J is an orthonormal basis for H ⊗ F on A⊗A.

Proof. We have 〈xi, xi〉 = ei for all i ∈ I, eiAei = Cei, 〈xi, xl〉 = 0 if i 6= l, and (xi)i∈I
generate a dense submodule of H. Also, 〈yj , yj〉 = ej for all j ∈ J , ejAej = Cej ,
〈yj , yk〉 = 0 if j 6= k, and (yj)j∈J generate a dense submodule of F . Now we have

〈xi ⊗ yj , xi ⊗ yj〉 = 〈xi, xi〉 ⊗ 〈yj , yj〉 = ei ⊗ ej = ei ⊗ ej .
So xi ⊗ yj is a minimal projection in A⊗ A. We show that the system {xi ⊗ yj}i∈I,j∈J
is orthonormal in H ⊗ F .

〈xi ⊗ yj , xl ⊗ yk〉 = 〈xi, xl〉 ⊗ 〈yj , yk〉 = δil ⊗ δjk = 0

if i 6= l or j 6= k.
Now we show that the system {xi ⊗ yj}i∈I,j∈J is an orthonormal basis for H ⊗ F .
Let x⊗ y ∈ H ⊗ F (x ∈ H, y ∈ F ). So x = limn−→∞

∑n
i=1 aixi,

y = lim
m−→∞

m∑
j=1

bjyj

for some a1, . . . , an ∈ A and b1, . . . , bm ∈ A.
Then we have

x⊗ y = lim
n→∞

n∑
i=1

aixi ⊗ lim
m→∞

m∑
j=1

bjyj

= lim
n→∞,m→∞

n,m∑
i=1,j=1

(ai ⊗ bj)(xi ⊗ yj).

So {xi ⊗ yj}i∈I,j∈J generate a dense submodule of H ⊗ F . �

Our next result is about frame of submodules, so we recall its definition and the
definition of fusion frames.

Definition 3.3. (See [1]). Let V be a countably generated Hilbert K(H)-module and
I ⊆ N finite or countable. Let {λi : i ∈ I} be a family of weights. A family of closed
submodules {Wi : i ∈ I} of V is a frame of submodules for V with respect to {λi : i ∈ I}
if there exist constants C,D > 0 such that for every x ∈ V ,

C〈x, x〉 ≤
∑
i

λ2
i 〈πi(x), πi(x)〉 ≤ D〈x, x〉,(4)
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where πi ∈ B(V ), denotes the orthogonal projection onto Wi, and the sum in the middle
of (4) is in norm. Its frame operator is SW,λ =

∑
λ2
iπi(x).

Definition 3.4. (See [15]). Let A be a unital C∗-algebra. X be a Hilbert A-module, and
let {vi : i ∈ I} be a family of weights in A, i.e. each vi is a positive invertible element
from the center of A and let {Mi : i ∈ I} be a family of orthogonally complemented
submodules of X. Then {(Mi, vi) : i ∈ I} is a fusion frame if there exist real constants
0 < C ≤ D <∞ such that

C〈x, x〉 ≤
∑
i

v2
i 〈πi(x), πi(x)〉 ≤ D〈x, x〉, for x ∈ X.

Hence every frame of submodules {Wi : i ∈ I} with respect to weights {λi : i ∈ I} is a
fusion frame {(Wi, λi) : i ∈ I}, where the weights are real numbers, see [1], [15].

We note that every frame of submodule {Wi : i ∈ I} with respect to weights {λi : i ∈
I} is a fusion frame {(Wi, λi) : i ∈ I}, where the weights are real numbers, see [1], [15].

Lemma 3.5. Let V and W be Hilbert K(H)-modules, let {(Vi, λi) : i ∈ I} be a standard
frame of submodules for V with bounds C,D, frame operator SV,λ, and let {(Wj , µj) : j ∈
J} be a standard frame of submodules for W with bounds C ′, D′, frame operator SW,µ.
Let e, e′ ∈ K(H) be orthogonal one-dimensional projections. Then {(Vi⊗Wj)(e⊗e′) : i ∈
I, j ∈ J} is a frame of subspaces for (V ⊗W )(e⊗ e′) with respect to {λiµj : i ∈ I, j ∈ J}
with frame operator

(SV,λ ⊗ SW,µ)|(V⊗W )(e⊗e′) = S(V⊗W )(e⊗e′),λµ = SV e,λ ⊗ SWe′,µ.

Proof. By [15], we have {((Vi ⊗ Wj), (λi ⊗ µj)) : i ∈ I, j ∈ J} is a fusion frame for
V ⊗W with frame bounds CC ′, DD′ and frame operator SV,λ ⊗ SW,µ. We know that
e ⊗ e′ is an orthogonal projection and (V ⊗W )(e ⊗ e′) is a Hilbert space. Then by [1],
{(Vi ⊗ Wj) : i ∈ I, j ∈ J} is a frame of submodules with respect to weights {λiµj :
i ∈ I, j ∈ J}, for V ⊗W if and only if {(Vi ⊗Wj)(e ⊗ e′) : i ∈ I, j ∈ J} is a frame of
subspaces with respect to λµ = {λiµj : i ∈ I, j ∈ J}, for (V ⊗W )(e ⊗ e′) with frame
bounds CC ′, DD′ and frame operator (S(V⊗W ),(λµ))|(V⊗W )(e⊗e′) = S(V⊗W )(e⊗e′),(λµ).
But S(V⊗W )(e⊗e′),(λµ) = SV e,λ ⊗ SWe′,µ and

(SV,λ)|V e ⊗ (SW,µ)|We′ = (SV⊗W,λµ)|(V⊗W )(e⊗e′)

which completes the proof. �

Lemma 3.6. Let V, Vi be Hilbert K(H)-modules and let {Λi ∈ L(V, Vi) : i ∈ I} be a
standard g-frame for V with respect to {Vi : i ∈ I} and e ∈ K(H) be an orthogonal
projection of rank 1. Then {Λi ∈ L(V e, Vie) : i ∈ I} is a g-frame for V e.

Proof. Suppose that {Λi ∈ L(V, Vi) : i ∈ I} is a standard g-frame for V with frame
bounds A,B, it means that

A〈x, x〉 ≤
∑
i∈I
〈Λix,Λix〉 ≤ B〈x, x〉,

for all x ∈ V . Since 〈xe, ye〉 = (ye, xe)e for all xe, ye ∈ V e, by choosing xe instead of x
in the above inequalities, we get

A(xe, xe) ≤
∑
i∈I
〈Λixe,Λixe〉 ≤ B(xe, xe), for all x ∈ V,

which implies that A(x, x) ≤
∑
i∈I(Λix,Λix) ≤ B(x, x), for all x ∈ V e. Therefore

{Λi : i ∈ I} is a g-frame for the Hilbert space V e with respect to {Vie : i ∈ I}. �
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3.1. G-frames in Hilbert C∗-modules. We know that every finitely or countably
generated Hilbert C*-module over a σ-unital C*-algebra has a standard Parseval frame,
see [7]. By using this fact we have the following characterization of g-frames, see [18,
Theorem 3.1].

Theorem 3.7. Let H be a Hilbert A-module and F be a Hilbert B-module. Let {Λi}i∈I ,
{Γj}j∈J be standard g-frames in Hilbert C∗-modules H, F with respect to {Vi}i∈I ,
{Wj}j∈J , respectively. If S, S′ and S′′ are the g-frame operators of {Λi}i∈I , {Γj}j∈J
and {Λi ⊗ Γj}i∈I,j∈J , respectively, then S′′ = S ⊗ S′.

Proof. Since S is A-linear and S′ is B-linear, and they are bounded, then S⊗S′ is A⊗B-
linear. For every x ∈ H and y ∈ F , we have Sx =

∑
i∈I Λ∗iΛix and S′y =

∑
j∈J Γ∗jΓjy.

Therefore

(S ⊗ S′)(x⊗ y) = Sx⊗ S′y =
∑
i∈I

Λ∗iΛix⊗
∑
j∈J

Γ∗jΓjy

=
∑
i,j

Λ∗iΛix⊗ Γ∗jΓjy =
∑
i,j

(Λ∗i ⊗ Γ∗j )(Λix⊗ Γjy)

=
∑
i,j

(Λ∗i ⊗ Γ∗j )(Λi ⊗ Γj)(x⊗ y) =
∑
i,j

(Λi ⊗ Γj)∗(Λi ⊗ Γj)(x⊗ y).

Now by the uniqueness of g-frame operator, the last expression is equal to S′′(x ⊗ y).
Consequently we have (S⊗S′)(x⊗ y) = S′′(x⊗ y). From this equality it follows that for
all z =

∑k=n
k=1 xk ⊗ yk in H ⊗alg F , (S ⊗ S′)z = S′′z. Hence the above relation holds for

all z in H ⊗ F. So S′′ = S ⊗ S′, which is a bounded A ⊗ B-linear, self-adjoint, positive
and invertible operator on H ⊗ F . We also have ‖ S′′ ‖=‖ S ⊗ S′ ‖≤‖ S ‖‖ S′ ‖ . �

For the g-frame operator we have the following result.

Theorem 3.8. If Q ∈ L(H) is an invertible A-linear map and {Λi}i∈I is a g-frame for
H⊗F with respect to {Vi}i∈I with g-frame operator S, then {Λi(Q∗⊗I)}i∈I is a g-frame
for H ⊗ F with respect to {Vi}i∈I with g-frame operator (Q⊗ I)S(Q∗ ⊗ I).

Proof. Since Q ∈ L(H), Q⊗ I ∈ L(H⊗F ) with inverse Q−1⊗ I. It is obvious that Q⊗ I
is A ⊗ B-linear, adjointable, with adjoint Q∗ ⊗ I. An easy calculation shows that for
every elementary tensor x⊗ y,

‖ (Q⊗ I)(x⊗ y) ‖2 =‖ Q(x)⊗ y ‖2=‖ Q(x) ‖2‖ y ‖2

≤‖ Q ‖2‖ x ‖2‖ y ‖2=‖ Q ‖2‖ x⊗ y ‖2 .
So Q⊗ I is bounded, and therefore it can be extended to H⊗F . Similarly for Q∗⊗ I.

Hence Q ⊗ I is A ⊗ B-linear, adjointable with adjoint Q∗ ⊗ I, and as we mentioned in
the proof of [15, Theorem 3.2] Q∗ is invertible and bounded. Hence for every T ∈ H⊗F ,
we have

‖ (Q∗)−1 ‖−1| T |≤| (Q∗ ⊗ I)T |≤‖ Q ‖| T | .

Hence Q⊗ I ∈ L(H ⊗ F ). Now by Theorem 3.2 in [15], we have the result. �

As an application of g-frames we can introduce atomic resolution of bounded A-linear
operators, see [14], [15], [18].

Let H be a Hilbert A-module and {Λi ∈ L(H,Vi) : i ∈ I} be a g-frame for H with
canonical dual g-frame {Λ̃i = ΛiS−1 : i ∈ I}. Then for every f ∈ H, f =

∑
Λ∗i Λ̃if =∑

Λ̃∗iΛf . If T is a bounded A-linear map on H, then

T =
∑

TΛ∗i Λ̃i =
∑

T Λ̃∗iΛi =
∑

Λ∗i Λ̃iT =
∑

Λ̃iΛiT,(5)
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where the convergence is in strong ∗-topology. (5) is called atomic resolution of operator
T . By using the same proof of Theorem 5.2 in [15] or Proposition 4.2 in [14] we have the
following result:

Proposition 3.9. Let A, B be C∗-algebras, H be a Hilbert A-module and K be a Hilbert
B-module. If T =

∑
TiT =

∑
TTi and S =

∑
SiS =

∑
SSi are atomic resolutions of

T ∈ L(H) and S ∈ L(K), respectively, where (Ti) ⊆ L(H), (Si) ⊆ L(K), then

T ⊗ S =
∑
i

(Ti ⊗ Si)(T ⊗ S) =
∑
i

(T ⊗ S)(Ti ⊗ Si).

3.2. operator-valued frames in Hilbert C*-modules. Let A be a C*-algebra and
E be a Hilbert A-module. For each pair of elements x and y in E, a bounded rank-one
operator is defined by θx,y(z) = x〈y, z〉 for all z ∈ E. The closed linear span of all
rank-one operators is denoted by K(E). When A = C, K(E) coincides with the ideal
K =K(E) of all compact operators on E. We know that for a Hilbert A-module E, L(E)
is multiplier algebra of K(E), and K(E) is always a closed ideal of L(E), see [17].

Definition 3.10. We say that Tλ → T in strict topology of L(E) if ‖ (Tλ − T )S ‖→ 0
and ‖ S(Tλ−T ) ‖→ 0 (for all S ∈K(E)), where the convergence is in the L(E) norm. We
say that Tλ → T in strong*-operator topology if ‖ (Tλ−T )ξ ‖→ 0 and ‖ (Tλ−T )∗ξ ‖→ 0
for ξ ∈ H.

We will use the following elementary properties :Tλ → T strictly if and only if T ∗λ → T ∗

strictly, and either of these convergences implies BTλ → BT and TλB → TB strictly for
all B ∈ L(E). Also, if Tλ → T strictly and Sλ → S strictly, then TλSλ → TS strictly.
To avoid unnecessary complications, from now on, we assume that A is a σ-unital C*-
algebra.

Definition 3.11. Let A be a σ-unital C*-algebra, E be a Hilbert A-module and J be
a countable index set. Let E0 be a projection in M(K(E)) = L(E). Denote by HE

the submodule E0E and identify L(E,HE) with E0M(K(E)). A collection {Aj}j∈J ⊆
L(E,HE) for j ∈ J is called an operator-valued frame on E with range in HE if the
sum

∑
j A
∗
jAj converges in strict topology (σ -strong∗-topology) to a bounded invertible

operator on E, denoted by D. {Aj}j∈J is called a tight operator-valued frame (resp., a
Parseval operator-valued frame) if D = λI for a positive number λ (resp., D = I).

Lemma 3.12. Every operator-valued frame {Ai} with associated operator D is a g-frame
with g-frame operator S = D.

Proof. Since σ -strong∗-topology is stronger than strong∗-topology [3], by using part
(iii) of Remark 2.3 in [11] we conclude that for every x ∈ H,

∑
j A
∗
jAjx is convergent to

D(x), and

1
‖ D−1 ‖

〈x, x〉 ≤ 〈
∑
j

A∗jAjx, x〉 =
∑
j

〈Ajx,Ajx〉 ≤‖ D ‖ 〈x, x〉.

Therefore {Ai} is a g-frame with g-frame operator S = D. �

By frame, we will mean an operator-valued frame on a Hilbert C*-module.

Remark 3.13. By Lemma 3.2 of [11] if {Aj}j∈J is a frame in L(E,HE), then {Bj =
AjD

−1}j∈J is a frame in L(E,HE) and {AjD
−1
2 }j∈J is a Parseval frame.

Next we show that tensor product of operator-valued frame is an operator-valued
frame.
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Theorem 3.14. Let E,F be Hilbert A-modules, and let E0 ∈M(K(E)),F0 ∈M(K(F ))
be projections. We put HE = E0E and HF = F0F . Let {Aj}j∈J be a frame in L(E,HE),
and let {Bi}i∈I be a frame in L(F,HF ). Then {Aj ⊗ Bi}j∈J,i∈I is a frame in L(E ⊗
F,HE ⊗HF ). In particular, if {Aj}j∈J and {Bi}i∈I are tight or Parseval frames, then
so is {Aj ⊗Bi}j∈J,i∈I .

Proof. There is a bounded and invertible operator DE ∈ L(E) such that
∑
j A
∗
jAj

converges in strict topology to DE , and there is a bounded and invertible operator
DF ∈ L(F ) such that

∑
iB
∗
iBi converges in strict topology to DF . We have K(E ⊗

F ) = K(E) ⊗ K(F ). Let x1, x2 ∈ E, y1, y2 ∈ F . Then it is enough to show that
‖ (
∑
i,j(Aj ⊗Bi)∗(Aj ⊗Bi)−DE ⊗DF )θx1⊗y1,x2⊗y2 ‖→ 0 and ‖ θx1⊗y1,x2⊗y2(

∑
i,j(Aj ⊗

Bi)∗(Aj ⊗Bi)−DE ⊗DF ) ‖→ 0. We have θx1⊗y1,x2⊗y2 = θx1,x2 ⊗ θy1,y2 , and therefore

‖
(∑
i,j

(Aj ⊗Bi)∗(Aj ⊗Bi)−DE ⊗DF

)
θx1⊗y1,x2⊗y2 ‖

=‖
(∑

j

A∗jAj ⊗
(∑

i

B∗iBi −DF

))
θx1,x2 ⊗ θy1,y2

+
((∑

j

A∗jAj −DE

)
⊗DF

)
θx1,x2 ⊗ θy1,y2 ‖

=‖
∑
j

A∗jAjθx1,x2 ⊗
(∑

i

B∗iBi −DF

)
θy1,y2

+
(∑

j

A∗jAj −DE

)
θx1,x2 ⊗DF θy1,y2 ‖

≤‖
∑
j

A∗jAjθx1,x2 ⊗
(∑

i

B∗iBi −DF

)
θy1,y2 ‖

+ ‖
(∑

j

A∗jAj −DE

)
θx1,x2 ⊗DF θy1,y2 ‖

≤‖
∑
j

A∗jAjθx1,x2 ‖‖
(∑

i

B∗iBi −DF

)
θy1,y2 ‖

+ ‖
(∑

j

A∗jAj −DE

)
θx1,x2 ‖‖ DF θy1,y2 ‖→ 0.

A similar argument shows that

‖ θx1⊗y1,x2⊗y2
(∑
i,j

(Aj ⊗Bi)∗(Aj ⊗Bi)−DE ⊗DF

)
‖→ 0.

Since the linear span of θx1⊗y1,x2⊗y2 (x1, x2 ∈ E, y1, y2 ∈ F ) is dense in K(E ⊗ F ), it
follows that ‖

(∑
i,j(Aj ⊗Bi)∗(Aj ⊗Bi)−DE ⊗DF

)
S ‖→ 0 ∀S ∈ K(E ⊗ F ). �

First we recall some definitions from [11].

Definition 3.15. Assume that {Aj}j∈J is a frame in L(E,HE) for the Hilbert C*-
module E. Decompose the identity of M(K(E)) = L(E), into a strictly converging
sum of mutually orthogonal projections{Ej}j∈J in M(K(E)) with Ej ∼ E00 ≥ E0. Let
{Lj}j∈J be partial isometries in M(K(E)) such that LjL∗j = Ej and L∗jLj = E00. Define
the frame transform θA of the frame {Aj}j∈J as θA=

∑
j LjAj : E → E, and the range

projection of θA, PA = θAD
−1
A θ∗A is called the frame projection.

Theorem 3.16. Let {Aj}j∈J be a frame in L(E,E0E) with frame transform θA, frame
projection PA, and {Bi}i∈I be a frame in L(F, F0F ) with frame transform θB, frame
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projection PB. Then θA ⊗ θB is the frame transform of the frame {Aj ⊗Bi}j∈J,i∈I and
PA⊗B = PA ⊗ PB.

Proof. There are partial isometries {Lj}j∈J ⊆ M(K(E)), and {Ki}i∈I ⊆ M(K(F ))
such that Ej = LjL

∗
j , E0 ≤ E00 = L∗jLj , IE =

∑
j Ej , θA =

∑
j LjAj and Fi = KiK

∗
i ,

F0 ≤ F00 = K∗iKi, IF =
∑
i Fi, θB =

∑
iKiBi. We have E0 ≤ E00, F0 ≤ F00. It

means E0E00 = E00E0 = E0 and F0F00 = F00F0 = F0. So (E00 ⊗ F00)(E0 ⊗ F0) =
E00E0 ⊗ F00F0 = E0 ⊗ F0 = (E0 ⊗ F0)(E00 ⊗ F00).

Consequently (E00 ⊗ F00) ≥ (E0 ⊗ F0), and it is obvious that {Ej ⊗ Fi}j∈J,i∈I are
projections in B(E ⊗ F ). But

(Lj ⊗Ki)(L∗j ⊗K∗i ) = LjL
∗
j ⊗KiK

∗
i = Ej ⊗ Fi = (Lj ⊗Ki)(Lj ⊗Ki)∗,

(L∗j ⊗K∗i )(Lj ⊗Ki) = L∗jLj ⊗K∗iKi = (E00 ⊗ F00) = (Lj ⊗Ki)∗(Lj ⊗Ki)
and

∑
j,iEj ⊗ Fi =

∑
j Ej ⊗

∑
i Fi = IE ⊗ IF . Then

θA ⊗ θB =
∑
j

LjAj ⊗
∑
i

KiBi =
∑
j,i

LjAj ⊗KiBi

=
∑
j,i

(Lj ⊗Ki)(Aj ⊗Bi) = θA⊗B .

Also we have
PA⊗B = θA⊗BD

−1
A⊗Bθ

∗
A⊗B = (θA ⊗ θB)(DA ⊗DB)−1(θA ⊗ θB)∗

= θAD
−1
A θ∗A ⊗ θBD−1

B θ∗B = PA ⊗ PB .
�

Definition 3.17. Two frames {Aj}j∈J , {Bj}j∈J in L(E,E0E) are said to be right-
similar if there exists an invertible element T ∈ M(K(E)) such that Bj = AjT for all
j ∈ J .

Lemma 3.18. If {Aj}j∈J , {Bj}j∈J are right-similar in L(E,HE) and {Ci}i∈I , {Di}i∈I
are right-similar in L(F,HF ), then {Aj ⊗ Ci}j,i and {Bj ⊗ Di}j,i are right-similar in
L(E ⊗ F,HE ⊗HF ).

Proof. Let T1 be an invertible element of M(K(E)) such that Bj = AjT1 for all j ∈ J
and T2 be an invertible element of M(K(F )) such that Di = CiT2 for all i ∈ I. Then
we have (T1 ⊗ T2)−1 = T−1

1 ⊗ T−1
2 , and M(K(E)) ⊗M(K(F )) j M(K(E ⊗ F )). But

T1⊗T2 ∈M(K(E))⊗M(K(F ). Hence T1⊗T2 is an invertible operator in M(K(E⊗F ))
such that Bj ⊗Di = AjT1 ⊗CiT2 = (Aj ⊗Ci)(T1 ⊗ T2). Consequently {Aj ⊗Ci}j,i and
{Bj ⊗Di}j,i are right-similar in L(E ⊗ F,HE ⊗HF ). �

By using Theorem 3.3 in [11] and the above lemma, we have the following result.

Theorem 3.19. Let {Ai}i∈I , {Bi}i∈I be frames in L(E,HE) and {Ci}, {Di} be frames
in L(F,HF ). Then the following are equivalent:

(i) {Aj ⊗ Ci}j,i and {Bj ⊗Di}j,i are right similar in L(E ⊗ F,HE ⊗HF ),
(ii) {Ai}, {Bi} are right similar in L(E,HE) and {Cj}, {Dj} are right-similar in

L(F,HF ),
(iii) PA⊗C = PB⊗D,
(iv) PA = PB and PC = PD.

Proof. By Theorem 3.3 in [11], (i) is equivalent to (iii) and by Theorem 3.16, (iii) is
equivalent to (iv). Also by Theorem 3.3 in [11], (ii) is equivalent to (iv), and by the
above lemma, (ii) implies (i). So we have the result. �

Acknowledgments. The authors are highly grateful to the referee for very valuable
suggestions and corrections which improved the manuscript essentially.



G-FRAMES AND OPERATOR VALUED-FRAMES IN HILBERT C*-MODULES 19

References

1. L. Arambasic, Frames of submodules for countably generated Hilbert K(H)-modules, Glasnik
Mathematicki 41(61) (2006), 317–328.

2. D. Bakic, and B. Guljas, Hilbert C*-modules over C∗-algebras of compact operators, Acta Sci.

Math. 68 (2002), 249–269.
3. B. Blakadar, Operator Algebras and Non-Commutative Geometry, III, Springer-Verlag, Berlin,

2006.

4. I. Daubechies, A. Grossman, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys.
27 (1986), 1271–1283.

5. M. Fornasier, Decompositions of Hilbert spaces: Local construction of global frames, (B. Bo-

janov, ed.) Proc. Int. Conf. on Constructive Function Theory (Varna, 2002), DARBA, Sofia,
2003, pp. 275–281.

6. M. Frank and D. R. Larson, A module frame concept for Hilbert C*-modules, presented at
Functional and Harmonic Analysis of Wavelets (Joint Math. Meeting, San Antonio, TX, Jan.

1999); Contemp. Math. 247 Amer. Math. Soc., Providence RI, 1999, 207–233.

7. M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory
48 (2002), 273–314.

8. D. Gabor, Theory of communications, J. Inst. Elec. Eng. (London) 93 (1946), no. 3, 429–457.

9. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Review 31
(1989), 628–666.

10. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 1:

Elementary Theory, Academic Press, New York, 1983.
11. V. Kaftal, D. Larson, and S. Zhang, Operator-valued frames on C*-modules, Contemp. Math.

(to appear).

12. V. Kaftal, D. Larson and S. Zhang, Operator-valued frames, Preprint.
13. A. Khosravi and M. S. Asgari, Frames and bases in tensor product of Hilbert spaces, Int. J.

Math. 4 (2003), no. 6, 527–538.
14. A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert C*-modules, Proc.

Indian Acad. Sci., Math. Sci. 117 (2007), no. 1, 1–12.

15. A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*-modules, Int. J.
Wavelet, Multiresolution and Information Processing 6 (2008), no. 3, 433–446.

16. A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008),

1068-1083.
17. E. C. Lance, Hilbert C*-Modules: A Toolkit for Operator Algebraists, London Math. Soc.

Lecture Note Series, Vol. 210, Cambridge University Press, Cambridge, 1995.

18. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437–452.

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran,
Iran

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, 599 Taleghani
Ave., Tehran, 15618, Iran

E-mail address: khosravi m@saba.tmu.ac.ir

Received 09/03/2010; Revised 07/10/2010


