G-FRAMES AND OPERATOR VALUED-FRAMES IN HILBERT C*-MODULES

SEDIGHE HOSSEINI AND AMIR KHOSRAVI

Abstract

Hilbert C^{*}-modules have been defined by the second author and B. Khosravi in [15] and operator-valued frames in Hilbert C^{*}-modules have been defined by Kaftal et al in [11]. We show that every operatorvalued frame is a g-frame, we also show that in Hilbert C^{*}-modules tensor product of orthonormal basis is an orthonormal basis and tensor product of g-frames is a g-frame, we get some relations between their g-frame operators, and we study tensor product of operator-valued frames in Hilbert C*-modules.

1. Introduction

Frames were first introduced in 1946 by Gabor [8], reintroduced in 1986 by Daubechies, Grossman and Meyer [4], and popularized from then on. Frames have many nice properties which make them very useful in the characterization of function spaces, signal processing, image processing, data compression, sampling theory and many other fields.

Later the notion of frames in C*-algebras and frames in Hilbert C*-modules were introduced and some of their properties were investigated $[6,7,11,14,15]$. The second author and B. Khosravi in [15] introduced g-frames and fusion frames in Hilbert C*modules. Since tensor product is useful in the approximation of multi-variate functions of combinations of univariate ones, in this paper, we study the g-frames in tensor product of Hilbert C^{*}-modules and we generalize the techniques of [11], [13-16] to C^{*}-modules. In section 2 we briefly recall the definitions and basic properties of Hilbert C*-modules. In section 3, we investigate tensor product of Hilbert C*-modules, which is introduced in [11] and we show that tensor product of orthonormal basis is an orthonormal basis. We also show that tensor product of g -frames for Hilbert C^{*}-modules H and F, present a g -frame for $H \otimes F$, and tensor product of their g -frame operators is the g -frame operator of their tensor product g-frame. Finally, we recall the definitions and some properties of operator-valued frames in Hilbert C*-modules which were introduced in [11] and we show that every operator-valued frame is a g -frame. We study tensor product of operatorvalued frames, tensor product of frame transforms for Hilbert C*-modules.

Throughout this paper, \mathbb{N} and \mathbb{C} will denote the set of natural numbers and the set of complex numbers, respectively. I, J and $I_{j}^{\prime} \mathrm{s}$ will be countable index sets. A and B will be unital C*-algebras.

2. Preliminaries

In this section we briefly recall the definitions and basic properties of Hilbert C*modules and g -frames in Hilbert C^{*}-modules. For more information about g -frames in Hilbert spaces and Hilbert C*-modules we refer to [15], [18].

[^0]For a C^{*}-algebra if $a \in A$ is positive, we write $a \geqslant 0$ and A^{+}denotes the set of positive elements of A. If $0 \leqslant a$ and $a \leqslant b$ then we have $a^{\frac{1}{2}} \leqslant b^{\frac{1}{2}}$ and if $-b \leqslant a \leqslant b$ then $\|a\| \leqslant\|b\|$ for $a, b \in A$.

Definition 2.1. Let A be a unital C^{*}-algebra and H be a left A-module, such that the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued inner product $\langle.,\rangle:. H \times H \longrightarrow A$ that posses the following properties:
(i) $\langle x, x\rangle \geq 0$ for all $x \in H$ and $\langle x, x\rangle=o$ if and only if $x=0$;
(ii) $\langle a x+y, z\rangle=a\langle x, z\rangle+\langle y, z\rangle$ for all $a \in A$ and $x, y, z \in H$;
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for all $x, y \in H$.

For $x \in H$, we define $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$, if H is complete with $\|$. $\|$, it is called a Hilbert A-module or a Hilbert C^{*}-module over A. For every a in C^{*}-algebra A, we have $|a|=\left(a^{*} a\right)^{\frac{1}{2}}$ and the A-valued norm on H is defined by $|x|=\langle x, x\rangle^{\frac{1}{2}}$ for $x \in H$. Throughout this paper V is a Hilbert A-module, W is a Hilbert B-module, and $\left\{V_{i}\right\}_{i \in I}$ is a family of closed submodules of V and $\left\{W_{j}\right\}_{j \in J}$ is a family of closed submodules of W. Now we recall some definitions, see [15], [18]. If H and F are Hilbert A-modules, then $L(H, F)$ is the collection of all bounded adjointable linear operators from H to F and we abbreviate $L(H, H)$ by $L(H)$, an operator $T \in L(H, F)$ is a unitary if $T T^{*}=I_{F}$, and $T^{*} T=I_{H}$.
Example 2.2. (a) Let $\left\{\left(H_{i},\langle;\rangle_{i}: i \in I\right)\right\}$ be a sequence of Hilbert spaces. Then $\left(\bigoplus H_{i}\right)_{l_{2}}=\left\{\left(x_{i}\right)_{i \in I}: x_{i} \in H_{i},\left\|\left(x_{i}\right)\right\|_{2}^{2}=\sum_{i}\left\langle x_{i}, x_{i}\right\rangle_{i}<\infty\right\}$ with pointwise operations and inner product defined by $\left\langle\left(x_{i}\right),\left(y_{i}\right)\right\rangle=\sum_{i}\left\langle x_{i}, y_{i}\right\rangle_{i}$ is a Hilbert space. If $H_{i}=H$ for each $i \in I$, then we denote $\left(\bigoplus_{i \in I}\left(H_{i}\right)\right)_{l_{2}}$ by $l^{2}(H, I)$. So for any sequence $\left\{H_{i}: i \in I\right\}$ of Hilbert spaces, there exists a Hilbert space $H=\left(\bigoplus_{i \in I} H_{i}\right)_{l_{2}}$ which contains all of the H_{i} 's.
(b) Let $\left\{V_{i}: i \in I\right.$ be a sequence of Hilbert A-modules and
$\left(\bigoplus_{i \in I} V_{i}\right)_{l_{2}}=\left\{x=\left(x_{i}\right): x_{i} \in V_{i}\right.$ and $\sum_{i}\left\langle x_{i}, x_{i}\right\rangle$ is norm convergent in $\left.A\right\}$. Then $\left(\bigoplus_{i \in I} V_{i}\right)_{l_{2}}$ is a Hilbert A-module with A-valued inner product $\langle x, y\rangle=\sum_{i \in I}\left\langle x_{i}, y_{i}\right\rangle$, where $x=\left(x_{i}\right)_{i \in I} y=\left(y_{i}\right)_{i \in I}$, pointwise operations and the norm defined by $\|a\|=\|$ $\langle a, a\rangle \|^{\frac{1}{2}}$.

Definition 2.3. (See [18]). Let H be a Hilbert space, and $\left\{V_{i}\right\}_{i \in I}$ is a family of Hilbert spaces. $B\left(H, V_{i}\right)$ is the collection of all adjointable bounded linear operators from H into V_{i}. A family $\left\{\Lambda_{i} \in B\left(H, V_{i}\right)\right\}_{i \in I}$ is said to be a g-frame for H with respect to $\left\{V_{i}\right\}_{i \in I}$, if there are real constants $0<A \leqslant B<\infty$, such that for all $x \in H$,

$$
\begin{equation*}
A\|x\|^{2} \leq \sum\left\|\Lambda_{i} x\right\|^{2} \leq B\|x\|^{2} \tag{1}
\end{equation*}
$$

The optimal constants (i.e. maximal for A and minimal for B) are called g-frame bounds. The g-frame $\left\{\Lambda_{i}: i \in I\right\}$ is said to be a tight g-frame if $A=B$, and said to be a Parseval g-frame if $A=B=1$. The family $\left\{\Lambda_{i}: i \in I\right\}$ is said to be a g-Bessel sequence for H with respect to $\left\{V_{i}\right\}_{i \in I}$, if the right-hand side inequality of (1) holds.

In [18] it is shown that frames, pseudoframes, oblique frames, outer frames and frames of subspaces (fusion frames) are a class of g-frames, see examples in [18]. Also in [18] the g-frame operator S_{Λ} is defined by $S_{\Lambda} f=\sum_{i} \Lambda_{i}^{*} \Lambda_{i} f$ for each $f \in H$ and in [16] the synthesis operator $T_{\Lambda}:\left(\bigoplus_{i}\right)_{l_{2}} \rightarrow H, T_{\Lambda}\left(\left(y_{i}\right)_{i}\right)=\sum_{i} \Lambda_{i}^{*}\left(y_{i}\right)$ and the analysis operator $T_{\Lambda}^{*}: H \rightarrow\left(\bigoplus V_{i}\right)_{l_{2}}, T^{*}(x)=\left(\Lambda_{i} x\right)_{i \in I}$ are defined for every g-Bessel sequence $\left\{\Lambda_{i} \in B\left(H, V_{i}\right): i \in I\right\}$ and some of their properties were investigated. To generalize this notion to the situation of Hilbert C^{*}-modules first we recall some definitions. Let A be a unital C^{*}-algebra and H be a finitely or countably generated Hilbert A-module. A sequence $\left\{f_{i}: i \in I\right\}$ is a frame for H if there exist real constants $0<A \leq B<\infty$ such
that for every $f \in H$,

$$
\begin{equation*}
A\langle f, f\rangle \leq \sum_{i \in I}\left\langle f, f_{i}\right\rangle\left\langle f_{i}, f\right\rangle \leq B\langle f, f\rangle \tag{2}
\end{equation*}
$$

A and B are called bounds of the frame, if $A=B=\lambda$, the frame is called λ-tight, if $A=B=1$, the frame is a Parseval frame, and if only the right hand inequality is required, it is called a Bessel sequence, The frame is standard if the series in (2) converges in norm in A.

Definition 2.4. (See [15]). A sequence $\left\{\Lambda_{i} \in L\left(H, V_{i}\right): i \in I\right\}$ is a g-frame in H with respect to $\left\{V_{i}: i \in I\right\}$ if there exist constants $A, B>0$ such that for every $x \in H$,

$$
\begin{equation*}
A\langle x, x\rangle \leq \sum_{i \in I}\left\langle\Lambda_{i} x, \Lambda_{i} x\right\rangle \leq B\langle x, x\rangle \tag{3}
\end{equation*}
$$

As usual A and B are g-frame bounds of $\left\{\Lambda_{i}: i \in I\right\}$. If $A=B=\lambda$, the g-frame is called λ-tight and if $A=B=1$, it is called a Parseval g-frame. The g-frame is standard if for every $x \in H$, the sum in (3) converges in norm.

In this paper we consider standard g-frames. If $\left\{\Lambda_{i}: i \in I\right\}$ is a standard g-frame in a finitely or countably generated Hilbert A-module, then we can define the frame transform θ, the synthesis operator θ^{*} and g-frame operator S as follows:

$$
\begin{aligned}
\theta: H \rightarrow\left(\bigoplus V_{i}\right)_{l_{2}}, & \theta(x)=\left(\Lambda_{i} x\right)_{i \in I} \\
\theta^{*}:\left(\bigoplus V_{i}\right)_{l_{2}} \rightarrow H, & \theta^{*}(y)=\sum_{i} \Lambda_{i}^{*}\left(y_{i}\right)
\end{aligned}
$$

for all $y=\left(y_{i}\right)$ in $\left(\bigoplus V_{i}\right)_{l_{2}}$ and $S=\theta^{*} \theta: H \rightarrow H$ is given by $S(x)=\sum_{i} \Lambda_{i}^{*} \Lambda_{i}(x)$, for each $x \in H$. We know that $\left\|\theta^{*}\right\| \leq \sqrt{ } D$, and $\theta: H \rightarrow \theta(H)$ is invertible and $\left\|\theta^{-1}\right\| \leq \frac{1}{\sqrt{C}}$. Moreover S is positive, self adjoint and invertible with $\|S\| \leq D$ and $\left\|S^{-1}\right\| \leq \frac{1}{C}$, see [15].

3. Frames in Hilbert C*-modules

Suppose that A, B are C^{*}-algebras and we take $A \otimes B$ as the completion of $A \otimes_{\text {alg }} B$ with the spatial norm see [10]. $A \otimes B$ is the spatial tensor product of A and B, also suppose that H is a Hilbert A-module and F is a Hilbert B-module. We want to define $H \otimes F$ as a Hilbert $(A \otimes B)$-module. Start by forming the algebraic tensor product $H \otimes_{\text {alg }} F$ of the vector spaces H, F (over \mathbb{C}). This is a left module over $\left(A \otimes_{\text {alg }} B\right)$ (the module action being given by $(a \otimes b)(x \otimes y)=a x \otimes b y \quad(a \in A, b \in B, x \in H, y \in F))$. For $\left(x_{1}, x_{2} \in H, y_{1}, y_{2} \in F\right)$ we define $\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle \otimes\left\langle y_{1}, y_{2}\right\rangle$. We also know that for $z=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ in $H \otimes_{\text {alg }} F$ we have

$$
\langle z, z\rangle=\sum_{i, j}\left\langle x_{i}, x_{j}\right\rangle \otimes\left\langle y_{i}, y_{j}\right\rangle \geq 0
$$

and

$$
\langle z, z\rangle=0 \quad \text { iff } \quad z=0
$$

This extends by linearity to an $\left(A \otimes_{\text {alg }} B\right)$-valued sesquilinear form on $H \otimes_{\text {alg }} F$, which makes $H \otimes_{\text {alg }} F$ into a semi-inner-product module over the pre-C*-algebra $\left(A \otimes_{\text {alg }} B\right)$. The semi-inner-product on $H \otimes_{\text {alg }} F$ is actually an inner product, see [17]. Then $H \otimes_{\text {alg }} F$ is an inner-product module over the pre- C^{*}-algebra $\left(A \otimes_{\mathrm{alg}} B\right)$, and we can perform the double completion discussed in chapter 1 of [17] to conclude that the completion $H \otimes F$ of $H \otimes_{\text {alg }} F$ is a Hilbert $(A \otimes B)$-module. We call $H \otimes F$ the exterior tensor product of H and F. With H, F as above, we wish to investigate the adjointable operators on $H \otimes F$. Suppose that $S \in L(H), T \in L(F)$. Define a linear operator $S \otimes T$ on $H \otimes F$ by $S \otimes T(x \otimes y)=S x \otimes T y \quad(x \in H, y \in F)$. It is a routine verification that $S^{*} \otimes T^{*}$ is
an adjoint for $S \otimes T$, so in fact $S \otimes T \in L(H \otimes F)$. For more details see [10], [17]. We note that if $a \in A^{+}$and $b \in B^{+}$, then $a \otimes b \in(A \otimes B)^{+}$. Plainly if a, b are Hermitian elements of A and $a \geq b$, then for every positive element x of B, we have $a \otimes x \geq b \otimes x$.
Definition 3.1. Let H be a Hilbert C^{*}-module over an arbitrary C^{*}-algebra A. An element $v \in H$ is said to be a basic vector if $e=\langle v, v\rangle$ is a minimal projection in A, in the sense that $e A e=\mathbb{C} e$. A system $\left(v_{\lambda}\right)_{\lambda \in \Lambda}$ in H is orthonormal if each v_{λ} is a basic vector and $\left\langle v_{\lambda}, v_{\mu}\right\rangle=0$ for all $\lambda \neq \mu$. An orthonormal system $\left(v_{\lambda}\right)_{\lambda \in \Lambda}$ in H is said to be an orthonormal basis for H if it generates a dense submodule of H.

If we consider C^{*}-algebra of compact operators $K(H)$ on some Hilbert space H, then every Hilbert $K(H)$-module V possesses an orthonormal basis and all closed submodules of Hilbert $K(H)$-modules are orthogonally complemented. Furthermore, if $e \in K(H)$ is an orthogonal one-dimensional projection, then $V e:=\{x e: x \in V\}$ is a Hilbert space with respect to inner product $(x, y)=\operatorname{tr}(\langle y, x\rangle)$ where "tr" means the trace. It is easy to see that $\langle x, y\rangle=(y, x) e \quad$ for all $x \in V e, y \in V e$ see [1], [2].
Theorem 3.2. Let H, F be Hilbert C^{*}-modules over a C^{*}-algebra A, let $\left\{x_{i}\right\}_{i \in I}$ be an orthonormal basis for H, and $\left\{y_{j}\right\}_{j \in J}$ be an orthonormal basis for F. Then $\left\{x_{i} \otimes\right.$ $\left.y_{j}\right\}_{i \in I, j \in J}$ is an orthonormal basis for $H \otimes F$ on $A \otimes A$.
Proof. We have $\left\langle x_{i}, x_{i}\right\rangle=e_{i}$ for all $i \in I, e_{i} A e_{i}=\mathbb{C} e_{i},\left\langle x_{i}, x_{l}\right\rangle=0$ if $i \neq l$, and $\left(x_{i}\right)_{i \in I}$ generate a dense submodule of H. Also, $\left\langle y_{j}, y_{j}\right\rangle=e_{j}$ for all $j \in J, e_{j} A e_{j}=\mathbb{C} e_{j}$, $\left\langle y_{j}, y_{k}\right\rangle=0$ if $j \neq k$, and $\left(y_{j}\right)_{j \in J}$ generate a dense submodule of F. Now we have

$$
\left\langle x_{i} \otimes y_{j}, x_{i} \otimes y_{j}\right\rangle=\left\langle x_{i}, x_{i}\right\rangle \otimes\left\langle y_{j}, y_{j}\right\rangle=e_{i} \otimes e_{j}=e_{i} \otimes e_{j} .
$$

So $x_{i} \otimes y_{j}$ is a minimal projection in $A \otimes A$. We show that the system $\left\{x_{i} \otimes y_{j}\right\}_{i \in I, j \in J}$ is orthonormal in $H \otimes F$.

$$
\left\langle x_{i} \otimes y_{j}, x_{l} \otimes y_{k}\right\rangle=\left\langle x_{i}, x_{l}\right\rangle \otimes\left\langle y_{j}, y_{k}\right\rangle=\delta_{i l} \otimes \delta_{j k}=0
$$

if $i \neq l$ or $j \neq k$.
Now we show that the system $\left\{x_{i} \otimes y_{j}\right\}_{i \in I, j \in J}$ is an orthonormal basis for $H \otimes F$.
Let $x \otimes y \in H \otimes F \quad(x \in H, y \in F)$. So $x=\lim _{n \longrightarrow \infty} \sum_{i=1}^{n} a_{i} x_{i}$,

$$
y=\lim _{m \longrightarrow \infty} \sum_{j=1}^{m} b_{j} y_{j}
$$

for some $a_{1}, \ldots, a_{n} \in A$ and $b_{1}, \ldots, b_{m} \in A$.
Then we have

$$
\begin{aligned}
x \otimes y & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i} x_{i} \otimes \lim _{m \rightarrow \infty} \sum_{j=1}^{m} b_{j} y_{j} \\
& =\lim _{n \rightarrow \infty, m \rightarrow \infty} \sum_{i=1, j=1}^{n, m}\left(a_{i} \otimes b_{j}\right)\left(x_{i} \otimes y_{j}\right)
\end{aligned}
$$

So $\left\{x_{i} \otimes y_{j}\right\}_{i \in I, j \in J}$ generate a dense submodule of $H \otimes F$.
Our next result is about frame of submodules, so we recall its definition and the definition of fusion frames.

Definition 3.3. (See [1]). Let V be a countably generated Hilbert $K(H)$-module and $I \subseteq \mathbb{N}$ finite or countable. Let $\left\{\lambda_{i}: i \in I\right\}$ be a family of weights. A family of closed submodules $\left\{W_{i}: i \in I\right\}$ of V is a frame of submodules for V with respect to $\left\{\lambda_{i}: i \in I\right\}$ if there exist constants $C, D>0$ such that for every $x \in V$,

$$
\begin{equation*}
C\langle x, x\rangle \leq \sum_{i} \lambda_{i}^{2}\left\langle\pi_{i}(x), \pi_{i}(x)\right\rangle \leq D\langle x, x\rangle \tag{4}
\end{equation*}
$$

where $\pi_{i} \in B(V)$, denotes the orthogonal projection onto W_{i}, and the sum in the middle of (4) is in norm. Its frame operator is $S_{W, \lambda}=\sum \lambda_{i}^{2} \pi_{i}(x)$.

Definition 3.4. (See [15]). Let A be a unital C^{*}-algebra. X be a Hilbert A-module, and let $\left\{v_{i}: i \in I\right\}$ be a family of weights in A, i.e. each v_{i} is a positive invertible element from the center of A and let $\left\{M_{i}: i \in I\right\}$ be a family of orthogonally complemented submodules of X. Then $\left\{\left(M_{i}, v_{i}\right): i \in I\right\}$ is a fusion frame if there exist real constants $0<C \leq D<\infty$ such that

$$
C\langle x, x\rangle \leq \sum_{i} v_{i}^{2}\left\langle\pi_{i}(x), \pi_{i}(x)\right\rangle \leq D\langle x, x\rangle, \quad \text { for } \quad x \in X
$$

Hence every frame of submodules $\left\{W_{i}: i \in I\right\}$ with respect to weights $\left\{\lambda_{i}: i \in I\right\}$ is a fusion frame $\left\{\left(W_{i}, \lambda_{i}\right): i \in I\right\}$, where the weights are real numbers, see [1], [15].

We note that every frame of submodule $\left\{W_{i}: i \in I\right\}$ with respect to weights $\left\{\lambda_{i}: i \in\right.$ $I\}$ is a fusion frame $\left\{\left(W_{i}, \lambda_{i}\right): i \in I\right\}$, where the weights are real numbers, see [1], [15].

Lemma 3.5. Let V and W be Hilbert $K(H)$-modules, let $\left\{\left(V_{i}, \lambda_{i}\right): i \in I\right\}$ be a standard frame of submodules for V with bounds C, D, frame operator $S_{V, \lambda}$, and let $\left\{\left(W_{j}, \mu_{j}\right): j \in\right.$ $J\}$ be a standard frame of submodules for W with bounds C^{\prime}, D^{\prime}, frame operator $S_{W, \mu}$. Let e, $e^{\prime} \in K(H)$ be orthogonal one-dimensional projections. Then $\left\{\left(V_{i} \otimes W_{j}\right)\left(e \otimes e^{\prime}\right): i \in\right.$ $I, j \in J\}$ is a frame of subspaces for $(V \otimes W)\left(e \otimes e^{\prime}\right)$ with respect to $\left\{\lambda_{i} \mu_{j}: i \in I, j \in J\right\}$ with frame operator

$$
\left(S_{V, \lambda} \otimes S_{W, \mu}\right)_{\mid(V \otimes W)\left(e \otimes e^{\prime}\right)}=S_{(V \otimes W)\left(e \otimes e^{\prime}\right), \lambda \mu}=S_{V e, \lambda} \otimes S_{W e^{\prime}, \mu}
$$

Proof. By [15], we have $\left\{\left(\left(V_{i} \otimes W_{j}\right),\left(\lambda_{i} \otimes \mu_{j}\right)\right): i \in I, j \in J\right\}$ is a fusion frame for $V \otimes W$ with frame bounds $C C^{\prime}, D D^{\prime}$ and frame operator $S_{V, \lambda} \otimes S_{W, \mu}$. We know that $e \otimes e^{\prime}$ is an orthogonal projection and $(V \otimes W)\left(e \otimes e^{\prime}\right)$ is a Hilbert space. Then by [1], $\left\{\left(V_{i} \otimes W_{j}\right): i \in I, j \in J\right\}$ is a frame of submodules with respect to weights $\left\{\lambda_{i} \mu_{j}:\right.$ $i \in I, j \in J\}$, for $V \otimes W$ if and only if $\left\{\left(V_{i} \otimes W_{j}\right)\left(e \otimes e^{\prime}\right): i \in I, j \in J\right\}$ is a frame of subspaces with respect to $\lambda \mu=\left\{\lambda_{i} \mu_{j}: i \in I, j \in J\right\}$, for $(V \otimes W)\left(e \otimes e^{\prime}\right)$ with frame bounds $C C^{\prime}, D D^{\prime}$ and frame operator $\left(S_{(V \otimes W),(\lambda \mu)}\right)_{\mid(V \otimes W)\left(e \otimes e^{\prime}\right)}=S_{(V \otimes W)\left(e \otimes e^{\prime}\right),(\lambda \mu)}$. But $S_{(V \otimes W)\left(e \otimes e^{\prime}\right),(\lambda \mu)}=S_{V e, \lambda} \otimes S_{W e^{\prime}, \mu}$ and

$$
\left(S_{V, \lambda}\right)_{\mid V e} \otimes\left(S_{W, \mu}\right)_{\mid W e^{\prime}}=\left(S_{V \otimes W, \lambda \mu}\right)_{\mid(V \otimes W)\left(e \otimes e^{\prime}\right)}
$$

which completes the proof.
Lemma 3.6. Let V, V_{i} be Hilbert $K(H)$-modules and let $\left\{\Lambda_{i} \in L\left(V, V_{i}\right): i \in I\right\}$ be a standard g-frame for V with respect to $\left\{V_{i}: i \in I\right\}$ and $e \in K(H)$ be an orthogonal projection of rank 1. Then $\left\{\Lambda_{i} \in L\left(V e, V_{i} e\right): i \in I\right\}$ is a g-frame for $V e$.
Proof. Suppose that $\left\{\Lambda_{i} \in L\left(V, V_{i}\right): i \in I\right\}$ is a standard g-frame for V with frame bounds A, B, it means that

$$
A\langle x, x\rangle \leq \sum_{i \in I}\left\langle\Lambda_{i} x, \Lambda_{i} x\right\rangle \leq B\langle x, x\rangle,
$$

for all $x \in V$. Since $\langle x e, y e\rangle=(y e, x e) e$ for all $x e, y e \in V e$, by choosing $x e$ instead of x in the above inequalities, we get

$$
A(x e, x e) \leq \sum_{i \in I}\left\langle\Lambda_{i} x e, \Lambda_{i} x e\right\rangle \leq B(x e, x e), \quad \text { for all } \quad x \in V
$$

which implies that $A(x, x) \leq \sum_{i \in I}\left(\Lambda_{i} x, \Lambda_{i} x\right) \leq B(x, x)$, for all $x \in V e$. Therefore $\left\{\Lambda_{i}: i \in I\right\}$ is a g-frame for the Hilbert space $V e$ with respect to $\left\{V_{i} e: i \in I\right\}$.
3.1. G-frames in Hilbert C^{*}-modules. We know that every finitely or countably generated Hilbert C^{*}-module over a σ-unital C^{*}-algebra has a standard Parseval frame, see [7]. By using this fact we have the following characterization of g -frames, see [18, Theorem 3.1].
Theorem 3.7. Let H be a Hilbert A-module and F be a Hilbert B-module. Let $\left\{\Lambda_{i}\right\}_{i \in I}$, $\left\{\Gamma_{j}\right\}_{j \in J}$ be standard g-frames in Hilbert C^{*}-modules H, F with respect to $\left\{V_{i}\right\}_{i \in I}$, $\left\{W_{j}\right\}_{j \in J}$, respectively. If S, S^{\prime} and $S^{\prime \prime}$ are the g-frame operators of $\left\{\Lambda_{i}\right\}_{i \in I},\left\{\Gamma_{j}\right\}_{j \in J}$ and $\left\{\Lambda_{i} \otimes \Gamma_{j}\right\}_{i \in I, j \in J}$, respectively, then $S^{\prime \prime}=S \otimes S^{\prime}$.
Proof. Since S is A-linear and S^{\prime} is B-linear, and they are bounded, then $S \otimes S^{\prime}$ is $A \otimes B$ linear. For every $x \in H$ and $y \in F$, we have $S x=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} x$ and $S^{\prime} y=\sum_{j \in J} \Gamma_{j}^{*} \Gamma_{j} y$. Therefore

$$
\begin{aligned}
\left(S \otimes S^{\prime}\right)(x \otimes y) & =S x \otimes S^{\prime} y=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} x \otimes \sum_{j \in J} \Gamma_{j}^{*} \Gamma_{j} y \\
& =\sum_{i, j} \Lambda_{i}^{*} \Lambda_{i} x \otimes \Gamma_{j}^{*} \Gamma_{j} y=\sum_{i, j}\left(\Lambda_{i}^{*} \otimes \Gamma_{j}^{*}\right)\left(\Lambda_{i} x \otimes \Gamma_{j} y\right) \\
& =\sum_{i, j}\left(\Lambda_{i}^{*} \otimes \Gamma_{j}^{*}\right)\left(\Lambda_{i} \otimes \Gamma_{j}\right)(x \otimes y)=\sum_{i, j}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i} \otimes \Gamma_{j}\right)(x \otimes y)
\end{aligned}
$$

Now by the uniqueness of g-frame operator, the last expression is equal to $S^{\prime \prime}(x \otimes y)$. Consequently we have $\left(S \otimes S^{\prime}\right)(x \otimes y)=S^{\prime \prime}(x \otimes y)$. From this equality it follows that for all $z=\sum_{k=1}^{k=n} x_{k} \otimes y_{k}$ in $H \otimes_{\text {alg }} F,\left(S \otimes S^{\prime}\right) z=S^{\prime \prime} z$. Hence the above relation holds for all z in $H \otimes F$. So $S^{\prime \prime}=S \otimes S^{\prime}$, which is a bounded $A \otimes B$-linear, self-adjoint, positive and invertible operator on $H \otimes F$. We also have $\left\|S^{\prime \prime}\right\|=\left\|S \otimes S^{\prime}\right\| \leq\|S\|\left\|S^{\prime}\right\|$.

For the g-frame operator we have the following result.
Theorem 3.8. If $Q \in L(H)$ is an invertible A-linear map and $\left\{\Lambda_{i}\right\}_{i \in I}$ is a g-frame for $H \otimes F$ with respect to $\left\{V_{i}\right\}_{i \in I}$ with g-frame operator S, then $\left\{\Lambda_{i}\left(Q^{*} \otimes I\right)\right\}_{i \in I}$ is a g-frame for $H \otimes F$ with respect to $\left\{V_{i}\right\}_{i \in I}$ with g-frame operator $(Q \otimes I) S\left(Q^{*} \otimes I\right)$.
Proof. Since $Q \in L(H), Q \otimes I \in L(H \otimes F)$ with inverse $Q^{-1} \otimes I$. It is obvious that $Q \otimes I$ is $A \otimes B$-linear, adjointable, with adjoint $Q^{*} \otimes I$. An easy calculation shows that for every elementary tensor $x \otimes y$,

$$
\begin{aligned}
\|(Q \otimes I)(x \otimes y)\|^{2} & =\|Q(x) \otimes y\|^{2}=\|Q(x)\|^{2}\|y\|^{2} \\
& \leq\|Q\|^{2}\|x\|^{2}\|y\|^{2}=\|Q\|^{2}\|x \otimes y\|^{2}
\end{aligned}
$$

So $Q \otimes I$ is bounded, and therefore it can be extended to $H \otimes F$. Similarly for $Q^{*} \otimes I$. Hence $Q \otimes I$ is $A \otimes B$-linear, adjointable with adjoint $Q^{*} \otimes I$, and as we mentioned in the proof of [15, Theorem 3.2] Q^{*} is invertible and bounded. Hence for every $T \in H \otimes F$, we have

$$
\left\|\left(Q^{*}\right)^{-1}\right\|^{-1}|T| \leq\left|\left(Q^{*} \otimes I\right) T\right| \leq\|Q\||T|
$$

Hence $Q \otimes I \in L(H \otimes F)$. Now by Theorem 3.2 in [15], we have the result.
As an application of g-frames we can introduce atomic resolution of bounded A-linear operators, see [14], [15], [18].

Let H be a Hilbert A-module and $\left\{\Lambda_{i} \in L\left(H, V_{i}\right): i \in I\right\}$ be a g-frame for H with canonical dual g-frame $\left\{\tilde{\Lambda}_{i}=\Lambda_{i} S^{-1}: i \in I\right\}$. Then for every $f \in H, f=\sum \Lambda_{i}^{*} \tilde{\Lambda}_{i} f=$ $\sum \tilde{\Lambda}_{i}^{*} \Lambda f$. If T is a bounded A-linear map on H, then

$$
\begin{equation*}
T=\sum T \Lambda_{i}^{*} \tilde{\Lambda}_{i}=\sum T \tilde{\Lambda}_{i}^{*} \Lambda_{i}=\sum \Lambda_{i}^{*} \tilde{\Lambda}_{i} T=\sum \tilde{\Lambda}_{i} \Lambda_{i} T \tag{5}
\end{equation*}
$$

where the convergence is in strong *-topology. (5) is called atomic resolution of operator T. By using the same proof of Theorem 5.2 in [15] or Proposition 4.2 in [14] we have the following result:

Proposition 3.9. Let A, B be C^{*}-algebras, H be a Hilbert A-module and K be a Hilbert B-module. If $T=\sum T_{i} T=\sum T T_{i}$ and $S=\sum S_{i} S=\sum S S_{i}$ are atomic resolutions of $T \in L(H)$ and $S \in L(K)$, respectively, where $\left(T_{i}\right) \subseteq L(H),\left(S_{i}\right) \subseteq L(K)$, then

$$
T \otimes S=\sum_{i}\left(T_{i} \otimes S_{i}\right)(T \otimes S)=\sum_{i}(T \otimes S)\left(T_{i} \otimes S_{i}\right)
$$

3.2. operator-valued frames in Hilbert \mathbf{C}^{*}-modules. Let A be a C^{*}-algebra and E be a Hilbert A-module. For each pair of elements x and y in E, a bounded rank-one operator is defined by $\theta_{x, y}(z)=x\langle y, z\rangle$ for all $z \in E$. The closed linear span of all rank-one operators is denoted by $K(E)$. When $A=\mathbb{C}, K(E)$ coincides with the ideal $K=K(E)$ of all compact operators on E. We know that for a Hilbert A-module $E, L(E)$ is multiplier algebra of $K(\mathrm{E})$, and $K(E)$ is always a closed ideal of $L(E)$, see [17].

Definition 3.10. We say that $T_{\lambda} \rightarrow T$ in strict topology of $L(E)$ if $\left\|\left(T_{\lambda}-T\right) S\right\| \rightarrow 0$ and $\left\|S\left(T_{\lambda}-T\right)\right\| \rightarrow 0$ (for all $S \in K(E)$), where the convergence is in the $L(E)$ norm. We say that $T_{\lambda} \rightarrow T$ in strong*-operator topology if $\left\|\left(T_{\lambda}-T\right) \xi\right\| \rightarrow 0$ and $\left\|\left(T_{\lambda}-T\right)^{*} \xi\right\| \rightarrow 0$ for $\xi \in H$.

We will use the following elementary properties $: T_{\lambda} \rightarrow T$ strictly if and only if $T_{\lambda}^{*} \rightarrow T^{*}$ strictly, and either of these convergences implies $B T_{\lambda} \rightarrow B T$ and $T_{\lambda} B \rightarrow T B$ strictly for all $B \in L(E)$. Also, if $T_{\lambda} \rightarrow T$ strictly and $S_{\lambda} \rightarrow S$ strictly, then $T_{\lambda} S_{\lambda} \rightarrow T S$ strictly. To avoid unnecessary complications, from now on, we assume that A is a σ-unital C^{*} algebra.

Definition 3.11. Let A be a σ-unital C^{*}-algebra, E be a Hilbert A-module and J be a countable index set. Let E_{0} be a projection in $M(K(E))=L(E)$. Denote by H_{E} the submodule $E_{0} E$ and identify $L\left(E, H_{E}\right)$ with $E_{0} M(K(E))$. A collection $\left\{A_{j}\right\}_{j \in J} \subseteq$ $L\left(E, H_{E}\right)$ for $j \in J$ is called an operator-valued frame on E with range in H_{E} if the sum $\sum_{j} A_{j}^{*} A_{j}$ converges in strict topology (σ-strong ${ }^{*}$-topology) to a bounded invertible operator on E, denoted by $D .\left\{A_{j}\right\}_{j \in J}$ is called a tight operator-valued frame (resp., a Parseval operator-valued frame) if $D=\lambda I$ for a positive number λ (resp., $D=I$).

Lemma 3.12. Every operator-valued frame $\left\{A_{i}\right\}$ with associated operator D is a g-frame with g-frame operator $S=D$.

Proof. Since σ-strong*-topology is stronger than strong*-topology [3], by using part (iii) of Remark 2.3 in [11] we conclude that for every $x \in H, \sum_{j} A_{j}^{*} A_{j} x$ is convergent to $D(x)$, and

$$
\frac{1}{\left\|D^{-1}\right\|}\langle x, x\rangle \leq\left\langle\sum_{j} A_{j}^{*} A_{j} x, x\right\rangle=\sum_{j}\left\langle A_{j} x, A_{j} x\right\rangle \leq\|D\|\langle x, x\rangle
$$

Therefore $\left\{A_{i}\right\}$ is a g-frame with g-frame operator $S=D$.
By frame, we will mean an operator-valued frame on a Hilbert C*-module.
Remark 3.13. By Lemma 3.2 of [11] if $\left\{A_{j}\right\}_{j \in J}$ is a frame in $L\left(E, H_{E}\right)$, then $\left\{B_{j}=\right.$ $\left.A_{j} D^{-1}\right\}_{j \in J}$ is a frame in $L\left(E, H_{E}\right)$ and $\left\{A_{j} D^{\frac{-1}{2}}\right\}_{j \in J}$ is a Parseval frame.

Next we show that tensor product of operator-valued frame is an operator-valued frame.

Theorem 3.14. Let E, F be Hilbert A-modules, and let $E_{0} \in M(K(E)), F_{0} \in M(K(F))$ be projections. We put $H_{E}=E_{0} E$ and $H_{F}=F_{0} F$. Let $\left\{A_{j}\right\}_{j \in J}$ be a frame in $L\left(E, H_{E}\right)$, and let $\left\{B_{i}\right\}_{i \in I}$ be a frame in $L\left(F, H_{F}\right)$. Then $\left\{A_{j} \otimes B_{i}\right\}_{j \in J, i \in I}$ is a frame in $L(E \otimes$ $F, H_{E} \otimes H_{F}$). In particular, if $\left\{A_{j}\right\}_{j \in J}$ and $\left\{B_{i}\right\}_{i \in I}$ are tight or Parseval frames, then so is $\left\{A_{j} \otimes B_{i}\right\}_{j \in J, i \in I}$.
Proof. There is a bounded and invertible operator $D_{E} \in L(E)$ such that $\sum_{j} A_{j}^{*} A_{j}$ converges in strict topology to D_{E}, and there is a bounded and invertible operator $D_{F} \in L(F)$ such that $\sum_{i} B_{i}^{*} B_{i}$ converges in strict topology to D_{F}. We have $K(E \otimes$ $F)=K(E) \otimes K(F)$. Let $x_{1}, x_{2} \in E, y_{1}, y_{2} \in F$. Then it is enough to show that $\left\|\left(\sum_{i, j}\left(A_{j} \otimes B_{i}\right)^{*}\left(A_{j} \otimes B_{i}\right)-D_{E} \otimes D_{F}\right) \theta_{x_{1} \otimes y_{1}, x_{2} \otimes y_{2}}\right\| \rightarrow 0$ and $\| \theta_{x_{1} \otimes y_{1}, x_{2} \otimes y_{2}}\left(\sum_{i, j}\left(A_{j} \otimes\right.\right.$ $\left.\left.B_{i}\right)^{*}\left(A_{j} \otimes B_{i}\right)-D_{E} \otimes D_{F}\right) \| \rightarrow 0$. We have $\theta_{x_{1} \otimes y_{1}, x_{2} \otimes y_{2}}=\theta_{x_{1}, x_{2}} \otimes \theta_{y_{1}, y_{2}}$, and therefore

$$
\begin{aligned}
& \left\|\left(\sum_{i, j}\left(A_{j} \otimes B_{i}\right)^{*}\left(A_{j} \otimes B_{i}\right)-D_{E} \otimes D_{F}\right) \theta_{x_{1} \otimes y_{1}, x_{2} \otimes y_{2}}\right\| \\
& \quad=\|\left(\sum_{j} A_{j}^{*} A_{j} \otimes\left(\sum_{i} B_{i}^{*} B_{i}-D_{F}\right)\right) \theta_{x_{1}, x_{2}} \otimes \theta_{y_{1}, y_{2}} \\
& \quad+\left(\left(\sum_{j} A_{j}^{*} A_{j}-D_{E}\right) \otimes D_{F}\right) \theta_{x_{1}, x_{2}} \otimes \theta_{y_{1}, y_{2}} \| \\
& \quad=\| \sum_{j} A_{j}^{*} A_{j} \theta_{x_{1}, x_{2}} \otimes\left(\sum_{i} B_{i}^{*} B_{i}-D_{F}\right) \theta_{y_{1}, y_{2}} \\
& \quad+\left(\sum_{j} A_{j}^{*} A_{j}-D_{E}\right) \theta_{x_{1}, x_{2}} \otimes D_{F} \theta_{y_{1}, y_{2}} \| \\
& \quad \leq\left\|\sum_{j} A_{j}^{*} A_{j} \theta_{x_{1}, x_{2}} \otimes\left(\sum_{i} B_{i}^{*} B_{i}-D_{F}\right) \theta_{y_{1}, y_{2}}\right\| \\
& \quad+\left\|\left(\sum_{j} A_{j}^{*} A_{j}-D_{E}\right) \theta_{x_{1}, x_{2}} \otimes D_{F} \theta_{y_{1}, y_{2}}\right\| \\
& \quad \leq\left\|\sum_{j} A_{j}^{*} A_{j} \theta_{x_{1}, x_{2}}\right\|\left\|\left(\sum_{i} B_{i}^{*} B_{i}-D_{F}\right) \theta_{y_{1}, y_{2}}\right\| \\
& \quad+\left\|\left(\sum_{j} A_{j}^{*} A_{j}-D_{E}\right) \theta_{x_{1}, x_{2}}\right\|\left\|D_{F} \theta_{y_{1}, y_{2}}\right\| \rightarrow 0 .
\end{aligned}
$$

A similar argument shows that

$$
\left\|\theta_{x_{1} \otimes y_{1}, x_{2} \otimes y_{2}}\left(\sum_{i, j}\left(A_{j} \otimes B_{i}\right)^{*}\left(A_{j} \otimes B_{i}\right)-D_{E} \otimes D_{F}\right)\right\| \rightarrow 0
$$

Since the linear span of $\quad \theta_{x_{1} \otimes y_{1}, x_{2} \otimes y_{2}} \quad\left(x_{1}, x_{2} \in E, y_{1}, y_{2} \in F\right)$ is dense in $K(E \otimes F)$, it follows that $\left\|\left(\sum_{i, j}\left(A_{j} \otimes B_{i}\right)^{*}\left(A_{j} \otimes B_{i}\right)-D_{E} \otimes D_{F}\right) S\right\| \rightarrow 0 \forall S \in K(E \otimes F)$.

First we recall some definitions from [11].
Definition 3.15. Assume that $\left\{A_{j}\right\}_{j \in J}$ is a frame in $L\left(E, H_{E}\right)$ for the Hilbert $\mathrm{C}^{*}-$ module E. Decompose the identity of $M(K(E))=L(E)$, into a strictly converging sum of mutually orthogonal projections $\left\{E_{j}\right\}_{j \in J}$ in $M(K(E))$ with $E_{j} \sim E_{00} \geq E_{0}$. Let $\left\{L_{j}\right\}_{j \in J}$ be partial isometries in $M(K(E))$ such that $L_{j} L_{j}^{*}=E_{j}$ and $L_{j}^{*} L_{j}=E_{00}$. Define the frame transform θ_{A} of the frame $\left\{A_{j}\right\}_{j \in J}$ as $\theta_{A}=\sum_{j} L_{j} A_{j}: E \rightarrow E$, and the range projection of $\theta_{A}, P_{A}=\theta_{A} D_{A}^{-1} \theta_{A}^{*}$ is called the frame projection.

Theorem 3.16. Let $\left\{A_{j}\right\}_{j \in J}$ be a frame in $L\left(E, E_{0} E\right)$ with frame transform θ_{A}, frame projection P_{A}, and $\left\{B_{i}\right\}_{i \in I}$ be a frame in $L\left(F, F_{0} F\right)$ with frame transform θ_{B}, frame
projection P_{B}. Then $\theta_{A} \otimes \theta_{B}$ is the frame transform of the frame $\left\{A_{j} \otimes B_{i}\right\}_{j \in J, i \in I}$ and $P_{A \otimes B}=P_{A} \otimes P_{B}$.
Proof. There are partial isometries $\left\{L_{j}\right\}_{j \in J} \subseteq M(K(E))$, and $\left\{K_{i}\right\}_{i \in I} \subseteq M(K(F))$ such that $E_{j}=L_{j} L_{j}^{*}, E_{0} \leq E_{00}=L_{j}^{*} L_{j}, I_{E}=\sum_{j} E_{j}, \theta_{A}=\sum_{j} L_{j} A_{j}$ and $F_{i}=K_{i} K_{i}^{*}$, $F_{0} \leq F_{00}=K_{i}^{*} K_{i}, I_{F}=\sum_{i} F_{i}, \theta_{B}=\sum_{i} K_{i} B_{i}$. We have $E_{0} \leq E_{00}, F_{0} \leq F_{00}$. It means $E_{0} E_{00}=E_{00} E_{0}=E_{0}$ and $F_{0} F_{00}=F_{00} F_{0}=F_{0}$. So $\left(E_{00} \otimes F_{00}\right)\left(E_{0} \otimes F_{0}\right)=$ $E_{00} E_{0} \otimes F_{00} F_{0}=E_{0} \otimes F_{0}=\left(E_{0} \otimes F_{0}\right)\left(E_{00} \otimes F_{00}\right)$.

Consequently $\left(E_{00} \otimes F_{00}\right) \geq\left(E_{0} \otimes F_{0}\right)$, and it is obvious that $\left\{E_{j} \otimes F_{i}\right\}_{j \in J, i \in I}$ are projections in $B(E \otimes F)$. But

$$
\begin{aligned}
& \left(L_{j} \otimes K_{i}\right)\left(L_{j}^{*} \otimes K_{i}^{*}\right)=L_{j} L_{j}^{*} \otimes K_{i} K_{i}^{*}=E_{j} \otimes F_{i}=\left(L_{j} \otimes K_{i}\right)\left(L_{j} \otimes K_{i}\right)^{*} \\
& \left(L_{j}^{*} \otimes K_{i}^{*}\right)\left(L_{j} \otimes K_{i}\right)=L_{j}^{*} L_{j} \otimes K_{i}^{*} K_{i}=\left(E_{00} \otimes F_{00}\right)=\left(L_{j} \otimes K_{i}\right)^{*}\left(L_{j} \otimes K_{i}\right)
\end{aligned}
$$

and $\sum_{j, i} E_{j} \otimes F_{i}=\sum_{j} E_{j} \otimes \sum_{i} F_{i}=I_{E} \otimes I_{F}$. Then

$$
\begin{aligned}
\theta_{A} \otimes \theta_{B} & =\sum_{j} L_{j} A_{j} \otimes \sum_{i} K_{i} B_{i}=\sum_{j, i} L_{j} A_{j} \otimes K_{i} B_{i} \\
& =\sum_{j, i}\left(L_{j} \otimes K_{i}\right)\left(A_{j} \otimes B_{i}\right)=\theta_{A \otimes B}
\end{aligned}
$$

Also we have

$$
\begin{aligned}
P_{A \otimes B} & =\theta_{A \otimes B} D_{A \otimes B}^{-1} \theta_{A \otimes B}^{*}=\left(\theta_{A} \otimes \theta_{B}\right)\left(D_{A} \otimes D_{B}\right)^{-1}\left(\theta_{A} \otimes \theta_{B}\right)^{*} \\
& =\theta_{A} D_{A}^{-1} \theta_{A}^{*} \otimes \theta_{B} D_{B}^{-1} \theta_{B}^{*}=P_{A} \otimes P_{B}
\end{aligned}
$$

Definition 3.17. Two frames $\left\{A_{j}\right\}_{j \in J},\left\{B_{j}\right\}_{j \in J}$ in $L\left(E, E_{0} E\right)$ are said to be rightsimilar if there exists an invertible element $T \in M(K(E))$ such that $B_{j}=A_{j} T$ for all $j \in J$.
Lemma 3.18. If $\left\{A_{j}\right\}_{j \in J},\left\{B_{j}\right\}_{j \in J}$ are right-similar in $L\left(E, H_{E}\right)$ and $\left\{C_{i}\right\}_{i \in I},\left\{D_{i}\right\}_{i \in I}$ are right-similar in $L\left(F, H_{F}\right)$, then $\left\{A_{j} \otimes C_{i}\right\}_{j, i}$ and $\left\{B_{j} \otimes D_{i}\right\}_{j, i}$ are right-similar in $L\left(E \otimes F, H_{E} \otimes H_{F}\right)$.

Proof. Let T_{1} be an invertible element of $M(K(E))$ such that $B_{j}=A_{j} T_{1}$ for all $j \in J$ and T_{2} be an invertible element of $M(K(F))$ such that $D_{i}=C_{i} T_{2}$ for all $i \in I$. Then we have $\left(T_{1} \otimes T_{2}\right)^{-1}=T_{1}^{-1} \otimes T_{2}^{-1}$, and $M(K(E)) \otimes M(K(F)) \subseteq M(K(E \otimes F))$. But $T_{1} \otimes T_{2} \in M(K(E)) \otimes M\left(K(F)\right.$. Hence $T_{1} \otimes T_{2}$ is an invertible operator in $M(K(E \otimes F))$ such that $B_{j} \otimes D_{i}=A_{j} T_{1} \otimes C_{i} T_{2}=\left(A_{j} \otimes C_{i}\right)\left(T_{1} \otimes T_{2}\right)$. Consequently $\left\{A_{j} \otimes C_{i}\right\}_{j, i}$ and $\left\{B_{j} \otimes D_{i}\right\}_{j, i}$ are right-similar in $L\left(E \otimes F, H_{E} \otimes H_{F}\right)$.

By using Theorem 3.3 in [11] and the above lemma, we have the following result.
Theorem 3.19. Let $\left\{A_{i}\right\}_{i \in I},\left\{B_{i}\right\}_{i \in I}$ be frames in $L\left(E, H_{E}\right)$ and $\left\{C_{i}\right\},\left\{D_{i}\right\}$ be frames in $L\left(F, H_{F}\right)$. Then the following are equivalent:
(i) $\left\{A_{j} \otimes C_{i}\right\}_{j, i}$ and $\left\{B_{j} \otimes D_{i}\right\}_{j, i}$ are right similar in $L\left(E \otimes F, H_{E} \otimes H_{F}\right)$,
(ii) $\left\{A_{i}\right\},\left\{B_{i}\right\}$ are right similar in $L\left(E, H_{E}\right)$ and $\left\{C_{j}\right\},\left\{D_{j}\right\}$ are right-similar in $L\left(F, H_{F}\right)$,
(iii) $P_{A \otimes C}=P_{B \otimes D}$,
(iv) $P_{A}=P_{B}$ and $P_{C}=P_{D}$.

Proof. By Theorem 3.3 in [11], (i) is equivalent to (iii) and by Theorem 3.16, (iii) is equivalent to (iv). Also by Theorem 3.3 in [11], (ii) is equivalent to (iv), and by the above lemma, (ii) implies (i). So we have the result.

Acknowledgments. The authors are highly grateful to the referee for very valuable suggestions and corrections which improved the manuscript essentially.

References

1. L. Arambasic, Frames of submodules for countably generated Hilbert $K(H)$-modules, Glasnik Mathematicki 41(61) (2006), 317-328.
2. D. Bakic, and B. Guljas, Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. 68 (2002), 249-269.
3. B. Blakadar, Operator Algebras and Non-Commutative Geometry, III, Springer-Verlag, Berlin, 2006.
4. I. Daubechies, A. Grossman, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
5. M. Fornasier, Decompositions of Hilbert spaces: Local construction of global frames, (B. Bojanov, ed.) Proc. Int. Conf. on Constructive Function Theory (Varna, 2002), DARBA, Sofia, 2003, pp. 275-281.
6. M. Frank and D. R. Larson, A module frame concept for Hilbert C^{*}-modules, presented at Functional and Harmonic Analysis of Wavelets (Joint Math. Meeting, San Antonio, TX, Jan. 1999); Contemp. Math. 247 Amer. Math. Soc., Providence RI, 1999, 207-233.
7. M. Frank and D. R. Larson, Frames in Hilbert C^{*}-modules and C^{*}-algebras, J. Operator Theory 48 (2002), 273-314.
8. D. Gabor, Theory of communications, J. Inst. Elec. Eng. (London) 93 (1946), no. 3, 429-457.
9. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Review 31 (1989), 628-666.
10. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 1: Elementary Theory, Academic Press, New York, 1983.
11. V. Kaftal, D. Larson, and S. Zhang, Operator-valued frames on C^{*}-modules, Contemp. Math. (to appear).
12. V. Kaftal, D. Larson and S. Zhang, Operator-valued frames, Preprint.
13. A. Khosravi and M. S. Asgari, Frames and bases in tensor product of Hilbert spaces, Int. J. Math. 4 (2003), no. 6, 527-538.
14. A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert C^{*}-modules, Proc. Indian Acad. Sci., Math. Sci. 117 (2007), no. 1, 1-12.
15. A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C^{*}-modules, Int. J. Wavelet, Multiresolution and Information Processing 6 (2008), no. 3, 433-446.
16. A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008), 1068-1083.
17. E. C. Lance, Hilbert C^{*}-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Series, Vol. 210, Cambridge University Press, Cambridge, 1995.
18. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437-452.

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, 599 Taleghani Ave., Tehran, 15618, Iran

E-mail address: khosravi_m@saba.tmu.ac.ir
Received 09/03/2010; Revised 07/10/2010

[^0]: 2000 Mathematics Subject Classification. 42C15, 46C05, 46L05.
 Key words and phrases. Frame, frame operator, operator-valued frames, tensor product, Hilbert C^{*}-module, g-frames.

