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THE INFINITE DIRECT PRODUCTS OF PROBABILITY MEASURES
AND STRUCTURAL SIMILARITY

VOLODYMYR KOSHMANENKO

Abstract. We show that any similar structure measure on the segment [0, 1] is

an image-measure of the appropriate constructed infinite direct product of discrete

probability measures.

1. Introduction

In this paper we continue (see [11, 9, 12]) to study a specific set of measures on
the segment [0, 1], the so called similar structure measures, which is considerably wider
than the well-known class of self-similar measures introduced by Hutchinson [6] (see also
[7, 16]).

The similar structure measures have a certain similarity property on any ε > 0 micro-
level but unlike to the self-similar measures they in general do not satisfy the trans-
formation condition: µ(·) =

∑n
i=1 piµ(T−1

i ·) for an appropriate family of similitudes
T = {Ti}ni=1 and some set of ratios pi ≥ 0, p1 + · · · + pn = 1. In fact, each similar
structure measure possesses a more general kind of invariance property with respect trans-
formations generating by the fixed sequence of iterated function systems T = {Tk}∞k=1.

The main result of the paper is that every similar structure measure µ on [0, 1] may
be considered as an image-measure µ = µ̃ = πµ∗ of the infinite direct product of discrete
probability measures (Ω,A, µ∗) =

∏∞
k=1(Ωk,Ak,mk), where the mapping π : Ω→ [0, 1] is

defined by a fixed sequence of iterated function systems T = {Tk}∞k=1 uniquely associated
with µ (see [1, 2, 4, 14, 15]).

We note that similar structure measures have wide applications, especially in the mod-
els describing biological populations and conflict interactions, in particular, in dynamical
systems of conflict. [2, 3, 9, 10].

2. Similar structure measures

Let us describe a notion of probability similar structure measure on the segment
∆0 ≡ [0, 1] (for more details see [9, 11, 12]).

Let T = {Tk}∞k=1 = {Tik}ni=1, 2 ≤ n < ∞, be a family of semilitudes (contractive
similarities of the form Tikx = cikx+ tik, cik, tik < 1) on R1 such that

Tik∆0 ⊂ ∆0, i = 1, . . . , n, k = 1, 2, . . .

Assume that for each k, the contractions Tk = {Tik}ni=1 satisfy the open set condition
(see e.g. [13]), i.e., there exists a non-empty open set O such that

n⋃
ik=1

TikkO ⊂ O and TikkO
⋂
Ti′kkO = ∅, ik 6= i′k.
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Therefore Tk is an iterated function system (for more details see [7]). So, we start with
a sequence T = {Tk}∞k=1 of iterated function systems.

For fixed k, all possible ordered compositions of contractions

Ti1i2...ik := Ti11 ◦ Ti22 ◦ · · · ◦ Tikk
generate the family of subsets (closed segments from ∆0) of rank k

∆i1...ik := Ti1...ik∆0, i1, . . . , ik = 1, . . . , n.

By construction the obvious inclusions

∆i1i2...ik−1 ⊃ ∆i1i2...ik , ik = 1, . . . , n

are fulfilled, and hence

(2.1) ∆i1i2...ik−1 ⊇
n⋃

ik=1

∆i1i2...ik , k = 1, 2, . . .

It is clear that all above segments are geometrically similar to one another. In partic-
ular, for different segments of the same rank we have

∆i1...ik = Ui1...ik,i′k...i′1∆i′1...i
′
k
,

where

(2.2) Ui1...ik,i′k...i′1 := Ti1...ikT
−1
i′1...i

′
k
, 1 ≤ ik, i′k ≤ n

is a similarity transformation, which is well defined since each contraction Tikk, as well
as its inverse, is bijective.

Definition 2.1. A set S0 ⊆ ∆0 is said to be a similar structure set, if there exists a
sequence of iterated function systems, T = {Tk}∞k=1 such that for each k = 1, 2, . . . , this
set can be split into parts,

(2.3) S0 =
n⋃

i1=1

· · ·
n⋃

ik=1

Si1...ik , Si1...ik ⊆ ∆i1...ik ,

or, equivalently,

(2.4) S0 =
n⋃

i1=1

Si1 , Si1 =
n⋃

i2=1

Si1i2 , · · · , Si1...ik−1 =
n⋃

ik=1

Si1i2...ik , · · · ,

where all non-empty subsets Si1...ik , Si′1...i′k are similar to one another

(2.5) Si1...ik = Ui1...ik,i′k...i′1Si′1...i′k .

Directly from this definition it follows that, under the above sequence of iterated
function systems T , the whole segment ∆0 is a similar structure set with Si1...ik = ∆i1...ik

if (2.1) always contains the equality sign.
We emphasize that in general

∆0 6=
n⋃

ik=1

Tikk∆0,

and it is possible that some of the above sets Si1...ik are empty.
It is also clear that

diam(Si1...ik)→ 0, k →∞,
if all cik < c. Besides

λ(Scl
i1...ik

⋂
Scl
i′1...i

′
k
) = 0, if il 6= i′l

at least for single 1 ≤ l ≤ k, where cl stands for closure.
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We note that subsets of various ranks, Si1...il , Si1...ik , k 6= l are not in general similar.
In particular, no Si1···ik , k = 1, 2, . . ., is in general similar to the whole set S0. This is the
important distinctive feature of a similar structure set in comparison with a self-similar
one (see [6]).

Roughly speaking, a similar structure set on any ε-level (ε > 0) can be decomposed
into a finitely many families of cells similar to each other with diameters not more than
ε. However for different ε-levels the corresponding cells are not necessarily similar.

From fractal geometry (see also [16]) it is known that for each iterated function system
its invariant set is self-similar. We assert that any sequence of iterated function systems
generates a similar structure set.

Theorem 2.2. Let T = {Tk}∞k=1 be a sequence of iterated function systems. Then the
uniquely constructed from T set

Γ := {x ∈ ∆0| x = lim
k→∞

Ti11...ikky, y ∈ R1, i1, . . . , ik = 1, . . . , n}

(the point y is arbitrary) has similar structure (see Definition 2.1)). Besides Γ is invari-
ant in the sense that

(2.6) Γ =
⋃
Ti1...ik...Γ, Ti1...ik... := lim

k→∞
Ti11...ikk,

where the union is taken over all coordinate directions i1 . . . ik . . .

Proof. At first we recall that in the case of a single iterated function system, i.e., if
Tk = T = {Ti}ni=1 is the same family of contractions for all k, then Γ is a usual invariant
self-similar set, Γ =

⋃n
i=1 TiΓ (see e.g., [7])

Γ := {x ∈ ∆0| x = lim
k→∞

Ti1...iky, y ∈ R1, i1, . . . , ik = 1, . . . , n}.

In other words, Γ is the set consisting of the accumulating fixed points for all possible
coordinate directions i1 . . . ik . . .

Γ = {x ∈ ∆0| x = xi1...ik... = Ti1...ik... y, i1, . . . , ik, . . . = 1, . . . , n},

where the limit point x does not depend on y ∈ R1 (instead y one take put any compact
set and take an infinite intersection of its images).

Let us consider a sequence of iterated function systems Tk, k = 1, 2, . . . ,, which are,
in general, different. Then we have to prove that a sequence

yk := Ti1...ik y, y ∈ R1,

has a unique accumulation point, i.e., converges

x = lim
k→∞

yk.

If it is true, we may write
x = xi1i2...ik... = Ti1...ik...y,

since the limit point depends on only the coordinate direction i1 . . . ik . . .
Indeed, if we change y over ∆0, then from (2.1) it follows that all yk ∈ ∆i1...ik . So, if we

fix a certain coordinate direction i1 . . . ik . . ., then there appears a sequence of associated
embedded segments

∆i1 ⊃ ∆i1i2 ⊃ · · · ⊃ ∆i1...ik ⊃ · · ·
Taking into account that diam(∆i1...ik) goes to zero with k →∞, we conclude that there
exists a unique limiting point

(2.7) xi1i2...ik... =
∞⋂
k=1

∆i1...ik = lim
k→∞

yk,
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which does not depend of a chosen starting point y. We remark that the latter equality
is valid just due to yk ∈ ∆i1...ik .

We observe that the mapping Ti1...ik... has the image consisting of a unique point

Ti1...ik... : R1 −→ xi1...ik... ∈ ∆0,

in spite of that all maps Til...ik are bijective. It means that the contraction ratio of
Ti1...ik... equals zero.

Let us define Γ as a set of all limiting points of view (2.7)

Γ :=
⋃
xi1i2...ik...,

where the union is taken over the uncountable family of all coordinate directions.
Now we decompose Γ for each k = 1, 2, . . . onto subsets,

Γ =
n⋃

i1,...,ik=1

Γi1...ik ,

where

(2.8) Γi1...ik := Γ
⋂

∆i1...ik =
⋃

i1...ik is fixed

xi1...ik....

It proves (2.3) and (2.4) for Γ with Si1...ik = Γi1...ik , which all are non-empty. To prove
(2.5) we note that by construction for each fixed k we have

Γi1...ik 3 xi1...ik... = Ui1...ik,i′k...i′1xi′1...i′k... ∈ Γi′1...i′k .

Therefore we have also

(2.9) Γi1...ik = Ui1...ik,i′k...i′1Γi′1...i′k .

Thus, Γ is a similar structure set.
Finally, (2.6) is evident since for any y ∈ R

Ti1...ik...y = x = xi1...ik... ∈ Γ.

�

Now we are able to introduce a notion of similar structure measure.

Definition 2.3. A Borel measure µ supported on ∆0 is said to be a similar structure
measure, if its (minimal closed) support Sµ= suppµ is a similar structure set, i.e., admits
the representations of view (2.3), (2.4)

(2.10) Sµ =
n⋃

i1,...,ik=1

Si1...ik , Si1...ik−1 =
n⋃

ik=1

Si1...ik (Si0 ≡ Sµ),

where all subsets Si1...ik for every fixed rank k ≥ 1 are similar one to other in sense
(2.5)). Besides, for each k = 1, 2, . . .

(2.11) µ(Si1...ik) = pikk · µ(Si1...ik−1), pikk ≥ 0,
n∑

ik=1

pikk = 1.

We remark that in (2.11) ratios pikk are independent of indices i1, . . . , ik−1 and
pikk = 0 for empty Si1...ik .

Thus, each similar structure measure is associated with some sequence of iterated
function systems T and, by (2.11), with some stochastic matrix

(2.12) P ≡ {pk}∞k=1 = {pik}n, ∞i=1, k=1 ,
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whose columns are formed by coordinates of stochastic vectors pk ∈ Rn

pk = (p1k, . . . , pnk), p1k, . . . , pnk ≥ 0, p1k + · · ·+ pnk = 1, k = 1, 2, . . .

We remark also that instead of the standard invariance property for self-similar mea-
sures,

µ(B) =
n∑
i=1

piµ(T−1
i B), pi ≥ 0, p1 + · · ·+ pn = 1, B ∈ B,

now, in the case of similar structure measures, from (2.11) it follows a more specific
relation, which fulfilled separately for each k

µ(B) =
∑

i1,...,ik

µ(Bi1...ik) =
n∑

ik=1

pikk
∑

i1,...,ik−1

µ(T−1
ik
B

⋂
Si1...ik−1), B ∈ B

where
Bi1...ik := B

⋂
Si1...ik .

The set of probability similar structure measures on ∆0 will be denoted byMss(∆0) ≡
Mss (ss stands for similar structure).

3. Image-measures

Let

(3.1) (Ω,A, µ∗) =
∞∏
k=1

(Ωk,Ak,mk)

be the infinite direct product (for details see, e.g., [5, 8]) of some sequence of discrete
probability spaces

(Ωk,Ak,mk), Ωk = {ωik}nik=1, mk(ωik) = pikk ≥ 0,

where Ωk and σ-algebra Ak depend on k only formally (in fact they are the same objects
for all k). Above numbers pikk, which define the discrete measures mk, are in general
changed together with ik = 1, . . . , n and k = 1, 2, . . . Thus, the measure µ∗ is uniquely
associated with some infinite stochastic matrix

P = {pk}∞k=1, pk = (pikk)nik=1, pi1k + pi2k + · · ·+ pink = 1.

Its columns are denoted by pk ∈ Rn, 1 < n < ∞. The meanings of µ∗ on cylindrical
sets Ωi1...ik := ωi1 × · · · × ωik ×

∏∞
l=1 Ωk+l are defined by the matrix P as follows:

(3.2) µ∗(Ωi1...ik) =
k∏
s=1

piss,

where we take into account that mk(Ωk) = 1.
We will correspond to µ∗ its image on the segment [0, 1], the so-called the image-

measure, which is denoted by µ̃. With this aim we need to fix a measurable mapping
π from Ω onto [0, 1]. We introduce π using some in general non-stationary sequence of
semilitudes T = {Tk}∞k=1 considered in the previous section.

Namely we shall define the mapping π from Ω to the invariant set Γ. Then using π
we define µ̃, as the image-measure of µ∗

(3.3) µ̃ = πµ∗, µ̃(B) := µ∗(π−1(B)), ∀B ∈ B.
Let us consider at first a particular case. Assume T = {Tk}∞k=1 obey the following

conditions.
(a) All contraction coefficients cik of Tik are uniformly isolated from below, i.e., for

all i, k
0 < c ≤ cik < 1.



THE INFINITE DIRECT PRODUCTS OF PROBABILITY MEASURES . . . 25

(b) For each k = 1, 2, . . . the ranges of Tikk ≡ Tik complete the whole segment ∆0

∆0 =
n⋃

ik=1

Tikk∆0.

(c) The different sub-segments Tikk∆0 have zero Lebesgue intersections

λ(Tikk∆0

⋂
Ti′kk∆0) = 0, ik 6= i′k,

where λ denotes Lebesgue measure.
Condition (c) obviously implies that contractions Tk = {Tik}ni=1 for each k = 1, 2, . . .

satisfy the open set condition. We may put O = (0, 1) as an open set in this condition
for all contractions.

Therefore, any family of iterated function systems T = {Tk} with conditions (a) –
(c) defines a countable sequence of decompositions of the segment [0, 1]

∆0 = [0, 1] =
n⋃

i1=1

∆i1 , ∆i1 =
n⋃

i2=1

∆i1i2 , · · ·

In particular, due to (b),

(3.4) ∆i1i2...ik−1 =
n⋃

ik=1

∆i1i2...ik , k ≥ 1,

where recall ∆i0 = ∆0, and ∆i1i2...ik := Ti11 · · ·Tikk∆0. Thus now the whole segment
∆0 is the similar structure set for T . So, due to (3.4) for every point x ∈ [0, 1] there
exists a sequence of embedded segments ∆i1i2...ik containing this point and such that
x =

⋂∞
k=1 ∆i1i2...ik . This fact can be written in the following form:

(3.5) x = xi1i2...ik... =
∞⋂
k=1

∆i1i2...ik ,

where obviously the sequence of indexes i1, i2, . . . , ik, . . . (a fixed direction) defines the
point x uniquely. That is, i1, i2, . . . , ik, . . . may be considered as coordinates of x.

In the general situation there appears the one-to-one correspondence between se-
quences of iterated function systems T = {Tk}∞k=1 and mappings

(3.6) π : Ω 3 ω∗ = {ωi1 × ωi2 × · · · × ωik × · · · } → x = xi1i2...ik... ∈ Γ,

where ω∗ and the corresponding point x have the same coordinate direction i1, . . . , ik, . . .
We recall, that

(3.7) xi1i2...ik... = lim
k→∞

yk, yk = (Ti11 ◦ · · · ◦ Tikk)y, ∀y ∈ R1.

We remark, that π is possibly not bijective, if some sets Γi1i2...ik of a fixed rank
has a common end-points. By this reason sometimes we need to replace Ω in (3.6) on
Ω�Ω0. We shall produce this replacement formally always. Although the set Ω0 is taken
non-empty only if there exists k0 > 1 such that one of the following inequalities holds:

PLk0 =
∏
s≥k0

p1s > 0, PRk0 =
∏
s≥k0

pns > 0.

Namely,
Ω0 = {ω∗ ∈ Ω | ωis = ω1, ∀s ≥ k0},

or
Ω0 = {ω∗ ∈ Ω | ωis = ωn, ∀s ≥ k0}

respectively to the first or to the second case. It is easy to show that µ∗(Ω0) = 0 in any
case. We shall denote the restriction of π onto Ω�Ω0 again by π.
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Thus, under given µ∗, each sequence of iterated function systems T on [0, 1] fixes some
mapping π and therefore uniquely defines the image-measure µ̃ = πµ∗. Clearly, if we
change T then mapping π will also changed and new image-measure appears.

In the next section we discuss the similar structure properties of image-measures.

4. The similar structure image-measures

We state that each image-measure µ̃ = πµ∗ given by (3.3) automatically is necessary
similar structure measure if the mapping π is constructed as above by some sequence of
iterated function systems T . Rigorously we formulate our observation as follows.

Theorem 4.1. Let µ∗ be the infinite direct product of discrete probability measures
mk, k = 1, 2, . . . (see (3.1)). And let the mapping π : Ω → Γ is given by some in
general non-stationary sequence of iterated function systems T (see (3.6), (3.7)). Then
the image-measure µ̃ = πµ∗ has the similar structure, µ̃ ∈Mss.

Conversely, each similar structure measure, µ ∈ Mss on [0, 1] which is associated
with a sequence of iterated function systems T (see Definition 2.3) is the image-measure
µ = µ̃ = πµ∗ of the infinite direct product µ∗ =

∏∞
k=1mk of some sequence of appropriate

discrete probability measures mk, where the mapping π is constructed by T .

Proof. A key of our arguments is based on a fact that both measures, a similar struc-
ture measure µ ∈ Mss and a image-measure µ̃ = π−1µ∗ are associated with the same
stochastic matrix P .

Let us consider some image-measure µ̃ = πµ∗, where m∗ =
∏∞
k=1mk and the mapping

π is constructed by a fixed sequence of iterated function systems T . We take into account
that µ∗ uniquely connected with some stochastic matrix

P ≡ {pk}∞k=1 = {pik}n, ∞i=1, k=1 , pik = mk(ωi).

We have to show that µ̃ ∈ Mss. With this aim consider a sequence of probability
measures µk, uniformly distributed on ∆i1...ik = Ti1...ik∆0 = πΩi1...ik , and defined as
follows:

(4.1) µk(∆i1...ik) :=
n∑

i1,...,ik=1

Ci1...ikλi1...ik ,

where
Ci1...ik :=

pi11 · · · pikk
ci11 · · · cikk

,

(cikk is the contraction coefficient for Tikk) and

λi1...ik := λ|∆i1...ik

denotes the restriction of Lebesgue measure on the segment ∆i1...ik . By (4.1) it follows
that

(4.2) µ1(∆i1) = pii1, . . . , µk(∆i1,...,ik) = pi11 · · · pikk,

since obviously λi1...ik(∆i1...ik) =
∏k
l=1 cill. From (4.1), (4.2) it also follows that the

sequence of distribution functions fk(x) = µk{(−∞, x)} for measures µk uniformly con-
verges to some left continuous non-decreasing function, fk(x) → f(x), k → ∞. Thus,
f(x) is the distribution function for some probability measure, which obviously coincides
with the image-measure µ̃. So we have

µ̃ = lim
k→∞

µk.

We shall use this fact to prove that µ̃ has the similar structure.
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Let us consider the geometrical structure of the support for µ̃. By the above construc-
tion one can write

(4.3) Sµ̃ ≡ suppµ̃ =
⋂
k

Sµk
, Sµk

= suppµk.

Define now the sets

(4.4) Si1...ik := Sµ̃
⋂

Γi1...ik ,

where Γi1···ik are ”elementary” subsets of the invariant set for T (see (2.8)). Clearly that
using just defined sets we have for each k ≥ 1

Sµ̃ =
n⋃

i1,...,ik=1

Si1...ik .

Besides, from (2.9) it follows that all sets Si1...ik of fixed rank are similar, i.e., (2.5) is
fulfilled. Thus, we prove that the support of the measure µ̃ is a similar structure set.

Further, due to (4.2) we obtain the important relations

(4.5) µ(Si1...ik) = µk(∆i1...ik) = pi11 · · · pikk.
We observe that Si1...ik is non-empty, if and only if

µ(Si1...ik) = pi11 · · · pikk 6= 0.

By (4.5) the equalities (2.11) are fulfilled and therefore µ̃ ∈Mss.
Conversely, starting with a before given measure µ ∈ Mss on [0, 1] we consider the

sequence of discrete probability measures mk on a some space of discrete points Ω =
{ωi}ni=1: mk(ωi) = pik, where pik are matrix elements of P which is associated with
µ. Using mk we construct the infinite direct product µ∗ = Π∞k=1mk. Now the image-
measure µ̃ = πµ∗ obviously coincides with µ, where the mapping π was constructed by
the sequence of iterated function systems T associated with a given starting measure.
Thus for each k ≥ 1

(4.6) Sµ = Sµ̃ =
n⋃

i1...ik=1

Si1...ik , Si1...ik = Sµ
⋂

Γi1...ik .

That completes the proof. �

We remark that the subsets Si1...ik ⊆ Γi1...ik admits another definition

Si1...ik = {x = xi1...ik... ∈ Γi1...ik | lim
l→∞

pill
cill

> 0}cl,

where recall that cl stands for closure and il is changed along to the coordinate direction
of a point xi1...ik....
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Verlag, Basel—Boston—Berlin, 1997.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,

Kyiv, 01601, Ukraine

E-mail address: kosh@imath.kiev.ua

Received 07/07/2010


