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A NOTE ON EQUILIBRIUM GLAUBER AND KAWASAKI
DYNAMICS FOR PERMANENTAL POINT PROCESSES

GUANHUA LI AND EUGENE LYTVYNOV

Abstract. We construct two types of equilibrium dynamics of an infinite particle

system in a locally compact metric space X for which a permanental point process is

a symmetrizing, and hence invariant measure. The Glauber dynamics is a birth-and-
death process in X, while in the Kawasaki dynamics interacting particles randomly

hop over X. In the case X = Rd, we consider a diffusion approximation for the
Kawasaki dynamics at the level of Dirichlet forms. This leads us to an equilibrium

dynamics of interacting Brownian particles for which a permanental point process is

a symmetrizing measure.

1. Introduction

Let X be a locally compact Polish space and let ν be a Radon non-atomic measure
on it. Let Γ = ΓX denote the space of all locally finite subsets (configurations) in X.

A Glauber dynamics (a birth-and-death process of an infinite system of particles in
X) is a Markov process on Γ whose formal (pre-)generator has the form

(1.1)

(LGF )(γ) =
∑
x∈γ

d(x, γ \ x)(F (γ \ x)− F (γ))

+
∫
X

ν(dx) b(x, γ) (F (γ ∪ x)− F (γ)) , γ ∈ Γ.

Here and below, for simplicity of notation we write x instead of {x}. The coefficient
d(x, γ \ x) describes the rate at which particle x of configuration γ dies, while b(x, γ)
describes the rate at which, given configuration γ, a new particle is born at x.

A Kawasaki dynamics (a dynamics of hopping particles) is a Markov process on Γ
whose formal (pre-)generator is

(1.2) (LKF )(γ) =
∑
x∈γ

c(x, y, γ \ x)(F (γ \ x ∪ y)− F (γ)), γ ∈ Γ.

The coefficient c(x, y, γ \x) describes the rate at which particle x of configuration γ hops
to y, taking the rest of the configuration, γ \ x, into account.

Equilibrium Glauber and Kawasaki dynamics which have a standard Gibbs measure
as symmetrizing (and hence invariant) measure were constructed in [19, 20]. In [22], this
construction was extended to the case of an equilibrium dynamics which has a determi-
nantal (fermion) point process as invariant measure, For further studies of equilibrium
and non-equilibrium Glauber and Kawasaki dynamics, we refer to [3, 7, 8, 9, 10, 11, 13,
14, 15, 16, 17, 18, 21, 28] and the references therein.

The aim of this note is to show that general criteria of existence of Glauber and
Kawasaki dynamics which were developed in [22] are applicable to a wide class of
α-permanental (α ∈ N) point processes, proposed by Shirai and Takahashi [30]. This
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class includes classical permanental (boson) point processes, see e.g. [5, 30]. We will also
consider a diffusion approximation for the Kawasaki dynamics at the level of Dirichlet
forms (compare with [15]). This will lead us to an equilibrium dynamics of interacting
Brownian particles for which an α-permanental point process is a symmetrizing mea-
sure. As a by-product of our considerations, we will also extend the result of [30] on the
existence of α-permanental point process.

2. Equilibrium Glauber and Kawasaki dynamics – general results

Let X be a locally compact Polish space. We denote by B(X) the Borel σ-algebra on
X, and by B0(X) the collection of all sets from B(X) which are relatively compact. We
fix a Radon, non-atomic measure on (X,B(X)). (For most applications, the reader may
think of X as Rd and ν as the Lebegue measure.)

The configuration space Γ over X is defined as the set of all subsets of X which are
locally finite

Γ :=
{
γ ⊂ X : |γΛ| <∞ for each Λ ∈ B0(X)

}
,

where | · | denotes the cardinality of a set and γΛ := γ ∩ Λ. One can identify any γ ∈ Γ
with the positive Radon measure

∑
x∈γ εx, where εx is the Dirac measure with mass at

x and
∑
x∈∅ εx:=zero measure. The space Γ can be endowed with the vague topology,

i.e., the weakest topology on Γ with respect to which all maps

Γ 3 γ 7→ 〈ϕ, γ〉 :=
∫
X

ϕ(x) γ(dx) =
∑
x∈γ

ϕ(x), ϕ ∈ C0(X),

are continuous. Here, C0(X) is the space of all continuous, real-valued functions on X
with compact support. We denote the Borel σ-algebra on Γ by B(Γ). A point process in
X is a probability measure on (Γ,B(Γ)).

We fix a point process µ which satisfies the so-called condition (Σ′ν) [5, 26], i.e., there
exist a measurable function r : X × Γ → [0,+∞], called the Papangelou intensity of µ,
such that

(2.1)
∫

Γ

µ(dγ)
∫
X

γ(dx)F (x, γ) =
∫

Γ

µ(dγ)
∫
X

ν(dx) r(x, γ)F (x, γ ∪ x)

for any measurable function F : X × Γ → [0,+∞]. The condition (Σ′ν) can be thought
of as a kind of weak Gibbsianess of µ. Intuitively, we may treat the Papangelou intensity
as

(2.2) r(x, γ) = exp[−E(x, γ)],

where E(x, γ) is the relative energy of interaction between particle x and configuration γ.
To define an equilibrium Glauber dynamics for which µ is a symmetrizing measure,

we fix a death coefficient as a measurable function d : X ×Γ→ [0,+∞], and then define
a birth coefficient b : X × Γ→ [0,+∞] by

(2.3) b(x, γ) = d(x, γ)r(x, γ), (x, γ) ∈ X × Γ.

To define a Kawasaki dynamics, we fix a measurable function c : X2 × Γ2 → [0,+∞]
which satisfies

(2.4) r(x, γ)c(x, y, γ) = r(y, γ)c(y, x, γ), (x, y, γ) ∈ X2 × Γ.

Formulas (2.3) and (2.4) are called the balance conditions [13, 14]. We will also assume
that the function c(x, y, γ) vanishes if at least one of the functions r(x, γ) and r(y, γ)
vanishes, i.e.,

c(x, y, γ) = c(x, y, γ)χ{r>0}(x, γ)χ{r>0}(y, γ).(2.5)
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Here, for a set A, χA denotes the indicator function of A. We refer to [22, Remark 3.1]
for a justification of this assumption, which involves the interpretation of r(x, γ) as in
(2.2), see also Remark 2.4 below.

We denote by FCb(C0(X),Γ) the space of all functions of the form

(2.6) Γ 3 γ 7→ F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),

where N ∈ N, ϕ1, . . . , ϕN ∈ C0(X) and g ∈ Cb(RN ). Here, Cb(RN ) denotes the space of
all continuous bounded functions on RN . We assume that, for each Λ ∈ B0(X),∫

Γ

µ(dγ)
∫

Λ

γ(dx) d(x, γ \ x) <∞,(2.7) ∫
Γ

µ(dγ)
∫
X

γ(dx)
∫
X

ν(dy) c(x, y, γ \ x)(χΛ(x) + χΛ(y)) <∞.(2.8)

As easily seen, conditions (2.7) and (2.8) are sufficient in order to define bilinear forms

EG(F,G) : =
∫

Γ

µ(dγ)
∫
X

γ(dx) d(x, γ \ x)(F (γ \ x)− F (γ))(G(γ \ x)−G(γ)),

EK(F,G) : =
1
2

∫
Γ

µ(dγ)
∫
X

γ(dx)
∫
X

ν(dy) c(x, y, γ \ x)(F (γ \ x ∪ y)− F (γ))

× (G(γ \ x ∪ y)−G(γ)),

where F,G ∈ FCb(C0(X),Γ).
For the construction of the Kawasaki dynamics, we will also assume that the following

technical assumptions holds:

(2.9)
∃u, v ∈ R ∀Λ ∈ B0(X) :∫

Λ

γ(dx)
∫

Λ

ν(dy) r(x, γ \ x)ur(y, γ \ x)vc(x, y, γ \ y) ∈ L2(Γ, µ) <∞.

Note that in formula (2.9) and below, we use the convention 0
0 := 0.

The following theorem was essentially proved in [22].

Theorem 2.1. (i) Assume that a point process µ satisfies (2.1). Assume that conditions
(2.3), (2.7), respectively (2.4), (2.5), (2.8), and (2.9) are satisfied. Let ] = G,K. Then the
bilinear form (E],FCb(C0(x),Γ)) is closable in L2(Γ, µ) and its closure will be denoted
by (E], D(E])). Further there exists a conservative Hunt process (Glauber, respectively
Kawasaki dynamics)

M ] =
(

Ω],F ], (F ]t )t≥0, (Θ
]
t)t≥0, (X](t))t≥0, (P ]γ)γ∈Γ

)
on Γ which is properly associated with (E], D(E])), i.e., for all (µ-version of) F ∈ L2(Γ, µ)
and t > 0

Γ 3 γ 7→ p]tF (γ) :=
∫

Ω]

F (X](t)) dP ]γ

is an E]-quasi continuous version of exp(tL])F , where (−L], D(L])) is the generator of
(E], D(E])). M ] is up-to µ-equivalence unique. In particular, M ] is µ-symmetric and has
µ as invariant measure.

(ii) M ] from (i) is up to µ-equivalence unique between all Hunt processes

M ′ =
(
Ω′,F ′, (F ′t)t≥0, (Θ′t)t≥0, (X ′(t))t≥0, (P ′γ)γ∈Γ

)
on Γ having µ as invariant measure and solving a martingale problem for (L], D(L])),
i.e., for all G ∈ D(H])

G̃(X ′(t))− G̃(X ′(0))−
∫ t

0

(L]G)(X ′(s)) ds, t ≥ 0,
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is an (F ′t)-martingale under P ′γ for E]-q.e. γ ∈ Γ. Here, G̃ denotes an E]-quasi-continuous
version of G.

(iii) Further assume that, for each Λ ∈ B0(X),

(2.10)
∫

Λ

γ(dx) d(x, γ \ x) ∈ L2(Γ, µ),
∫

Λ

ν(dx) b(x, γ) ∈ L2(Γ, µ),

in the Glauber case, and

(2.11)
∫
X

γ(dx)
∫
X

ν(dy) c(x, y, γ \ x)(χΛ(x) + χΛ(y)) ∈ L2(Γ, µ)

in the Kawasaki case. Then FCb(C0(X),Γ) ⊂ D(L]), and for each F ∈ FCb(C0(X),Γ),
L]F is given by formulas (1.1) and (1.2), respectively.

Remark 2.1. We refer to [24] for an explanation of notions appearing in Theorem 2.1,
see also a brief explanation of them in [22].

Proof of Theorem 2.1. The statement follows from Theorems 3.1 and 3.2 in [22]. Note
that, although these theorems are formulated for determinantal point processes only,
their proof only uses the (Σ′ν) property of these point processes. Note also that condition
(2.9) is formulated in [22] only for v = 1, however the proof of Lemma 3.2 in [22] admits
a straightforward generalization to the case of an arbitrary v ∈ R. �

Remark 2.2. Part (iii) of Theorem 2.1 states that the operator (−L], D(L])) is the
Friedrichs’ extension of the operator (−L],FCb(C0(X),Γ)) defined by formulas (1.1),
(1.2), respectively.

Let us fix a parameter s ∈ [0, 1] and define

d(x, γ) : = r(x, γ)s−1χ{r>0}(x, γ), (x, γ) ∈ X × Γ,(2.12)

b(x, γ) : = r(x, γ)sχ{r>0}(x, γ), (x, γ) ∈ X × Γ,(2.13)

(2.14)
c(x, y, γ) := a(x, y)r(x, γ)s−1r(y, γ)sχ{r>0}(x, γ)χ{r>0}(y, γ),

(x, y, γ) ∈ X2 × Γ.

Here the function a : X2 → [0,+∞) is bounded, measurable, symmetric (i.e., a(x, y) =
a(y, x)), and satisfies

(2.15) sup
x∈X

∫
X

a(x, y) ν(dy) <∞.

Note that the balance conditions (2.3) and (2.4) are satisfied for these coefficients, and
so is condition (2.5).

Remark 2.3. Note that, if X = Rd and a(x, y) has the form a(x − y) for a function
a : Rd → [0,∞), then condition (2.15) means that a ∈ L1(Rd, dx). (Here and below, in
the case X = Rd, we use an obvious abuse of notation.)

Remark 2.4. Using representation (2.2), we can rewrite formulas (2.12)–(2.14) as follows:

d(x, γ \ x) = exp[(1− s)E(x, γ \ x)]χ{E<+∞}(x, γ \ x),

b(x, γ \ x) = exp[−sE(x, γ \ x)]χ{E<+∞}(x, γ \ x),

c(x, y, γ \ x) = a(x, y) exp[(1− s)E(x, γ \ x)− sE(y, γ \ x)]

× χ{E<+∞}(x, γ \ x)χ{E<+∞}(y, γ \ x).

So, if the corresponding dynamics exist, one can give the following heuristic description of
them: Both dynamics are concentrated on configurations γ ∈ Γ such that, for each x ∈ γ,
the relative energy of interaction between x and the rest of configuration, γ \ x, is finite;
those particles tend to die, respectively hop, which have a high energy of interaction
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with the rest of the configuration, while it is more probable that a new particle is born
at y, respectively x hops to y, if the energy of interaction between y and the rest of the
configuration is low.

Let us assume that the point process µ satisfies:

∀Λ ∈ B0(X) :
∫

Λ

γ(dx) ∈ L2(Γ, µ).

Then, by choosing u = 1−s and v = −s in (2.9), we conclude that the coefficient c given
by (2.14) satisfies (2.9).

We will construct below a class of point processes µ for which the coefficients d, b and
c given above satisfy the other conditions of Theorem 2.1.

3. Permanental point processes and corresponding equilibrium dynamics

Let K be a linear, bounded, self-adjoint operator on the real space L2(X, ν). Further
assume that K ≥ 0 and K is locally of trace class, i.e., Tr(PΛKPΛ) < ∞ for all Λ ∈
B0(X), where PΛ denotes the operator of multiplication by χΛ. Hence, each operator
PΛ

√
K is of Hilbert–Schmidt class. Following [23] (see also [12, Lemma A.4]), we conclude

that
√
K is an integral operator whose integral kernel, κ(x, y), satisfies

(3.1)
∫

Λ

∫
X

ν(dx)ν(dy)κ(x, y)2 <∞ for all Λ ∈ B0(X).

In particular,

(3.2) κ(x, ·) ∈ L2(X, ν) for ν-a.a. x ∈ X.

Hence, K is an integral operator whose integral kernel can be chosen as

(3.3)
k(x, y) =

∫
X

κ(x, z)κ(z, y)ν(dz)

=
∫
X

κ(x, z)κ(y, z)ν(dz) = (κ(x, ·),κ(y, ·))L2(X,ν).

We also have, for each Λ ∈ B0(X),

(3.4)
Tr(PΛKPΛ) = ‖

√
KPΛ‖2HS

=
∫

Λ

ν(dx)
∫
X

ν(dy)κ(x, y)2 =
∫

Λ

k(x, x) ν(dx),

where ‖ · ‖HS denotes the Hilbert–Schmidt norm.

Proposition 3.1. There exists a random field (Y (x))x∈X on a probability space (Ω,A, P )
such that the mapping

(3.5) X × Ω 3 (x, ω) 7→ Y (x, ω)

is measurable, and for ν-a.a. x ∈ X, Y (x) is a Gaussian random variable with mean 0
and such that

(3.6) E (Y (x)Y (y)) = k(x, y) for ν⊗2-a.a. (x, y) ∈ X2 and ν-a.a. x = y ∈ X.

Remark 3.1. The statement of Proposition 3.1 is well-known if the integral kernel of the
operator K admits a continuous version (see e.g. Theorem 1.8 and p. 456 in [30]). In
the latter case, (Y (x))x∈X is a Gaussian random field and formula (3.6) holds for all
(x, y) ∈ X2.
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Proof of Proposition 3.1. Consider a standard triple of real Hilbert spaces

H+ ⊂ H0 = L2(X, ν) ⊂ H− .

Here the Hilbert space H+ is densely and continuously embedded into H0, the inclusion
operator H+ ↪→ H0 is of Hilbert–Schmidt class, and the Hilbert space H− is the dual
space of H+ with respect to the center space H0 (see e.g. [2]).

Let P be the standard Gaussian measure on H−, i.e., the probability measure on the
Borel σ-algebra B(H−) which has Fourier transform∫

H−

ei〈ω,f〉 P(dω) = exp
[
− 1

2
‖f‖2H0

]
, f ∈ H+ ,

where 〈ω, f〉 denotes the dual pairing between ω ∈ H− and f ∈ H+ . Then the mapping
H+ 3 f → 〈·, f〉 can be extended by continuity to an isometry

(3.7) I : H0 → L2(H−,P).

For any f ∈ H0 we denote 〈·, f〉 := If . Thus, for each f ∈ H0, 〈·, f〉 is a (complex)
Gaussian random variable with mean 0 and for any f, g ∈ H0

(3.8)
∫
H−

〈ω, f〉〈ω, g〉P(dω) = (f, g)L2(X,ν).

Thus, by (3.2), we set for ν-a.a. x ∈ X, Ỹ (x, ω) := 〈ω, k(x, ·)〉. Hence Ỹ (x) is a Gaussian
random variable and by (3.3) and (3.8), (3.6) holds.

Hence, it remains to prove that there exists a random field Y = (Y (x))x∈X for which
the mapping (3.5) is measurable and such that Y (x, ω) = Ỹ (x, ω) for ν ⊗ P-a.a. (x, ω).
To this end, we fix any Λ ∈ B0(X) and denote by B(Λ) the trace σ-algebra of B(X) on
Λ. We define a set DΛ of the functions u : Λ×X → R of the form

(3.9) u(x, y) =
n∑
i=1

χ∆i
(x)fi(y),

where ∆i ∈ B(Λ), fi ∈ H+, i = 1, . . . , n. Define a linear mapping

IΛ : DΛ → L2(Λ×H−, ν ⊗ P)(3.10)

by setting, for each u ∈ DΛ of the form (3.9),

(IΛu)(x, ω) =
n∑
i=1

χ∆i(x)〈ω, fi〉, (x, ω) ∈ Λ×H− .

Clearly, IΛ can be extended to an isometry

IΛ : L2(Λ×X, ν⊗2)→ L2(Λ×H−, ν ⊗ P),

and we have IΛ = 1Λ⊗ I, where 1Λ is the identity operator in L2(Λ, ν) and the operator
I is as in (3.7).

Fix any u ∈ L2(Λ × X, ν⊗2). As easily seen, there exist a sequence (un)∞n=1 ⊂ DΛ

such that un → u in L2(Λ×X, ν⊗2) and for ν-a.a. x ∈ Λ, un(x, ·)→ u(x, ·) in L2(X, ν)
Hence, for ν-a.a. x ∈ Λ, IΛun(x, ·)→ IΛu(x, ·) in L2(H−,P), which implies

(3.11) (IΛu)(x, ω) = 〈ω, u(x, ·)〉 for P-a.a. ω ∈ H− .

Now, denote by κΛ the restriction of κ to the set Λ×X. For ν-a.a. x ∈ Λ, we define
YΛ(x) := (IΛκΛ)(x, ·). Hence, by (3.11), for ν-a.a. x ∈ Λ, YΛ(x) = Ỹ (x) P-a.e. Finally,
let (Λn)∞n=1 ⊂ B0(X) be such that Λn ∩ Λm = ∅ if n 6= m and

⋃∞
n=1 Λn = X. Setting

Y (x) := YΛn
(x) for ν-a.a. x ∈ Λn, n ∈ N, we conclude the statement. �
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Let Y be a random field as in Proposition 3.1. For each Λ ∈ B0(X), we have

E
(∫

Λ

Y (x)2 ν(dx)
)

=
∫

Λ

E(Y (x)2) ν(dx)

=
∫

Λ

ν(dx)
∫
X

ν(dy)κ(x, y)2 <∞.

In particular, the function Y (x)2 is locally ν-integrable P-a.s. Let l ∈ N and let (Ω,A,P)
be a probability space on which l independent copies Y1, Y2, . . . , Yl of a random field
Y as in Proposition 3.1 are defined. Denote by µ(l) the Cox point process on X with
random intensity g(l)(x) =

∑l
i=1 Yi(x)2, which is locally ν-integrable P-a.s. Thus, µ(l) is

the probability measure on (Γ,B(Γ)) which satisfies

(3.12)
∫

Γ

µ(l)(dγ)F (γ) =
∫

Ω

P(dω)
∫

Γ

πg(l)(x,ω)ν(dx)(dγ)F (γ)

for each measurable function F : Γ → [0,+∞]. Here, for a locally ν-integrable function
g : X → [0,+∞), we denote by πg(x)ν(dx) the Poisson point process in X with intensity
measure g(x)ν(dx), see e.g [5]. This is the unique point process in X which satisfies the
Mecke identity

(3.13)
∫

Γ

πg(x)ν(dx)(dγ)
∫
X

γ(dx)F (x, γ) =
∫

Γ

πg(x)ν(dx)(dγ)
∫
X

ν(dx) g(x)F (x, γ ∪ x)

for each measurable F : X×Γ→ [0,+∞]. By (3.12) and (3.13) (compare with e.g. [27]),
for each l ∈ N, the point process µ(l) satisfies condition (Σ′ν) and its Papangelou intensity
is given by

r(l)(x, γ) = Ẽ(g(l)(x) | F)(γ) = Ẽ
( l∑
i=1

Yi(x)2 | F
)

(γ).(3.14)

Here Ẽ denotes the (conditional) expectation with respect to the probability measure

P̃(dω, dγ) = P̃(dω)πg(l)(x,ω)ν(dx)(dγ)(3.15)

on Ω× Γ, while F denotes the σ-algebra on Ω× Γ generated by the mappings

Ω× Γ 3 (ω, γ)→ F (γ) ∈ R,

where F : Γ→ R is measurable.
Recall that a point process µ in X is said to have correlation functions if, for each

n ∈ N, there exist a non-negative, measurable, symmetric function k(n)
µ on Xn such that,

for any measurable, symmetric function fn : Xn → [0,+∞],

(3.16)

∫
Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ)

=
1
n!

∫
Xn

f (n)(x1, . . . , xn)k(n)
µ (x1, . . . , xn)ν(dx1) · · · ν(dxn).

As well known (e.g. [5]), for a locally ν-integrable function g : X → [0,+∞), the Poisson
point process πg(x)ν(dx) has correlation functions

k(n)
µ (x1, . . . , xn) = g(x1) · · · g(xn).(3.17)

Let us recall the notion of α-permanent [31], called α-determinant in [30]. For a square
matrix A = (aij)ni,j=1 and α ∈ R, we set

perαA :=
∑
σ∈Sn

αn−m(σ)
n∏
i=1

aiσ(i),
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where Sn is the group of all permutations of {1, . . . , n} and m(σ) denotes the number of
cycles in σ. In particular, per1A is the usual permanent of A, while per−1A is the usual
determinant of A. Analogously to [30, subsec. 6.4], we conclude from (3.12), (3.16) and
(3.17) that the point process µ(l) has correlation functions

(3.18) k
(n)

µ(l)(x1, . . . , xn) = per l
2
(lk(xi, xj))ni,j=1 for ν⊗n-a.a. (x1, . . . , xn) ∈ Xn.

For l = 2, the point process µ(2) is often called a boson point process, see e.g. [5, 23].
Thus, we have proved the following

Proposition 3.2. For each l ∈ N, there exists a point process µ(l) in X whose correla-
tion functions are given by (3.18). The µ(l) satisfies condition (Σ′ν) and its Papangelou
intensity is given by (3.14).

Remark 3.2. Recall that in [30], under the same assumptions on the operator K, the
existence of a point process with correlation functions (3.18) was proved for even l ∈ N,
and for odd l ∈ N the statement of Proposition 3.2 was proved under the additional
assumption of continuity of the integral kernel k(·, ·).

We will now prove that, for a point process µ(l) as in Proposition 3.2, Glauber and
Kawasaki dynamics with coefficients (2.12), (2.13) and (2.14), respectively exist.

Theorem 3.1. (i) For each point process µ(l) as in Proposition 3.2, the coefficients
d(x, γ) and b(x, γ) defined by (2.12) and (2.13), satisfy conditions (2.3) and (2.7) and
so statements (i) and (ii) of Theorem 2.1 hold, in particular, a corresponding Glauber
dynamics exists.

(ii) Assume additionally that k(x, x) is bounded outside a set ∆ ∈ B0(X). Then for
a point process µ(l) as in Proposition 3.2, the coefficient c(x, y, γ) defined by (2.14),
satisfies (2.4), (2.5), (2.8) and (2.9), and so statements (i) and (ii) of Theorem 2.1 hold,
in particular, a corresponding Kawasaki dynamics exists.

Proof. We start with the following

Lemma 3.1. For each n ∈ N and for ν-a.a. x ∈ X

(3.19)
∫

Γ

r(x, γ)n µ(dγ) ≤ (2n)!
2n n!

k(x, x)n.

Proof. Using Jensen’s inequality for conditional expectation and the formula for moments
of a Gaussian measure (see e.g. [2, Chapter 2, Section 2, Lemma 2.1]), we have∫

Γ

r(x, γ)n µ(dγ) = Ẽ(Ẽ(Y (x)2 | F)n) ≤ Ẽ(Ẽ(Y (x)2n | F))

= Ẽ(Y (x)2n) ≤ (2n)!
2n n!

‖κ(x, ·)‖2nL2(X,ν) =
(2n)!
2n n!

k(x, x)n

for ν-a.a. x ∈ X. �

We will only prove statement (ii) of Theorem 3.1, as the proof of statement (i) is
similar and simper. Also, for simplicity of notation, we will only consider the case l = 1
(for l > 1 the proof being similar). We will also omit the upper index (1) from our
notation. By (2.1) we have, for each Λ ∈ B0(X),

(3.20)

∫
Γ

µ(dγ)
∫
X

γ(dx)
∫
X

ν(dy) c(x, y, γ \ x)(χΛ(x) + χΛ(y))

=
∫

Γ

µ(dγ)
∫
X

ν(dx)
∫
X

ν(dy) r(x, γ)c(x, y, γ)(χΛ(x) + χΛ(y))

=
∫

Γ

µ(dγ)
∫
X

ν(dx)
∫
X

ν(dy) a(x, y)r(x, γ)sr(y, γ)sχ{r>0}(x, γ)
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× χ{r>0}(y, γ)(χΛ(x) + χΛ(y))

≤
∫

Γ

µ(dγ)
∫
X

ν(dx)
∫
X

ν(dy) a(x, y)r(x, γ)sr(y, γ)s(χΛ(x) + χΛ(y))

= 2
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)r(x, γ)sr(y, γ)s

≤ 2
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)(1 + r(x, γ))(1 + r(y, γ)).

By (2.15) ∫
Γ

µ(dγ)
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y) <∞.(3.21)

Below, Ci, i = 1, 2, 3, . . . , will denote positive constants whose explicit values are not
important for us. We have, by (2.15)

(3.22)

∫
Γ

µ(dγ)
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)r(x, γ)

=
∫

Γ

µ(dγ)
∫

Λ

ν(dx) r(x, γ)
(∫

X

ν(dy) a(x, y)
)

≤ C1

∫
Γ

µ(dγ)
∫

Λ

ν(dx)r(x, γ)

= C1

∫
Γ

µ(dγ)
∫

Λ

γ(dx) = C1

∫
Λ

k(x, x) ν(dx) <∞.

Next, by (3.14)

(3.23)

∫
Γ

µ(dγ)
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)r(y, γ)

=
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)
∫

Γ

µ(dγ)r(y, γ)

=
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)k(y, y)

=
∫

Λ

ν(dx)
∫

∆

ν(dy) a(x, y)k(y, y) +
∫

Λ

ν(dx)
∫

∆c

ν(dy) a(x, y)k(y, y)

≤ C2

∫
Λ

ν(dx)
∫

∆

ν(dy)k(y, y) + C3

∫
Λ

ν(dx)
∫

∆c

ν(dy) a(x, y) <∞,

where we used that the function a is bounded and k(y, y) is bounded on ∆c. Analogously,
using Lemma 3.1, we have

(3.24)

∫
Γ

µ(dγ)
∫

Λ

ν(dx)
∫
X

ν(dy)a(x, y)r(x, γ)r(y, γ)

≤
∫

Λ

ν(dx)
∫
X

ν(dy) a(x, y)‖r(x, ·)‖L2(µ) ‖r(y, ·)‖L2(µ)

≤ C4

∫
Λ

ν(dx)
∫
X

ν(dy) a(x, y)k(x, x)k(y, y)

≤ C5

∫
Λ

ν(dx) k(x, x)
∫

∆

ν(dy) k(y, y)

+ C6

∫
Λ

ν(dx)k(x, x)
∫

∆c

ν(dy) a(x, y) <∞.

Thus, by (3.20)–(3.24), the theorem is proved. �
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Theorem 3.2. (i) Let s ∈
[

1
2 , 1
]
, and let the conditions of Theorem 3.1 (i) be satisfied.

Then the coefficients d(x, γ) and b(x, γ) defined by (2.12) and (2.13), satisfy condition
(2.10). Thus, FCb(C0(X),Γ) ⊂ D(LG), and for each F ∈ FCb(C0(X),Γ), LGF is given
by formula (1.1).

(ii) Let s ∈
[

1
2 , 1
]
, and let the conditions of Theorem 3.1 (ii) be satisfied. Further

assume that either

(3.25) ∀Λ ∈ B0(X) ∃Λ′ ∈ B0(X) ∀x ∈ Λ ∀y ∈ (Λ′)c : a(x, y) = 0,

or

(3.26)
∫

∆

k(x, x)2 ν(dx) <∞,

where ∆ is as in Theorem 3.1 (ii). Then the coefficient c(x, y, γ) defined by (2.14), satis-
fies condition (2.11). Thus, FCb(C0(X),Γ) ⊂ D(LK), and for each F ∈ FCb(C0(X),Γ),
LKF is given by formula (1.2).

Remark 3.3. If X = Rd and the function a is as in Remark 2.3, then condition (3.25)
means that the function ã has a compact support.

Proof of Theorem 3.2. We again prove only the part related to Kawasaki dynamics and
only in the case l = 1, omitting the upper index (1) from our notation. We first assume
that (3.25) is satisfied. Since the function a is bounded and satisfies (3.25), it suffices to
show that, for each Λ ∈ B0(X),

(3.27)
∫

Λ

γ(dx)
∫

Λ

ν(dy)r(x, γ \x)s−1r(y, γ \x)sχ{r>0}(x, γ \x)χ{r>0}(y, γ \x) ∈ L2(µ).

We note that, for s ∈
[

1
2 , 1
]
, 2s−1 ∈ [0, 1]. Therefore, by the Cauchy inequality, we have

(3.28)

∫
Γ

µ(dγ)
(∫

Λ

γ(dx) r(x, γ \ x)s−1χ{r>0}(x, γ \ x)

×
∫

Λ

ν(dy) r(y, γ \ x)sχ{r>0}(y, γ \ x)
)2

≤
∫

Γ

µ(dγ)
∫

Λ

γ(dx) r(x, γ \ x)2(s−1)χ{r>0}(x, γ \ x)

×
(∫

Λ

ν(dy) r(y, γ \ x)sχ{r>0}(y, γ \ x)
)2

γ(Λ)

=
∫

Γ

µ(dγ)
∫

Λ

ν(dx) r(x, γ)2s−1χ{r>0}(x, γ)

×
(∫

Λ

ν(dy)r(y, γ)sχ{r>0}(y, γ)
)2

(γ(Λ) + 1)

≤
∫

Γ

µ(dγ)
(∫

Λ

ν(dx)(1 + r(x, γ))
)3

(γ(Λ) + 1)

≤
(∫

Γ

µ(dγ)
(∫

Λ

ν(dx)(1 + r(x, γ))
)6)1/2(∫

Γ

µ(dγ)(γ(Λ) + 1)2
)1/2

.

By Lemma 3.1, we have, for each n ∈ N,
(3.29)∫

Γ

µ(dγ)
(∫

Λ

ν(dx) r(x, γ)
)n

=
∫

Λ

ν(dx1) · · ·
∫

Λ

ν(dxn)
∫

Γ

µ(dγ) r(x1, γ) · · · r(xn, γ)

≤
∫

Λ

ν(dx1) · · ·
∫

Λ

ν(dxn)‖r(x1, ·)‖Ln(µ) · · · ‖r(xn, ·)‖Ln(µ)

≤ (2n)!
2nn!

(∫
Λ

ν(dx)k(x, x)
)n

<∞
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Now, (3.27) follows from (3.28) and (3.29).
Next, we assume that (3.26) is satisfied. We fix Λ ∈ B0(X) and denote

u(x, y) := a(x, y)(χΛ(x) + χΛ(x)).

Then, by the Cauchy inequality,∫
Γ

µ(dγ)
(∫

X

γ(dx)
∫
X

ν(dy)u(x, y)r(x, γ \ x)s−1χ{r>0}(x, γ \ x)

× r(y, γ \ x)sχ{r>0}(y, γ \ x)
)2

≤
∫

Γ

µ(dγ)
∫
X

γ(dx)
∫
X

ν(dy)u(x, y)r(x, γ \ x)2(s−1)χ{r>0}(x, γ \ x)

× r(y, γ \ x)2sχ{r>0}(y, γ \ x)
∫
X

γ(dx′)
∫
X

ν(dy′)u(x′, y′)

=
∫

Γ

µ(dγ)
∫
X

ν(dx)
∫
X

ν(dy)u(x, y)r(x, γ)2s−1χ{r>0}(x, γ)

× r(y, γ)2sχ{r>0}(y, γ)
∫
X

(γ + εx)(dx′)
∫
X

ν(dy′)u(x′, y′)

≤
∫

Γ

µ(dγ)
∫
X

ν(dx)
∫
X

ν(dy)u(x, y)(1 + r(x, γ))(1 + r(y, γ)2

×
(∫

X

γ(dx′)
∫
X

ν(dy′)u(x′, y′) +
∫
X

ν(dy′)u(x, y′)
)
.

By (2.15), it suffices to prove that∫
Γ

µ(dγ)
(∫

X

ν(dx)
∫
X

ν(dy)u(x, y)(1 + r(x, γ))(1 + r(y, γ)2)
)2

<∞,(3.30) ∫
Γ

µ(dγ)
(∫

X

γ(dx)
∫
X

ν(dy)u(x, y)
)2

<∞.(3.31)

We first to prove (3.31). We have, by Proposition 3.2,∫
Γ

(∫
X

γ(dx)
∫
X

ν(dy)u(x, y)
)2

=
∫
X

ν(dy)
∫
X

ν(dy′)
∫

Γ

µ(dγ)
∫
X

γ(dx)
∫
X

γ(dx′)u(x, y)u(x′, y′)

=
∫
X

ν(dy)
∫
X

ν(dy′)
∫

Γ

µ(dγ)
(∫

X

γ(dx)u(x, y)u(x, y′)

+
∫
X

γ(dx)
∫
X

(γ − εx)(dx′)u(x, y)u(x′, y′)
)

=
∫
X

ν(dy)
∫
X

ν(dy′)
(∫

X

ν(dx) k(x, x)u(x, y)u(x, y′)

+
∫
X

ν(dx)
∫
X

ν(dx′)
(1

2
k(x, x′)2 + k(x, x)k(x′, x′)

)
u(x, y)u(x′, y′)

)
≤
∫
X

ν(dy)
∫
X

ν(dy′)
(∫

X

ν(dx) k(x, x)u(x, y)u(x, y′)

+
∫
X

ν(dx)
∫
X

ν(dx′)
3
2
k(x, x)k(x′, x′)u(x, y)u(x′, y′)

)
=
∫
X

ν(dy)
∫
X

ν(dy′)
∫
X

ν(dx) k(x, x)u(x, y)u(x, y′)
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+
3
2

(∫
X

ν(dy)
∫
X

ν(dx) k(x, x)u(x, y)
)2

≤
∫

∆

ν(dx) k(x, x)
(∫

X

ν(dy)u(x, y)
)2

+ C7

∫
X

ν(dy)
∫
X

ν(dy′)
∫
X

ν(dx)u(x, y)u(x, y′)

+
3
2

(∫
∆

ν(dx) k(x, x)
∫
X

ν(dy)u(x, y) + C7

∫
X

ν(dy)
∫
X

ν(dx)u(x, y)
)2

<∞.

Next, we prove (3.30). By Lemma 3.1 and (3.26), we have∫
Γ

µ(dγ)
(∫

X

ν(dx)
∫
X

ν(dy)u(x, y)(1 + r(x, γ))(1 + r(y, γ)2)
)2

=
∫
X

ν(dx)
∫
X

ν(dx′)
∫
X

ν(dy)
∫
X

ν(dy′)u(x, y)u(x′, y′)

×
∫

Γ

µ(dγ)(1 + r(x, γ))(1 + r(x′, γ))(1 + r(y, γ)2)(1 + r(y′, γ)2)

≤
∫
X

ν(dx)
∫
X

ν(dx′)
∫
X

ν(dy)
∫
X

ν(dy′)u(x, y)u(x′, y′)
(
1 + ‖r(x, ·)‖L4(µ)

)
×
(
1 + ‖r(x′, ·)‖L4(µ)

) (
1 + ‖r(y, ·)2‖L4(µ)

) (
1 + ‖r(y′, ·)2‖L4(µ)

)
≤ C8

(∫
X

ν(dx)
∫
X

ν(dy)u(x, y)(1 + k(x, x))(1 + k(y, y)2)
)2

<∞.

Thus, the theorem is proved. �

4. Diffusion approximation

¿From now on, we set X = Rd, d ∈ N, and ν to be Lebesgue measure. We will show
that, under an appropriate scaling, the Dirichlet form of the Kawasaki dynamics con-
verges to a Dirichlet form which identifies a diffusion process on Γ having a permanental
point process µ(l) as a symmetrizing measure. The way we scale the Kawasaki dynamics
will be similar to the ansatz of [15].

We denote by FC∞b (C∞0 (Rd),Γ) the space of all functions of the form (2.6) where
N ∈ N, ϕ1, . . . , ϕN ∈ C∞0 (Rd) and g ∈ C∞b (RN ). Here, C∞0 (Rd) denotes the space of
smooth functions on Rd with compact support, and C∞b (RN ) denotes the space of all
smooth bounded functions on RN whose all derivatives are bounded. Clearly,

FC∞b (C∞0 (Rd),Γ) ⊂ FCb(C0(Rd),Γ),

and the set FC∞b (C∞0 (Rd),Γ) is a core for the Dirichlet form (EK, D(EK)).
We fix s = 1/2. Let us assume that the function a(x, y) is as in Remark 2.3. Thus,

the coefficient c(x, y, γ) has the form

(4.1) c(x, y, γ) = a(x− y)r(x, γ)−1/2r(y, γ)1/2χ{r>0}(x, γ)χ{r>0}(y, γ).

Note that y − x describes the change of the position of a particle which hops from x to
y. We now scale the function a as follows: for each ε > 0, we denote

(4.2) aε(x) := ε−d−2a(x/ε), x ∈ Rd.

The Dirichlet form (EK, D(EK)) which corresponds to the choice of function a as in (4.2)
will be denoted by (Eε, D(Eε)).

Theorem 4.1. Assume that the function a has compact support, and the value a(x) only
depends on |x|, i.e., a(x) = ã(|x|) for some function ã : [0,∞) → R. Further assume
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that the function κ(x, y) has the form κ(x− y) for some κ : Rd → C, and

(4.3) lim
y→0

∫
Rd

(κ(x)− κ(x+ y))2 dx = 0.

For each l ∈ N, define a bilinear form (E0,FC∞b (C∞0 (Rd),Γ)) by

(4.4) E0(F,G) := c

∫
Γ

µ(l)(dγ)
∫

Rd

dx r(x, γ)〈∇xF (γ ∪ x),∇xG(γ ∪ x)〉.

Here

c :=
1
2

∫
Rd

a(x)x2
1 dx

(x1 denoting the first coordinate of x ∈ Rd), ∇x denotes the gradient in the x variable,
and 〈·, ·〉 stands for the scalar product in Rd. Then, for any F,G ∈ FC∞b (C∞0 (Rd),Γ),

Eε(F,G)→ E0(F,G) as ε→ 0.

Remark 4.1. Assume that the function κ is differentiable on Rd. Denote

K(x, δ) := sup
y∈B(x,δ)

|∇κ(y)|, x ∈ Rd, δ > 0.

Here B(x, δ) denotes the closed ball in Rd centered at x and of radius δ. Assume that,
for some δ > 0,

(4.5) K(·, δ) ∈ L2(Rd, dx).

Then condition (4.3) is clearly satisfied. Note that condition (4.5) is slightly stronger
than the condition |∇κ| ∈ L2(Rd, dx).

Proof of Theorem 4.1. Again we will only present the proof in the case l = 1, omitting
the upper index (1). We start with the following

Lemma 4.1. Fix any Λ ∈ B0(Rd) and α ∈ (0, 1]. Then, under the conditions of Theo-
rem 4.1,

r(x+ εy, γ)α → r(x, γ)α in L2(Γ× Λ× Rd, µ(dγ) dx dy a(y)) as ε→ 0.

Proof. We first prove the statement for α = 1. Thus, equivalently we have to prove that

(4.6) r(x+ εy, γ)→ r(x, γ) in L2(Ω×Γ×Λ×Rd, P̃(dω, dγ) dx dy a(y)) as ε→ 0.

We have, using Jensen’s inequality for conditional expectation,

(4.7)

∫
Λ

dx

∫
Rd

dy a(y)
∫

Ω×Γ

P̃(dω, dγ) (r(x+ εy)− r(x, γ))2

=
∫

Λ

dx

∫
Rd

dy a(y)
∫

Ω×Γ

P̃(dω, dγ)Ẽ(Y (x+ εy)2 − Y (x)2 | F)2

≤
∫

Λ

dx

∫
Rd

dy a(y)
∫

Ω×Γ

P̃(dω, dγ)(Y (x+ εy)2 − Y (x)2)2

=
∫

Λ

dx

∫
Rd

dy a(y)
∫

Ω

dP (Y (x+ εy)4 + Y (x)4 − 2Y (x+ εy)2Y (x)2).
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Using the formula for moments of a Gaussian measure, we have

(4.8)

∫
Ω

Y (x+ εy)4 dP

= 3
(∫

Rd

κ(x+ εy − u)2 du
)2

= 3
(∫

Rd

κ(x− u)2 du
)2

=
∫

Ω

Y (x)4 dP.

Analogously, using condition (4.3) and the dominated convergence theorem, we get

(4.9)

∫
Λ

dx

∫
Rd

dy a(y)
∫

Ω

dPY (x+ εy)2Y (x)2

=
∫

Λ

dx

∫
Rd

dy a(y)
[ ∫

Rd

κ(x+ εy − u)2 du ·
∫

Rd

κ(x− u′)2 du′

+ 2
(∫

Rd

κ(x+ εy − u)κ(x− u) du
)2
]

→
∫

Λ

dx

∫
Rd

dy a(y)
∫

Ω

dPY (x)4 as ε→ 0.

By (4.7)–(4.9), statement (4.6) follows.
To prove the result for α ∈ (0, 1), it is now sufficient to show the following
Claim. Let (A,A,m) be a measure space and let m(A) <∞. Let fε ∈ L2(m), fε ≥ 0,

ε ∈ [−1, 1], and let fε → f0 in L2(m) as ε → 0. Then, for each α ∈ (0, 1), fαε → fα0 in
L2(m) as ε→ 0.

By e.g. [1, Theorems 21.2 and 21.4], fε → f0 in L2(m) implies that
(i) fε → f0 in measure;

(ii) sup
ε∈[−1,1]

∫
f2
ε dm <∞;

(iii) For each θ > 0 there exist h ∈ L1(m) and δ > 0 such that, for all 0 < |ε| ≤ 1
and for each A ∈ A ∫

A

h dm ≤ δ ⇒
∫
A

f2
ε dm ≤ θ.

Hence, for α ∈ (0, 1), we get
a) fαε → fα0 in measure;

b) sup
ε∈[−1,1]

∫
f2α
ε dm ≤ sup

ε∈[−1,1]

∫
(1 + f2

ε ) dm <∞;

c) Let θ, h, and δ be as in (iii). Set h′ := h+ δ
θ . Clearly, h ∈ L1(m). Assume that,

for some A ∈ A,
∫
A
h′ dm ≤ δ. Hence

∫
A
h dm ≤ δ, and therefore

∫
A
f2
ε dm ≤ δ

for all 0 < |ε| ≤ 1. Furthermore, we get
∫
A
δ
θ dm ≤ δ, and therefore m(A) ≤ θ.

Now ∫
A

f2α
ε dm ≤

∫
A

(1 + f2
ε ) dm ≤ 2θ.

Applying again [1, Theorems 21.2 and 21.4], we conclude the claim. �

Fix any F ∈ FC∞b (C∞0 (Rd),Γ). We have

Eε(F, F )

=
1
2

∫
Γ

µ(dγ)
∫

Rd

dx

∫
Rd

dy ε−d−2a((x− y)/ε)r(x, γ)1/2r(y, γ)1/2(F (γ ∪ x)− F (γ ∪ y))2
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=
1
2

∫
Γ

µ(dγ)
∫

Rd

dx

∫
Rd

dy a(y)r(x+ εy, γ)1/2r(x, γ)1/2

(
F (γ ∪ {x+ εy})− F (γ ∪ x)

ε

)2

.

Assume that 0 < |ε| ≤ 1. Noting that the function F is local (i.e., there exists ∆ ∈ B0(Rd)
such that F (γ) = F (γ∆) for all γ ∈ Γ) and that the function a has a compact support,
we conclude that there exists Λ ∈ B0(Rd) such that

(4.10)

Eε(F, F ) =
∫

Γ

µ(dγ)
∫

Λ

dx

∫
Rd

dy a(y)r(x+ εy, γ)1/2r(x, γ)1/2

×
(
F (γ ∪ {x+ εy})− F (γ ∪ x)

ε

)2

.

By the dominated convergence theorem

(4.11) r(x, γ)1/2

(
F (γ ∪ {x+ εy})− F (γ ∪ x)

ε

)2

→ r(x, γ)1/2〈∇xF (γ ∪ x), y〉2

in L2(Γ × Λ × Rd, µ(dγ) dx dy a(y)) as ε → 0. By Lemma 4.1 with α = 1/2, (4.10) and
(4.11)

(4.12) Eε(F, F )→ 1
2

∫
Γ

µ(dγ)
∫

Λ

dx

∫
Rd

dy a(y)r(x, γ)〈∇xF (γ ∪ x), y〉2.

Since a(y) = ã(|y|), for any i, j ∈ {1, . . . , d}, i 6= j, we have∫
Rd

a(y)yiyj dy = 0

and

c =
1
2

∫
Rd

a(y)y2
i dy, i = 1, . . . , d.

Therefore, by (4.12),

Eε(F, F )→ c

∫
Γ

µ(dγ)
∫

Rd

dx r(x, γ)|∇xF (γ ∪ x)|2.

From here the theorem follows by the polarization identity. �

We will now show that the limiting form (E0,FC∞b (C∞0 (Rd),Γ)) is closable and its
closure identifies a diffusion process.

In what follows, we will assume that the conditions of Theorem 4.1 are satisfied. We
have

k(x, y) =
∫

Rd

κ(x− u)κ(y − u) du

=
∫

Rd

κ(u− y)κ(u− x) du =
∫

Rd

κ(u)κ(u+ y − x) du.

Hence, by (4.3), the function k(x, y) is continuous on (Rd)2. Thus, by Remark 3.1,
(Y (x))x∈X is a Gaussian random field and formula (3.6) holds for all (x, y) ∈ (Rd)2.

Consider the semimetric

(4.13)

D(x, y) : =
1
2

(∫
Ω

(Y (x)− Y (y))2 dP
)1/2

=
1
2
(
k(x, x) + k(y, y)− 2k(x, y)

)1/2
=
(∫

Rd

κ(u)
(
κ(u)− κ(u+ y − x)

)
du
)1/2

, x, y ∈ Rd.

The associated metric entropy H(D, δ) is defined as H(D, δ) := logN(D, δ), where
N(D, δ) is the minimal number of points in a δ-net in B(0, 1) = {x ∈ Rd | |x| ≤ 1}
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with respect to the semimetric D, i.e., points xi such that the open balls centered at xi
and of radius δ (with respect to D) cover B(0, 1). The expression

J(D) :=
∫ 1

0

√
H(D, δ) dδ

is called the Dudley integral. The following result holds, see e.g. [4, Corollary 7.1.4] and
the references therein.

Theorem 4.2. Assume that J(D) < ∞. Then the Gaussian random field (Y (x))x∈Rd

has a continuous modification.

Remark 4.2. Let κ be as in Remark 4.1. Then, by (4.13), for any x, y ∈ B(0, 1)

D(x, y)2 ≤ ‖κ(·)‖L2(Rd,dx)

(∫
Rd

(κ(u)− κ(u+ y − x))2 du
)1/2

≤ ‖κ(·)‖L2(Rd,dx)‖K(·, 2)‖L2(Rd,dx)|y − x|,

where we assumed thatK(·, 2) ∈ L2(Rd, dx). Then J(D) <∞, see e.g. [4, Example 7.1.5].

Denote by Γ̈ the space of all multiple configurations in Rd. Thus, Γ̈ is the set of all
Radon Z+∪{+∞}-valued measures on Rd, In particular, Γ ⊂ Γ̈. Analogously to the case
of Γ, we define the vague topology on Γ̈ and the corresponding Borel σ-algebra B(Γ̈).

Theorem 4.3. Let κ(x, y) be of the form κ(x − y) for some κ ∈ L2(Rd, dx). Let
J(D) <∞. Let l ∈ N and c > 0. Then

(i) The bilinear form (E0,FC∞b (C∞0 (Rd),Γ)) defined by (4.4) is closable on L2(Γ, µ(l))
and its closure will be denoted by (E0, D(E0)).

(ii) There exists a conservative diffusion process

M0 =
(

Ω0,F0, (F0
t )t≥0, (Θ0

t )t≥0, (X0(t))t≥0, (P 0
γ )γ∈Γ̈

)
on Γ̈ which is properly associated with (E0, D(E0)). In particular, M0 is µ(l)-symmetric
and has µ(l) as invariant measure. In the case d ≥ 2, the set Γ̈ \ Γ is E0-exceptional, so
that Γ̈ may be replaced by with Γ in the above statement.

Proof. We again discuss only the case l = 1, omitting the upper index (1). By (4.4), for
any F,G ∈ FC∞b (C∞0 (Rd),Γ),

(4.14)

E0(F,G) = c

∫
Ω×Γ

P̃(dω, dγ)
∫

Rd

dx Ẽ(Y (x, ω)2 | F)〈∇xF (γ ∪ x),∇xG(γ ∪ x)〉

=
∫

Ω×Γ

P̃(dω, dγ)
∫

Rd

dxY (x, ω)2

× 〈∇x(F (γ ∪ x)− F (γ)),∇x(G(γ ∪ x)−G(γ))〉.

Fix (ω, γ) ∈ Ω× Γ. Denote

f(x) := F (γ ∪ x)− F (γ), g(x) := G(γ ∪ x)−G(γ).

Clearly, f, g ∈ C∞0 (Rd). In view of Theorem 4.2, Y (x, ω)2 is a continuous function of
x ∈ Rd. Hence, by [6, Theorem 6.2], the bilinear form

E(f, g) :=
∫

Rd

〈∇f(x),∇g(x)〉Y (x, ω)2dx, f, g ∈ C∞0 (Rd),

is closable on L2(Rd, |Y (x, ω)|2 dx). Now the closability of (E0,FC∞b (C∞0 (Rd),Γ)) on
L2(Γ, µ(l)) follows by a straightforward generalization of the proof of [6, Theorem 6.3].
Part (ii) of the theorem can be shown completely analogously to [25, 29], see also [20]. �
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Remark 4.3. Heuristically, the generator of (E0, D(E0)) has the form

(LF )(γ) =
∑
x∈γ

(
∆xF (γ) +

〈∇xr(x, γ \ x)
r(x, γ \ x)

,∇xF (γ)
〉)
.

Here, for x ∈ γ, ∇xF (γ) := ∇yF (γ \x∪ y)
∣∣
y=x

and analogously ∆x is defined. However,
we should not expect that r(x, γ) is differentiable in x.
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