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THE FADDEEV EQUATION AND ESSENTIAL SPECTRUM OF A
HAMILTONIAN IN FOCK SPACE

MUKHIDDIN I. MUMINOV AND TULKIN H. RASULOV

ABSTRACT. A Hamiltonian (model operator) H associated to a quantum system
describing three particles in interaction, without conservation of the number of par-
ticles, is considered. The Faddeev type system of equations for eigenvectors of H is
constructed. The essential spectrum of H is described by the spectrum of the channel
operator.

1. INTRODUCTION

The essential spectrum of the systems with a fixed number of particles has been studied
in many articles, see for example, for the continuous case [16, 19] and for the lattice case
[6, 11, 12].

In quantum field theory, condensed matter physics and the theory of chemical reactions
there naturally occur quantum systems with non conserved number of particles. Often,
the number of particles can be arbitrary large as in cases involving photons (see e.g. [3]),
in other cases, such as scattering of spin waves on defects, scattering massive particles and
chemical reactions, there are only participants at any given time, though their number
can change.

Recall that the study of systems describing N (1 < N < oo) particles in interaction,
without conservation of the number of the particles, is reduced to the investigation of
the spectral properties of self-adjoint operators, acting in the cut subspace HN) of Fock
space, consisting of n < N particles [4, 5, 9, 10, 17, 20].

The perturbation problem of an operator (the Friedrichs model), with point and con-
tinuous spectrum (which acts in H(Q)) has played a considerable role in the study of
spectral problems connected to the quantum theory of fields [4].

A two level atom coupled to the radiation field was considered in [5] and using a
Mourre type estimate, a complete spectral characterization of the spin boson Hamilto-
nian was studied for a sufficiently small but nonzero coupling. In [17] the quantum
systems with non conserved but finite number of particles was considered, and for such
systems, geometric and commutator techniques were developed, which were used to find
the location of the spectrum, to prove the absence of singular continuous spectrum and
identify accumulation points of the discrete spectrum.

In the present paper we consider the model operator H associated to a system de-
scribing three particles in interaction without conservation of the number of particles,
acting in H®), which is a lattice analog of the spin-boson Hamiltonian [5, 9]. Note that
this operator was not studied before and can be considered as a generalization of the
above models studied in [1, 2, 7, 8, 13, 14, 15, 18].
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The Faddeev equation and the location of the essential spectrum for the similar to H
model operators acting in symmetric and non symmetric Fock spaces have been studied
in [15, 18] in the case when the operators V;, i = 1,2 (defined below) are partial inte-
gral operators generated kernels. But the techniques developed in those papers are not
applicable to the more general case considered in the present paper.

We obtain the following results:

(i) The Faddeev equation for the eigenvectors of H is constructed.

(ii) We describe the location of the essential spectrum of the operator H in terms of
the spectrum of the channel operator H.

The paper is organized as follows. In Section 2, the model operator H is introduced
and the main results are stated. In Section 3 the spectrum of H is described in terms of
the spectrum of a family of generalized Friedrichs models, and some auxiliary statements
that play an important role in the proof of the main results of the paper are proved. In
Section 4 we obtain an analogue of the Faddeev type system of integral equations for the
eigenfunctions of H (Theorem 2.1) and prove that the essential spectrum of H coincides
with the spectrum of the channel operator H (Theorem 2.3). In section 5 we give an
example of calculation of the essential spectrum of H, which shows the efficiency of the
proposed method of calculation of the essential spectrum.

Throughout this paper we adopt the following convention. Denote by T” the v-
dimensional torus, the cube (—m, 7]” with appropriately identified sides. The torus T"
will always be considered as an abelian group with respect to the addition and multipli-
cation by real numbers regarded as operations on the v-dimensional space R”¥ modulo
(27Z)¥, where Z is the one-dimensional lattice.

2. THE MODEL OPERATOR AND MAIN RESULTS

Let us introduce some notations used in this work. Let C be the field of complex
numbers, Lo(T¥) the Hilbert space of square integrable (complex) functions defined on
T” and L3((T")?) the Hilbert space of square integrable (complex) symmetric functions
defined on (T")2.

Denote by H the direct sum of spaces Ho = C, Hy = Lo(T¥) and Ho = L5((T")?),
that is, H = Ho ® H1 ® Hs.

The Hilbert space H is called the "three-particle cut subspace” of the Fock space.

Let H;; be annihilation (creation) operators [4] defined in the Fock space for ¢ < j
(i > 7). We note that in physics, an annihilation operator is an operator that lowers
the number of particles in a given state by one, a creation operator is an operator that
increases the number of particles in a given state by one, and it is the adjoint of the
annihilation operator.

In this paper we consider the case where the number of annihilations and creations of
the particles of the considering system equal to 1. It means that H;; = 0 for all |[i—j| > 1.
So, a model operator H associated to a system describing three particles in interaction,
without conservation of the number of particles, acts in the Hilbert space H as a matrix
operator

Hop Hor O
H = H10 Hll H12
0 Hy Hyp

Let its components H;; : H; — H;, 4,j = 0,1,2, be defined by the rule

v

(Hoofo)o = wofo, (Hoifi)o = / vo(s)fi(s)ds, (Hiofo)1(p) = vo(p)fo,

(Hi1f1)1(p) = wi(p) f1(p), (H12f2)1(p)=/ v1(s) f2(p, 5) ds,

v
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(Hor f1)2(p,0) = 5 (01(p)fo(a) + 01 (0) o (9):
Hos = HY, — Vi — Vo, (HY%f2)2(p, q) = wa(p, q) f2(p. q),
(mﬁanzj'wm@ﬁ@@w7(%ﬁmnwzj'w@@hm@w.

Here f; € H;, i = 0,1,2, wg is a real number, wq(:), v;(-), ¢ = 0,1, are real-valued
continuous functions on T¥, wa(+,-) and wvy(-,-) are real-valued continuous symmetric
functions on (T")2.

Under these assumptions the operator H is bounded and self-adjoint in H.

Set

v

m
Ho = Ho, Hy = Hq, Hy = LQ((TD)Q) and H"™™ = @ﬁ“ 0<n<m<2
=N
where Ly ((T?)?) is the Hilbert space of square integrable (complex) functions on (T%)2.
Throughout the paper we additionally assume that the operators V;, i = 1,2, acting
in the Hilbert space H, are positive and use this fact without comments. Denote by
Vi, i = 1,2, the positive square root of the operators V;, i = 1,2. Then the operators
Vi, i = 1,2, have form (see Lemma 3.2)

(‘N/lfQ)(qu):/ ﬁQ(p>s)f2(87Q)dS7 (V2f2)(p7q):/_ry 172(q78)f2(p78)d8,

f2 € Ho.

Here the kernel of V;, i = 1,2, is formally denoted by (-, -).
To formulate our main results we introduce the channel operator H acting in H(1:2)

by the following rule:
Ao Hyy % Hiysp
-\ 5 Hz(i) HY, — Vs

V2

(2.1)

v

with X -
(HS 1) (P, ) = vi(@) f1(p), f1 € Fo.
It is easy to show that the operator H is bounded and self-adjoint in H (2,
Let

m = min ws(p,q), M = max ws(p,q).
,min, 2(p, q) e 2(p, q)

For each z € C\ [m; M| we define the operator matrices A(z) and K(z) acting in the
Hilbert space H(®?) by

Aoo(Z) 0 O Koo(Z) KOl(Z) 0
A(Z) = 0 Au(z) Alg(Z) s K(Z) = Kl()(z) Ku(z) K12(2) y
0 A21(2) Agg(z) 0 Kgl(z’) KQQ(Z)

where the operators A4;;(z) : H; — H;, 4,7 = 0,1,2, are defined as

U2 S S
(Aoo(2)g0)o = go, (A11(2)g1)1(p) = (w1(p) —z— %/TV ujz(lp(z)d_z)m(p),

(@) = [ [ (o) duds,

v wa(p, s) — 2

mﬂ@mm@wlﬂiﬂ”w“$@m@x

2 Jpv wa(p,s) — z
(A22(2)92) (1 9) = 92(p, q) — (VaR5s(2)V2g2) (0, q)
and the operators K;;(z) : ﬂj — H;, i, = 0,1,2, are defined as

(Koo(2)g90)o = (wo — 2+ 1)go, Koi(2) = Ho1, Kio(z) =—Ho,
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v1(p) / v1(s)g1(s) ds

2 v wa(p,s) — z

(K11(2)g1)1(p) =

?

(Kra@an) = [ 2 [ ot ) dras

p,8) —z

v1(p) U2(s,9)91(s)
(K21(2)g1)2(p,q) = B [rv wa(p, 5) — 2 ds,
(K22(2)g2)2(p, q) = (VaR35(2)Viga) (0, 0),
where g; € H;, i = 0,1,2, and R3,(2) = (HS, — 2) 7! is the resolvent of the operator HY,.

We note that for each z € C\ [m; M] the operators K;;(z), i,j =0, 1,2, belong to the
Hilbert-Schmidt class and therefore K(z) is a compact operator.

Let o(H) be the spectrum of H. Since for any fixed z € C\ o(H) the operator
A(z) is bounded and invertible (see Lemma 3.6), for such z we can define the operator
T(z) = A7Y(2)K(2).

Now we give the main results of the paper.

The following theorem establishes a connection between eigenvalues of H and T'(z).

Theorem 2.1. A number z € C\ O'(I:[) s an eigenvalue of the operator H if and only
if the number A =1 is an eigenvalue of the operator T'(z).

Remark 2.2. We point out that the equation T'(z)g = g is an analogue of the Faddeev
type system of integral equations for eigenvectors of the operator H and it plays a crucial
role in our analysis of the spectrum of H.

The following theorem describes the essential spectrum of the operator H.
Theorem 2.3. The essential spectrum of H coincides with the spectrum of H.

Since the channel operator H has a more simple structure than H, Theorem 2.3 plays
an important role in the next investigations of the spectrum of H. We note that by
Lemma 3.4 (see Section 4) Theorem 2.3 describes the location of the essential spectrum
of H in terms of the spectrum of the channel operator H , where two-particle and three-
particle branches of this spectrum are separated.

3. SOME AUXILIARY STATEMENTS

In this section we describe the spectrum of the channel operator H. Using the de-
composition into direct operator integrals (see [16]) we reduce the study of the spectral
properties of the operator H to an investigation of the spectral properties of the family
of operators h(p), p € T, defined below. We also give some auxiliary statements that
allow us to prove the main results of the paper.

Let the operator v act in H; as

) = [ . fe)ds, fet.
Lemma 3.1. The operator v is positive and its positive square root v = v® has the form
(31) @@ = [ wle)f()ds. [t

Moreover, the function ¥s(-,-) is square integrable on (TV)2.

Proof. Since vy (-, ) is a continuous function on (T*)?, we have

/ |va(s, s)|ds < 0.
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The function v(-, -) is symmetric and hence the last inequality means that the operator v
belongs to the trace class. From the positivity of V;, i = 1,2, it follows that the operator
v is also positive. Therefore, every nontrivial eigenvalue Ay of v is positive. By the
Hilbert-Schmidt theorem we have

v= Z i (@ks )Pk
k

with >~ A\x < 0o, where ¢y, is the eigenfunction of the operator v corresponding to the

eigenvalue \;. Then
5=V Ak(r, e
k

Taking into account that ), Ay < co we obtain that ¥ is a Hilbert-Schmidt operator.
Therefore the kernel ¥s(+, -) of the integral operator ¥ is a square integrable function. [

Let I;, : = 0,1, 2, be an identity operator in H;, « = 0,1, 2.
Lemma 3.2. The positive square root of Vi, i = 1,2, has form (2.1).
Proof. The operators V;,i = 1,2, can be decomposed as
Vi=v®l, Vo=1I®uv.
By Lemma 3.1 the operator v is positive and its positive square root has form (3.1).

Now it is easy to check that Vl =0v® I and f/z =1 ®0. O

We now study the operator H that commutes with any multiplication operator U, by
a bounded function a(-) on T,

U ( 91(p) >( a(p)g1(p) ) < 9 ) c H12).
*\ 92(p.q) ap)g2(p,a) )7\ 92
Therefore the decomposition of the space H(12) into the direct integral (see XIII.16
in [16])
HD) = / o HOVdp
yields a decomposition into the direct integral
(3.2) H= | @&h(p)dp,
Tl/

where the family of the bounded and self-adjoint operators h(p), p € T, acts in HOD
as

63 = ("0 i)

with the entries

(hoo(p) fo)o = wi(p)fo, (hoifi)o = v1(s) f1(s) ds,

1
V2 Jre

<mmm@=§?mmhu&@ﬁmw=mm@mw

Let the operator ho(p), p € T, act in H(®D as

%@:<8h&m)’pev'

The perturbation h(p) — ho(p), p € T¥, of the operator ho(p), p € T", is a com-
pact operator. Therefore in accordance with the invariance of the essential spectrum
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under compact perturbations, the essential spectrum oess(h(p)) of h(p), p € TV, fills the
following interval of the real axis:

ess(h(p)) = [m(p); M(p)],
where the numbers m(p) and M (p) are defined by

m(p) = min wa(p,q),  M(p) = max w(p, q).

For any fixed p € T" we define the matrix operator Aq(p; z) acting in H(%1) by

(34 Aofpiz) = (B AP e O\ o)

where

(Aoo(p; 2)g0)0 = (wl(P) —z = 1[11 _vils)ds 1)907

2 Jpv wa(p, s) — 2
(Ao1(p; 2)g1)o 2/ vu(s) /V 0o (t, s)g1(t) dtds,

Tv w?(pvs) -z

(ol dan(a) = 5 [ 2D o,
(A1 (p;2)91)1(q) = —/

'DQ (q, t) ~
o wa(pr ) — 2 / 0a(t, 8)g1(s) dsdt.

We note that for any fixed p € T” and z € C\ 0ess(h(p)) the operator Ag(p; z) belongs
to the trace class. Therefore (see [16]) the determinant det[E + Ag(p; z)] of the operator
E + Ap(p; z) is well defined, where E = diag{Ip, I1}.

The following lemma establishes a connection between the eigenvalues of h(p), p € TV,
and the zeroes of the function det[E + Ag(p;-)], p € T".

Lemma 3.3. A number z € C\ gess(h(p)) is an eigenvalue of the operator h(p), p € TV,
if and only if det[E + Ao(p; z)] = 0.
Proof. Let the number z € C\ 0ess(h(p)) be an eigenvalue of the operator h(p), p € T,

, P
and f = (fo, f1) € H® be the corresponding eigenvector, i.e., the equation h(p)f = zf
or the system of equations

1
(wi(p) = 2)fo+ —= vi(s)fi(s)ds =0,
(3.5) ’ */5/

S5+ (wap.) = 50~ [ enla)fi(s)ds =0

has a nontrivial solution f = (fo, f1) € H(OV,
Since z € C\ 0ess(h(p)) from the second equation of system (3.5) we find

(0.f1)(q) 1 vi(g)fo

e MO b0 =2 Vamlng -
where the operator ¢ is defined by (3.1) and
(3.7) fi(g) = (8/1)(q)-

Substituting the expression (3.6) for fi into the first equation of system (3.5) and the
equality (3.7), we get that the system of equations (3.5) has a nontrivial solution if and
only if the system of equations

(w3 [ e gy [0 n@ads o

7 o w2<p’8)_zd fo+fi(a) A wg(p,t)—z/, 5(t,8) f1(s) dsdt =0
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or the equation
E® 4 Ao(p;2)® =0, &= (fo,f1) € HOV
has a nontrivial solution, i.e., det[E + Ag(p;z)] = 0. O

By Lemma 3.3 the number z belongs to the discrete spectrum of h(p) if and only if
det[E + Ay(p;z)] = 0. The following equality immediately follows:

(3.8) odisc(R(p)) = {z € C\ 0ess(h(p)) : det[E 4+ Ap(p;2)] =0}, peT”.
Lemma 3.4. For the spectrum U(H’) of H the equality
o(H) = | oaisc(h(p)) U [m; M]
peTY
holds.

Proof. The assertion of this lemma follows from the representation (3.2), the equalities
o(h(p)) = [m(p); M(p)] U oaisc(h(p)), | [m(p); M(p)] = [m; M],
peTY

and the theorem on the spectrum of decomposable operators (see [16]). O
Now we introduce the new subsets of the essential spectrum of H.

Definition 3.5. The sets otwo(H) = UpeTV odisc(h(p)) and Oinree(H) = [m; M| are
called two-particle and three-particle branches of the essential spectrum of H, respec-
tively.

Lemma 3.6. The operator A(z), z € C\ Othree(H), is bounded and invertible if and only
if z€ C\ o(H).

Proof. Let us introduce the operator matrix Ag(z) acting in H1?) as
All(Z) Alg (Z)
A = .
O(Z) ( Agl(z) AQQ(Z)
By the definition of A(z) and Ag(z) we have that the operator A(z) is invertible if and
only if the operator Ag(z) is invertible.
In analogy with the operator H one can give the decomposition

(39 Aoe) = [ 0lB+ Ao(pi2)ldp,

where the operator Ag(p;z) is defined by (3.4).
By Lemmas 3.3 and 3.4 for any fixed p € T” and z € C\ o(H) we have det[E +

Ao(p; )] # 0. Therefore, for any fixed z € C\ o(H) the operator Ag(z) is invertible. The
converse trivially follows from the decomposition (3.9). O

4. PROOF OF THE MAIN RESULTS

In this section we prove Theorems 2.1 and 2.3.

Proof of Theorem 2.1. Let z € C\ o(H) be an eigenvalue of the operator H and
f = (fo, f1, f2) € H be the corresponding eigenvector, that is, the equation Hf = zf or
the system of equations

((Hoo — 2I0) fo)o + (Ho1 f1)o = 0,

(4.1) (Hiofo)1(p) + (Hi1 — 2z11) f1)1(p) + (Hi2f2)1(p) = 0,
(Ha1f1)2(p,q) + ((Haz — 2I2) f2)2(p,q) =0
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have a nontrivial solution f = (fo, f1,f2) € H. Since 2z € Othree(H), from the third
equation of the system (4.1) for fo, we have

(4.2) fo(p,q) = (R32(2)V1 f2) (0, @) + (R32(2)Va fo) (P, q) — (Ro(2) Ho1 f1)(ps @)
Let
(4.3) F2(p.q) = (Vafo) (p. 9)-
Then s o
(Vaf2)(p,a) = (Vi f2)(q,p).
Therefore the equality (4.2) has form
(44)  folp,q) = (R%(2)Vi f2) (0, q) + (R95(2)Vafo) (P, @) — (RS2(2) Har f1) (P, q)-

Substituting the expression (4.4) for fo into the system of equations (4.1) and the
equality (4.3) we obtain that the system of equations

fo=(wo =2+ 1o+ [ )l ds

(i -z—3 [ SO g [ 0O [0 das

v wa(p,s) — z (p,s) — =z

=—vo(P)fo+/ L@/ﬁz(p,t)ﬁ(t,s)dtds-s-vl(p)/ U1(5)f1(s)ds7

v w2(p,s) — 2 2 v wa(p,s) — 2

1 / Ba (s, @)vi(s) dsfi(p) + f2(p,a) — (VaR3%(2)Vafo) (p, q)

2 w2 (pa S) -z
> 5T vi(p) [ v2(s,9)f1(s)
= (VaR3,(2)V; .q) — d
(R ()T g ~ 22 [ 2D g,
has a nontrivial solution if and only if the system of equations (4.1) has a nontrivial
solution.
The system of equations (4.5) can be written in the following form:

A2)® = K(2)®, ® = (fo, f1, f2) € HO?.

By Lemma 3.6 for each z € C\ o(H) the operator A(z) is invertible and hence the
equation ® = A71(2)K(2)® or ® = T(2)® has a nontrivial solution if and only if the
system of equations (4.5) has a nontrivial solution. O

Now applying the Weyl criterion and Theorem 2.1 we prove Theorem 2.3.

Proof of Theorem 2.3. The inclusion o¢pree(H) C 0ess(H) can be proved quite similarly
to the corresponding inclusion of [7].

We prove that oiywo(H) C Gess(H). Let 20 € otwo(H) be an arbitrary point.

Two cases are possible,

20 € Uthree(H) or 2o ¢ gthree(H)~
If 29 € Othree(H), then zg € 0ess(H). Let 2o € Othree(H), but 2o € otwo(H). Then by
Lemma 3.6 the operator A(zg) isn’t invertible. It means that there exists an orthonormal

system (™ = (0, fl(n)7 A;n)) such that [|A(20)®™ |32 — 0 as n — +oo.
We choose a sequence of orthogonal vector-functions {f(™} as
0
=1 e
15" w.q)

where

£ (0.0) = (B (20) Vi s (p, @) + (RO (20)Vafs™) (0, @) — (RO (20) Har f{™) (. 0).
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We consider (H — z)f(™ and estimate its norm as
G = 20) £ = I = 20) £+ 17 = Vo i = (15 = Vol
< lI(A(z0) = K(20)2" By + 157 = Vol |15,
Let
((A(z0) = K(20))2™)o
(A(z0) = K (20))2™ = | ((A(20) — K(20))&™);
((A(z0) — K (20)) )2
Since the operator K(z) is compact, we have ||K(z9)®™)|| 0.2 — 0 as n — -+oo.
Therefore, from ||A(z9)®™)||3y02 — 0 as n — +oo it follows that

[1(A(20) = K (20)) 2™ |[300.2
(4.6) = I((Alz0) = K (20))2")ol 57, + [1((A(20) — K (20))2" )l I3,
+ 11((A(z0) — K (20)2™)2|Z;, < [|A(20)2"™ |50 + 1K (20)2™ |30 — O

as n — +oo. It follows that ||((A(zo) — K(zo))fb("))iHH — 0,7 =0,1,2, as n — oo.
Therefore from the equality

1((A(20) — K (20))2™)allz, = 13" — Vafs™ Iz,

and the relation (4.6) we have that ||(H — 2)f™ || — 0 as n — +oo. This implies that
20 € Oess(H). Since the point 2y € Gtwo(f{ ) is arb1trary, it follows that UtWO(H ) C Oess(H).
Now we prove the inclusion oess(H) C o(H). Since for each z € C\ o(H) the operator
K (z) is compact and A~1(2) is bounded, we have that f(z) = A~!(2)K(z) is a compact-
valued analytic function in C\o(H). From the self-adjointness of H and Theorem 2.1 it
follows that the operator (I — f(z))~! exists for all Imz # 0, where I is the identical
operator in H(®?). In accordance with the analytic Fredholm theorem, we conclude that
the set
o(H)\ o(H) = { : det(T - f(2)) = 0}
is discrete. Thus o(H) \ 0(H) C ogisc(H) = 0(H) \ 0ess(H). Therefore the inclusion
Oess(H) C o(H) holds. O

5. EXAMPLE

In this section we consider the case v = 3 and calculate the essential spectrum of
the operator H in the case where wy is an arbitrary real number, wq(-), v;(+), i = 0,1,
are arbitrary real-valued continuous functions on T3, ws(-,-) is an arbitrary real-valued
continuous symmetric function on (T3)? and the function vs(-,-) has the form

(5.1) va(p,q) =D _cos(pi — i), p=(p1,p2ps), 4= (q1,02,q3) € T°.

In this case for the kernel 09 (-, ) of the integral operator © defined by (3.1) the equality
Ba(p, q) = (473) " tva(p, q) holds.
Additionally we also assume that the function v;(-) is even on T? and the function
ws (-, ) is even in each coordinate on T*, for example,
3

vi(p) = cospi, p=(p1,p2ps) €T,
(5.2) , =l

w2(p7Q) :Z(Q*COSI%*COS%‘), p= (p13p23p3)5 q= (‘1171127(13) ETS'
=1
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From Theorem 2.3 and Lemma 3.4 it follows that in the study of the essential spectrum
of H the crucial role is played by the discrete spectrum of h(p) defined by (3.3).
By the equality (3.8) for the study ogisc(h(p)) we construct the determinant det[E +

Ao(p;2)].

Let the number z € C \ gess(h(p)) be an eigenvalue of the operator h(p), p € T3 and
f = (fo, f1) € H®Y be the corresponding eigenvector, i.e., the equation h(p)f = zf or
the system of equations

(wi1(p) — 2)fo + —= /U1 )fi1(s)ds =0,
(5.3)

%M(Q)fﬁ-(wz(p’)—Zfl /Z s~ a:)fi(s)ds = 0

has a nontrivial solution f = (fo, f1) € H©.
Denote

(5.4) d; = / coss; fi(s)ds, e = / sin s; f1(s) ds.
TS T3
Since z € C \ gess(h(p)) from the second equation of system (5.3) we find

E?:1(di cosgi +esing) 1 vi(g)fo
w2 (p, q) — 2 V2 ws(p,q) —

For any p € T? we define the following continuous functions in C\ [m(p), M (p)] by

coss; coss;ds . .
ii(ps2) =— —_—, 4,7 =12,3,
it == [ g

.2

sin” s; ds 1 cos s; v1(s )ds )

bi 3R :/ ; < y Z:1a2a35
W= fe o) — 2 P T s wnls) -

1 ds
Do(p; 2) :w1(p)—2—§/T3 wg(lp(s))—z’

Do(p;z) ca(piz)  ca(piz)  es(pi2)
ci(p;z)  Dilpiz) aia(p;z) ais(p;2)
Aylp;z) =
4(ps2) c2(p;z)  an(p;z) Da(psz)  azs(p;2)
) asi(p;z) as2(piz) Ds(p;z)
Substituting the expression (5.5) for f; into the first equation of system (3.5) and the
equalities (5.4), we get that the equality

(5.5) filg) =

det[E + Ao(p;2)] = [] Ailp; 2).
Therefore, by the equality (3.8) we obtain that

Odise(h(p)) = {z € C\ Oess(h HA (p;2) =0}, peT”.
i=1

By Lemma 3.4 and Theorem 2.3 we have that
Jess(H) = U Jdisc(h(p)) U [maM]
peT3
Note that if the function ws(-, ) has form (5.2), then we have that [m; M| = [0; 12].
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