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ON GENERALIZATION OF THE FREUDENTHAL’S THEOREM FOR
COMPACT IRREDUCIBLE STANDARD POLYHEDRAL

REPRESENTATION FOR SUPERPARACOMPACT COMPLETE
METRIZABLE SPACES

D. K. MUSAEV

Abstract. In this paper for superparacompact complete metrizable spaces, the

Freudenthal’s theorem for compact irreducible standard polyhedral representation
is generalized. Furthermore, for superparacompact metric spaces the following is

strengthened: 1) the Morita’s theorem about universality of the product Q∞×B(τ)

of Hilbert cube Q∞ to generalized Baire space B(τ) of the weight τ in the space of
all strongly metrizable spaces of weight ≤ τ ; 2) Nagata’s theorem about universality

of the product Φn ×B(τ) of the universal n-dimensional compact Φn to B(τ) in the
space of all strongly metrizable spaces ≤ τ and dimension dimX ≤ n.

In what follows, by a space we mean a topological space, a compact is a metrizable
bicompacts a mapping is used to mean a continuous mapping of spaces. Furthermore, a
polyhedron we mean a spatial (generally speaking, infinite) simplicial complex (see [1],
Chapter 3, § 2) in metrizable topology.

We give main definitions and some necessary concepts for this paper.

Definition 1. [1]. a) A system ω of subsets of the set X is called star countable (finite),
if every element of the system ω is intersected at most at a countable (finite) number of
elements of this system; b) a finite sequence of subsets M0, . . . ,Ms of the set X is called
a chain connecting the sets M0 and Ms, if Mi−1 ∩Mi 6= ∅ for all values i = 1, . . . , s; c) a
system ω of subsets of the set X is called an enchained set, if for all sets M and M ′ of
this system there exists a chain of elements of the system ω such that the first element
of the chain is the set M , and the last is the set M ′; maximal enchained subsystems of
the system ω are called components of overlapping (or components) of the system ω.

It is known that [see [1], Chapter 1, § 6] components of the star countable system ω
are countable.

Definition 2. [2]. (a) A star-finite open covering of a space is called finite-component
if all components of the overlapping are finite;

(b) A space is called superparacompact if, given an open covering of the space, a
finite-component covering can be inscribed in this open covering;

(c) Hausdorff superparacompact spaces are called superparacompacta.

Definition 3. [1]. (a) A finite covering ω = {O1, . . . , Os} of a space X is said to be
irreducible, if no proper subcomplex N ′ of the nerve (see [1], Chapter 4, § 2) Nω of the
covering ω is not a nerve of a covering smaller than ω (i.e. of a covering inscribed into
covering ω);

(b) a complete finite complex K (see [1], Chapter 3, § 2), elements of which are disjoint
open simplexes of a given space Rn is called triangulation, lying in Rn.
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(c) the mapping f of the space X in body Ñω of triangulation Nω is irreducible with
respect to this triangulation, if it is essential (see [1], Chapter 3, § 5) on the preimage of
every closed simplex of this triangulation;

(d) Let the triangulation N = Nω be a geometrical realization into Rm of the nerve
of the covering ω = {O1, . . . , Os} of the space X and ei be a vertex of the nerve N
corresponding to an element Oi of the covering ω.

The mapping f of the space X to polyhedron Ñ (see [1], Chapter 4, § 1]) is called
canonical with respect to covering ω, if the preimage f−1Oei of every star Oei contains
in Oi;

(e) the space with a σ-star finite base is called (see [1], Chapter 6, § 3) strongly
metrizable.

Definition 4. A finite component covering ω of the space X is called irreducible, if all
its components coupling are irreducible (i.e. the components ωλ of the covering ω are
irreducible covering of own bodies ω̃λ).

Definition 5. [1]. By a product of two systems of sets α = {A} and β = {B}, we call
the system of sets γ = α ∧ β, by elements of which are all (denoted) of sets of the form
A ∩B, where A ∈ α, B ∈ β.

Proposition 1. Into any open covering of a superparacompact Hausdorff space X, an
irreducible finite-component open covering can be inscribed.

Proof. Let ω be any open covering of a superparacompact Hausdorff space X. Since the
space X superparacompact, without loss of generality, the covering ω can be assumed to
be finite component. Since every component ωλ, λ ∈ L, of the covering ω is finite, and
their body ω̃λ, λ ∈ L, is open-closed in X, in the covering ωλ of the set ω̃λ, an irreducible
open covering ω∗λ can be inscribed (see [1], Proposition 2, Chapter 4, § 2). Then the
system ω∗ = ∪{ω∗λ : λ ∈ L} is an irreducible finite component open covering of the space
X, inscribed into ω. �

Remark 1. a) If ω = {Oα, α ∈ A, |A| = τ} is a finite component open covering of the
space X, then the body g̃Nω of the standard geometric realization gNω in the Hilbert
space Rτ of the nerve Nω of the covering ω (standardization of the realization means
that the vertices of the triangulation gNω are located in unit points of the space Rτ ) is
a discrete subcompact polyhedron g̃Nωλ

, being the body of a realization of the nerves
Nωλ of the component ωλ of the covering ω.

We note that the polyhedron g̃Nω is superparacompact (see [3], Proposition 2). If,
in addition, the covering ω has multiplicity ≤ n + 1, then the polyhedrons g̃Nωλ

is not
more than n-dimensional and thus dim g̃Nω ≤ n.

b) From the theorem about canonical mappings (see [1], Chapter 4, § 1, Theorem 1)
when transferring to bodies of components of a finite component covering, it is easy to
get following.

Proposition 2. Let ω = {Oα, α ∈ A} be any finite component open covering of a
normal space X with nerve Nω, realized in the triangulation form; it is possible to find
a subcomplex N ′ω of the nerve Nω and a mapping f : X → Ñω, which is canonical with
respect to ω, such that the image fX is a polyhedron Ñ ′ω ⊆ Ñω and every principal
simplex of the complex N ′ω is covered essentially.

Proposition 3. For any finite component irreducible covering ω = {Oα, α ∈ A, |A| = τ}
of a normal space X, arbitrary canonical mapping of the space X into the body g̃Nω of
the standard geometrical realization gNω in the Hilbert space Rτ of the nerve Nω of the
covering ω is irreducible with respect to the triangulation gNω.
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Proof. Let f be any canonical mapping (with respect to the covering ω) of the space X
into the body g̃Nω of the standard geometrical realization gNω in the Hilbert space Rτ

of the nerve Nω of the coveringω = {Oα, α ∈ A, |A| = τ}. Then, according to Remark 1,
the body g̃Nω of the standard geometrical realization gNω into Rτ of the nerve Nω of the
covering ω is a discrete sum of compact polyhedrons g̃Nωλ

, being bodies of a realization
of the nerves Nωλ of the components ωλ of the covering ω. Suppose fλ = f : ω̃λ → g̃Nωλ
for any λ ∈ L. It is clear that every mapping fλ, λ ∈ L, is canonical (with respect to the
covering ωλ).

Since the covering ω is irreducible, all its components ωλ, λ ∈ L, are irreducible,
according to Definition 4, and therefore each canonical mapping fλ : ω̃λ → g̃Nωλ

is (see
[1], Chapter 4, § 1, Proposition 3) irreducible. Then the canonical mapping f : X → g̃Nω,
as a combination [4] of irreducible mappings {fλ, λ ∈ L}, is irreducible with respect to
the triangulation gNω. �

Later in this work by a triangulation in the Hilbert space Rτ we mean either the
standard geometrical realization gNω of the nerve Nω of a finite component covering ω
of a normal space, or its subdivision (see [1], Chapter 3, § 2, Section 5) (gNω)∗, which
for each component ωλ of the covering ω coincides with some (multiple, and also the
multiplicity depends on the component ωλ) barycentric subdivision (see [1], Chapter 3,
§ 2, Section 6) of the triangulation gNωλ .

Remark 2. a) Let ω = {Oα, α ∈ A, |A| ≤ τ} be a finite component (n + 1)-multiplicity
covering of a normal space X, g̃Nωλ

is the body of the standard geometrical realization
gNω in the Hilbert space Rτ of the nerve Nω of the covering ω and ε > 0. We take
such natural s that

(
n
n+1

)s√
2 < ε. Then in virtue of all k-dimensional simplexes of

the triangulation gNω are isometric and the relation
(

k
k+1

)s√
2 ≤

(
n
n+1

)s√
2, k =

1, 2, . . . , n, it follows that all simplexes of the subdivision (gNω)∗, being s-multiplicity
barycentric subdivisions of the triangulation gNω, have diameter < ε.

b) Let ω1 be a finite component open covering of the normal space X, gNω1 a standard
geometrical realization of the nerve Nω1 of the covering ω1 in the Hilbert space Rτ

and f1 be a canonical, with respect to the covering ω1, mapping of the space X into
g̃Nω1

. Let (gNω1)∗ be a triangulation of the polyhedron g̃Nω1
, being a subdivision of

the triangulation gNω1 , and the covering ω′2 consist of preimages of the mapping f1 of
main stars (see [1], Chapter 3, § 2, Section 3) of the triangulation (gNω1)∗. Suppose also
that a finite component covering ω2 of the space X inscribed into the covering ω′2, gNω2

is a standard geometrical realization of the nerve Nω2 and f2 is a canonical with respect
to ω2 mapping of the space X into g̃Nω2

.
Then any mapping π : g̃Nω2

→ g̃Nω1
generated by a refinement ω2 into ω1 and

simplicial with respect to triangulation g̃Nω2
and (g̃Nω1

)∗ is obtained, according to the
Lemma (see [1], Chapter 4, § 1) about the descent with respect to the triangulation
(gNω1)∗ from mapping f1 (i.e. support arbitrary point πf2(x) is face of support of the
point f1(x) in the triangulation

(
gNω1

)∗).
The proof implies from the case of compact polyhedrons (see [1], Chapter 3, § 1) we

turn on to bodies of component of the covering ω2.

Theorem 1. Any n-dimensional complete metric superparacompact space X is limit of
inverse sequence S =

{
K̃i, π

i+1
i

}
, i = 1, 2, . . . , from n-dimensional polyhedrons K̃i, being

bodies of standard triangulation Ki decomposing to discrete sum of compact polyhedrons;
in addition projections πi+1

i are simplicial with respect to Ki+1 and some triangulation
K∗i of the polyhedron K̃i, being subdivision of the triangulation Ki. Every projection
πi : X → K̃i is irreducible with respect to triangulation Ki, i = 1, 2, . . .
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Proof. We construct searching inverse sequence by induction. Let γi, i = 1, 2, . . . , be
1/2i-open covering of the space X. Since dimX = n, then there exists such open covering
η of the space X, that any inscribed covering into it has multiplicity ≥ n+ 1. By virtue
of Proposition 1, to the covering {γ1 ∧ η} we inscribe irreducible finite component open
covering ω1 of the spaceX.Nerve of the covering ω1 we denote byN1, and asK1 we denote
standard geometrical realization N1 in Hilbert space Rτ . According to Proposition 2,
there exists canonical with respect to ω1 mapping f1 of the space X into polyhedron K̃1.
Because the covering ω1 is irreducible, then, according to Proposition 3, the mapping f1
is irreducible mapping with respect to triangulation K1 and, so, will be mapping onto K̃1.
The covering ω1 inscribed into covering {γ1∧η} of the space X, thus the covering ω1 has
multiplicity n+1 and dim K̃1 = n. As the covering ω1 is finite component polyhedron K̃1

is discrete sum of compact polyhedrons. We consider covering ϕ1, consisting of preimages
main stars of the triangulation K∗1 in the mapping f1, where K∗1 is such subdivision of
the triangulation K1, that its mesh < 1/22 (see section a) of Remark 2).

Into covering {ϕ1 ∧ η ∧ γ2} we inscribe irreducible finite component open covering
ω2 of the space X. According to Proposition 2 there exists canonical with respect to
ω2 mapping f2 of the space X into polyhedron K̃2, where K2 is standard geometrical
realization of the nerve Nω2 of the covering ω2 into Rτ . By that reason, that given
above, canonical with respect to ω2 mapping f2 of the space X into polyhedron K̃2 is
irreducible with respect to triangulation K2; the covering ω2 has multiplicity n+ 1; the
polyhedron K̃2 is discrete sum of compact polyhedrons and dim K̃2 = n. We take some
generated with inscribed ω2 in {ϕ1 ∧ η ∧ γ2} simplicial with respect to the triangulation
K2 and K∗1 mapping π2

1 : K̃2 → K̃1. Then, according to section b) of the Remark 2, the
mapping π2

1f2 is descent of the mapping f1 with respect to triangulation K∗1 . Therefore
d
(
f1, π

2
1f2
)
< 1/22.

Suppose, that for all i < m we constructed: a) n-dimensional polyhedrons K̃i, be-
ing bodies of standard geometrical realizations in Rτ of nerves Nωi of irreducible finite
component coverings ωi of the space X, inscribed into coverings {η ∧ γi}, i = 1, 2, . . . ;
b) canonical with respect to ωi mappings fi : X → K̃i, being irreducible mappings with
respect to triangulations Ki; c) mappings πii−1 : K̃i → K̃i−1, 2 < i < m, which simplicial
with respect to triangulation Ki and some triangulation K∗i−1 of polyhedron K̃i−1, being
subdivision of triangulation Ki−1; in this connection the mapping πii−1fi is obtained
from fi−1 by descent with respect to K∗i−1; d) mappings πij = πj+1

j . . . πii−1, π
i
i , j < i,

satisfy inequalities d
(
πi−1
j fi−1, π

i
jfi
)
< 1/2i.

Assume now i = m. According to the Remark 1, the polyhedron K̃m−1 is discrete sum
of compact polyhedrons K̃β

m−1, β ∈ L, being bodies of standard realizations Kβ
m−1 into

Rτ of nerves of components of the covering ωm−1. In triangulation Kβ
m−1, β ∈ L, there

exists such barycentric subdivision
(
Kβ
m−1

)s(β)

, that all simlexes of the triangulation(
Kβ
m−1

)s(β)

and their images into polyhedrons K̃j in the mapping πm−1
j , j ≤ i ≤ m−2,,

have diameters < 1/2m. Suppose (Km−1)∗ coinciding with
(
Kβ
m−1

)s(β)

on
(
K̃β
m−1

)
.

Clearly, that all simplexes of the triangulation (Km−1)∗ and their images into polyhedrons
K̃j in mappings πm−1

j , j ≤ i ≤ m − 2,, have diameters < 1/2m. Into the covering
{ϕm−1 ∧ η ∧ γm}, where ϕm−1 consists on preimages of main stars of the triangulation
K∗m−1, in the mapping fm−1, according to Proposition 1, we inscribe irreducible finite
component open covering ωm of the space X. There exists canonical with respect to
ωm mapping of the space X into polyhedron K̃m, where Km is standard geometrical
realization of the nerve Nωm of the covering ωm into Rτ . As before, canonical with respect
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to ωm mapping fm of the space X into polyhedron K̃m is irreducible with respect to
triangulation Km (and, so, will be mapping onto K̃m); the covering ωm have multiplicity
n+1; polyhedron K̃m is discrete sum of compact polyhedrons and dim K̃m = n. We take
some mapping πmm−1 : K̃m → K̃m−1 generated by ωm inscribed into {ϕm−1 ∧ η ∧ γm}
simplicial with respect to triangulation Km and K∗m−1.

Then, according to section b) of the Remark 2, the mapping πmm−1fm is descent of
mapping fm−1 with respect to triangulation K∗m−1. Therefore

(1) d
(
fm−1, π

m
m−1fm

)
<

1
2m

, d
(
πm−1
j fm−1, π

m
j fm

)
<

1
2m

, j < m− 1.

Continuing construction n-dimensional polyhedrons K̃i and mappings πi+1
i , we obtain

inverse sequence
.
s=
{
K̃i, π

i+1
i

}
, i = 1, 2, . . . , satisfying all conditions of theorem. By s̃

we denote limit of inverse sequence s. Consider for each i = 1, 2, 3, . . . the sequence of
mappings

(2) fi, π
i+1
i fi+1, π

i+2
i fi+2, . . .

of the space X into polyhedron K̃i. The proof of that fact, which all later mappings
of the sequence (2) are obtained from fi by descent with respect to triangulation Ki,
similarly compact case of the space X (see [1], Chapter 5, § 5, Freudenthal’s Theorem).
According to second inequality of (1) we have

d
(
πm−1
i fm−1, π

m
i fm

)
<

1
2m

.

Therefore for any point x ∈ X the sequence {πmi fm(x)} , m = i + 1, i + 2, . . . , is fun-
damental sequence. Since the polyhedron K̃i is complete metrizable, then the sequence
{πmi fm(x)} , m = i + 1, . . . , is convergent at some point gi(x) ∈ K̃i. Sequence of map-
pings {πmi fm} , m = i + 1, i + 2, . . . , is convergent to gi uniformly, therefore mapping
gi : X → K̃i is continuous. Since all mappings πmi fm are obtained fi by descent with re-
spect to triangulation Ki, then the mapping gi also has this property (see [1], Chapter 4,
§ 1, Lemma 2). Therefore mappings gi : X → K̃i, i = 1, 2, . . . , are canonical mappings
with respect to covering ωi.

Furthermore, according to Proposition 3, mappings gi : X → K̃i, i = 1, 2, . . . , are
irreducible mappings with respect to triangulation Ki(and, so, will be mappings on K̃i).
The relation gi = πji gj when i < j is checked by standard way (see [1], Chapter 5, § 5).

Since each mapping gi is ωi-mapping of the space X into polyhedron K̃i, and system
of open coverings ωi, i = 1, 2, . . . , of the space X is refinement (see [1], Chapter 1, § 7,

Definition 10) (since the covering ωi is inscribed in γi ), then limit g : X → S̃ ⊆
∞∏
i=1

K̃i

of mappings gi is (see [1], Chapter 6, § 4, Lemma 2) embedding of the space X into limit
S̃ of inverse sequence S. We prove, that g there is mapping of the space X on limit S̃ of
the inverse sequence S.

We take some point y0 ∈ S̃ and assume y0 =
{
y0
i , i = 1, 2, . . .

}
. Consider closed sets

Φi = g−1
i y0

i , i = 1, 2, . . . in X. Since gi is ωi-mapping, then Φi ⊆ Oα(i) ∈ ωi, i = 1, 2, . . .
We prove, that Φi+1 ⊆ Φi, i = 1, 2, . . .

Since y0
i = πi+1

i y0
i+1, then

(∗) y0
i+1 ⊆

(
πi+1
i

)−1
y0
i , i = 1, 2, . . .

Then from inclusion (∗) and the equality gi = πi+1
i gi+1 follows that

g−1
i+1y

0
i+1 = Φi+1 ⊆ g−1

i+1

(
πi+1
i

)−1
y0
i = g−1

i y0
i = Φi, i = 1, 2, . . .

So, the system {Φi, i = 1, 2, . . . } closed in X sets Φi, the sets which diameters tends to
zero, is embedded. Then from completeness of the space X follows that intersection of the
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sets Φi nonempty and consists on one point. Suppose
∞⋂
i=1

Φi = {x0}. Since giΦi = y0
i and

x0 ∈ Φi, then gi(x0) = y0
i , i = 1, 2, . . . Consequently, gx0 = y0 and therefore y0 ∈ gX.

Since y0 is any point of the space S̃, then from here follows, that g is (topological)
mapping of the space X onto limit S̃ of the inverse sequence S.

Note that in identification of points x ∈ X and gx ∈ S̃ projections πi : S̃ → K̃i are
identified with irreducible with respect to triangulation Ki mappings gi. �

This theorem is generalization of the Freudenthal’s theorem [5].

Corollary 1. Any n-dimensional metric superparacompact space X is homeomorphic
to the everywhere dense subset of the limit S̃ of the inverse sequence S =

{
K̃i, π

i+1
i

}
,

i = 1, 2, . . . , from n-dimensional polyhedron K̃i, being bodies of standard triangulation
Ki and decomposing into discrete sum of compact polyhedrons; in addition projections
πi+1
i are simplicial with respect to Ki+1 and some triangulation K∗i of the polyhedron
K̃i, being subdivision of the triangulation Ki. Each projection πi : X → K̃i is irreducible
with respect to the triangulation Ki, i = 1, 2, . . .

Proposition 4. Any superparacompact complete with respect to Cech (p−) space X [6]
is perfectly mapped into Baire space B(τ) of the weight τ (onto 0-dimensional in the
sense dim metrizable space of the weight ≤ τ).

Proof. The space X is perfectly mapped (see [7], Theorem 2) onto 0-dimensional in
the sense dim complete metrizable (metrizable) space X0. Therefore ωX0 ≤ τ. Since
any 0-dimensional in the sense dim complete metrizable space of the weight ≤ τ is
homeomorphic (see [8], Proposition 5.1) closed subspace of generalized Baire space B(τ)
of the weight τ and composition perfect mappings are perfect, then hence follows, that the
space X is perfectly mapped into Baire space B(τ) of the weight τ (onto 0-dimensional
in the sense dim metrizable space of the weight ≤ τ). �

Corollary 2. Any superparacompact complete metrizable space X of the weight ≤ τ is
perfectly mapped into Baire space B(τ) of the weight τ .

Theorem 2. For metrizable space X following statements are equivalent: a) X is su-
perparacompact complete metrizable space of weight ≤ τ ; b) X is perfectly mapping into
Baire space B(τ) of the weight τ ; c) X is closed included into product B(τ) × Q∞ of
Baire space B(τ) of the weight τ on Hilbert cub Q∞.

Proof. If in the condition of the theorem τ < ℵ0, then all statements of the theorem are
evidently. Therefore we consider the case, when τ ≥ ℵ0.

The statement b) implies from statement a) because of Proposition 4.
The case b) ⇒ c). Let f be perfect mapping of the space X into Baire space B(τ)

of the weight τ . There exists (see [9, theorem 3]) such embedding g : X → B(τ)×Q∞,
that f = π ◦ g, where π is the projection B(τ) × Q∞ onto B(τ). Since the mapping f
is perfect, and the space B(τ) × Q∞ is Hausdorff space, then the mapping g is perfect
[4]. Thus, g is closed embedding of the space X into product B(τ)×Q∞ of Baire space
B(τ) of the weight τ to Hilbert cub Q∞.

Now we derive from statement c) the statement a). The product B(τ)×Q∞ of Baire
space B(τ) of the weight τ to Hilbert cub Q∞ is superparacompact (see [3], Corollary 1).
It is known, that the product B(τ)×Q∞ is complete metrizable and w (B(τ)×Q∞) = τ .
Then from monotonicity of complete metrizable and superparacompact (see [3]) by closed
subspaces follows, that the space X is superparacompact and complete metrizable. Since
w (B(τ)×Q∞) = τ , then wX ≤ τ. �

We note, that Theorem 2 is extension of the theorem Morita [10] about universality
of the product B(τ)×Q∞ in the class of all strongly metrizable space of the weight ≤ τ.
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Theorem 3. For Hausdorff space X following statement are equivalent: a) X is su-
perparacompact (complete) metrizable space of the weight ≤ τ and dimX ≤ n; b) X is
closed embedded into product (Baire space B(τ) of the weight τ) of 0-dimensional in the
sense dim of metrizable space of the weight τ onto universal n-dimensional compact Φn.

Proof. By virtue of Proposition 4, the space X is perfectly mapped (into Baire space
B(τ) of the weight τ) onto 0-dimensional in the sense dim metrizable space X0 of the
weight ≤ τ.

Since the space X is strongly metrizable, dimX ≤ n and wX ≤ τ, then by virtue of
Nagata’s theorem (see [11]), the space X is topological mapped into product B(τ)×Φn

of generalized Baire space B(τ) of the weight τ to universal n-dimensional compact
Φn. Then the space X is homomorphic (see [12], Proposition 59, Chapter VI, § 2) to
closed subspace of the product (B(τ)×B(τ)× Φn)X0 × B(τ) × Φn. Suppose (B(τ) =
B(τ)×B(τ)) R0

τ = X0×B(τ). The space (B(τ))R0
τ (complete) metrizable, (wB(τ) = τ)

wR0
τ = τ and 0-dimensional in the sense dim [4].

We deduce from statement b) the statement a). The product (B(τ)× Φn) R0
τ × Φn

is superparacompact (see [3], Corollary 1). It is known [1], that the product (B(τ)
×Φn )R0

τ × Φn (complete) metrizable, (dim (B(τ)× Φn) = n) dim
(
R0
τ × Φn

)
= n and

(w (B(τ)× Φn) = τ) w
(
R0
τ × Φn

)
= τ, then from monotonicity of the superparacom-

pact property (see [3]), complete metrizability of dimensionality dim by closed subspaces
follows, that the space X is superparacompact, (complete) metrizable and dimX ≤ n.
Clearly, that and wX ≤ τ. �

Theorem 3 is expansion of the Nagata’s theorem [11] about embedding n-dimensional
strongly metrizable space in B(τ)× Φn to the case superparacompact.
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