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SOME CLASS OF REAL SEQUENCES HAVING INDEFINITE
HANKEL FORMS

LUIS J. NAVARRO AND VLADIMIR STRAUSS

Abstract. In this paper we generalize the results given in [14] about real sequences
which are not necessarily positive (i.e, they are not sequences of power moments) but

can be mapped, by a difference operator, into a power moment sequence. We prove

by elementary methods that the integro-polynomial representation of such sequences
remains after dropping the condition on its growth imposed in the mentioned article.

Some additional results on the uniqueness of the representation are included.

1. Introduction

The general power moment problem is stated as follows: Given a real sequence
γ0, γ1, γ2, . . ., it is required to find a non-decreasing function σ(t) (t ∈ I) such that

(1) γn =
∫
I

tndσ(t) (n = 0, 1, 2, . . .).

In the case that such a function exists, its uniqueness is also to be studied. If there
is an essentially unique solution (which means that the difference of any two solutions
is constant at the points where it is continuous) σ(t) to (1) then the moment problem
is called determinate; otherwise (two or more solutions) the moment problem is called
indeterminate. For details on these terms we refer to [2], page 3.

There are essentially 3 types of the (classical) power moment problem: the Hamburger
moment problem, in which I = R; the Stieltjes moment problem, corresponding to I =
[0,∞) and the Hausdorff moment problem, in the case of a finite (bounded) interval I
(interval which can be taken, without loss of generality, as [0, 1]). The results in this
paper concerns mainly the Hamburger moment problem.

It is well known now that in order for such a function σ(t) to exist (for the Hamburger
moment problem) it is necessary and sufficient that all Hankel forms

(2)
m∑

i,k=0

xixkγi+k

be non-negative. If these forms are positive (non-negative) then the sequence {γk}∞k=0

is called positive (non-negative). The term positive (non-negative) relative to the axis is
also used.

Thus, solvable moment problems (i.e., Hamburger moment sequences) correspond to
non-negative sequences and vice versa. Let us note that the (strict) positivity of all the
Hankel forms (2) guarantees the existence of an infinite number of points of increase for
the solutions of the moment problem and that the integral in (1) doesn’t degenerate into
a finite sum (see [12], theorem 1.2).

In [14], sequences which can be mapped to a Hausdorff moment sequence by a dif-
ference operator are studied. Such sequences are called there definitizable (for exact
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definitions see Section 2). In the mentioned article it is stated that definitizable sequences
with an additional condition on its growth have an integro-polynomial representation
(instead of (1)) and it is sketched there how to obtain the elements involved in this
representation. It is worth to note that the resulting moment problem (which can be
called definitizable power moment problem) arose naturally, as well as the indefinite power
moment problem (we refer to [3] for origin and details of this problem. See also [11], [5]
and [6]) from the spectral theory of operators in spaces with an indefinite metric (see [14]
for the definitizable case and, for instance, [3] or [7] or [8] and [9] for the indefinite
case). They differ in that the indefinite moment problem is limited to the case where the
underlying space is a Pontryagin space (denoted by πκ) whereas the definitizable moment
problem suits Krein spaces as well as Pontryagin spaces.

In the present paper, we consider sequences that can be mapped, by a difference
operator, to a Hamburger moment sequence and with no restrictions on its growth. In
Section 2 we prove (by elementary methods instead of the operator approach given in [14])
that such sequences have the same representation (except for the interval of integration).
In Section 3 we prove some results on uniqueness and Section 4 contains some results
concerning the particular case of (real) sequences being mapped (by a difference operator)
to a Hausdorff moment sequence. An analog treatment but for the trigonometric moment
problem was given in [10].

2. Solubility

In this section we will give a precise definition of the type of sequences we will be deal-
ing with in this paper and prove a representation (which generalizes the representation
of the Hamburger moment sequences) for such sequences.

Definition 1. Let {ck}∞k=0 be a real sequence. If there exist real numbers γ0, γ1, . . . , γn
such that the sequence {c̃k}∞k=0 defined by

c̃k =
n∑
i=0

γici+k (k = 0, 1, . . .)

is a Hamburger moment sequence then {ck}∞k=0 will be called Hamburger-definitizable

and the polynomial Q(z) =
n∑
i=0

γiz
i will be called the definitizing polynomial of the

sequence {ck}∞k=0. We can assume (and we will) that γn 6= 0.
To avoid confusions, the sequences called definitizable in [14] will be called here

Hausdorff-definitizable. We can define analogously for the other moment problems.
We will also make the agreement that whenever the underlying moment problem is

not explicitly specified, we will be confined to the Hamburger case. In other words, we
will take definitizable as Hamburger-definitizable.

The next theorem settles the existence of solutions to our problem (a generalization
of the Hamburger moment problem).

Theorem 1. Let {ck}∞k=0 be a definitizable sequence with definitizing polynomial Q(z) =∑n
i=0 γiz

i (γn 6= 0). Then there exist a polynomial Q(z) of degree m, m ≤ n, and a
piecewise monotone function ρ(t) defined on R except on the real roots of Q such that

(3) ck =
∫ ∞
−∞

(tk − Pk(t))dρ(t) +
m−1∑
i=0

a
(k)
i ci (k = 0, 1, 2, . . .),

where Pk(z) =
∑m−1
i=0 a

(k)
i zi is, for k = 0, 1, . . ., the interpolating polynomial of zk at the

zero multiset of Q. The integral in (3) is an improper (Stieltjes) one with singular points
the real roots of Q.
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Proof. Let Q(z) =
∑n
i=0 γiz

i (notice we are taking m = n and Q = Q). Then Pk(z),
the interpolating polynomial of the function zk (k = 0, 1, . . .) at the zero multiset of Q,
satisfies

zk = Q(z)Rk(z) + Pk(z) (k = 0, 1, . . .),
being Rk(z) some polynomial (for each k = 0, 1, . . .).

As the degree of Q is n then we have

Pk(z) = zk, k = 0, 1, . . . , n− 1;

Pn(z) =
n−1∑
i=0

− γi
γn
zi.

(4)

Now, from

(5) zn =
1
γn
Q(z) + Pn(z)

we have

zn+j =
1
γn
zjQ(z)−

n−1∑
i=0

γi
γn
zi+j =

1
γn
zjQ(z) +

n+j−1∑
k=j

−γk−j
γn

zk

=
1
γn
zjQ(z) +

n+j−1∑
k=j

−γk−j
γn

(Q(z)Rk(z) + Pk(z))

= Q(z)
[ zj
γn

+
n+j−1∑
k=j

−γk−j
γn

Rk(z)
]

+
n+j−1∑
k=j

−γk−j
γn

Pk(z).

Thus

(6) Pn+j(z) =
n+j−1∑
k=j

−γk−j
γn

Pk(z) (j = 0, 1, . . .).

We now prove our assertion by (generalized) induction.
First, note that because of (4) the representation (3) holds for c0, . . . , cn−1.
Since {c̃k}∞k=0 is positive definite we have

c̃k =
∫ ∞
−∞

tkdσ(t) (k = 0, 1, . . .).

In the other hand, c̃k =
∑n
i=0 γici+k, so in particular for k = 0 we have∫ ∞
−∞

dσ(t) = c̃0 =
n∑
i=0

γici,

from which follows

cn =
1
γn

[ ∫ ∞
−∞

dσ(t)−
n−1∑
i=0

γici

]
=
∫ ∞
−∞

(tn − Pn(t)) dρ(t) +
n−1∑
i=0

−γi
γn

ci,

where dρ(t) =
dσ(t)

γn (tn − Pn(t))
.

Thus (3) also holds for cm = cn.
Suppose now that (3) holds for k = 0, 1, . . . , n, . . . , n + j − 1, with some fixed j ∈ N.

Then, since {c̃k}∞k=0 is a Hamburger moment sequence, we have∫ ∞
−∞

tjdσ(t) = c̃j =
n∑
i=0

γici+j =
n+j∑
k=j

γk−jck.
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Also, by the definition of dρ(t) and (5) we have∫ ∞
−∞

tjdσ(t) = γn

∫ ∞
−∞

tj(tn − Pn(t)) dρ(t) = γn

∫ ∞
−∞

tj

γn
Q(t) dρ(t).

Thus,
∫∞
−∞ tjQ(t) dρ(t) =

∑n+j
k=j γk−jck, from which follows

cn+j =
1
γn

[ ∫ ∞
−∞

tj
n∑
i=0

γit
idρ(t)−

n+j−1∑
k=j

γk−jck

]

=
∫ ∞
−∞

tn+jdρ(t) +
n−1∑
i=0

γi
γn

∫ ∞
−∞

ti+jdρ(t)−
n+j−1∑
k=j

γk−j
γn

ck.

Thus, by the inductive hypothesis we have

cn+j =
∫ ∞
−∞

tn+jdρ(t) +
n−1∑
i=0

γi
γn

∫ ∞
−∞

ti+jdρ(t)

+
n+j−1∑
k=j

−γk−j
γn

[ ∫ ∞
−∞

(
tk − Pk(t)

)
dρ(t) +

n−1∑
i=0

a
(k)
i ci

]

=
∫ ∞
−∞

[
tn+j +

n−1∑
i=0

γi
γn
ti+j +

n+j−1∑
k=j

−γk−j
γn

(
tk − Pk(t)

) ]
dρ(t)

+
n+j−1∑
k=j

−γk−j
γn

n−1∑
i=0

a
(k)
i ci,

which with the help of (6) can be written as

cn+j =
∫ ∞
−∞

(
tn+j +

n+j−1∑
k=j

γk−j
γn

Pk(t)
)
dρ(t) +

n−1∑
i=0

a
(n+j)
i ci

=
∫ ∞
−∞

(
tn+j − Pn+j(t)

)
dρ(t) +

n−1∑
i=0

a
(n+j)
i ci,

i.e., representation (3) holds also for cn+j . �

Remark 1. We have proved our theorem taking m = n and Q(z) =
∑n
i=0 γiz

i. Sometimes
it is possible to obtain the same representation but with another polynomial Q of degree
m < n (see, for instance, theorem 4 below).

Remark 2. From dρ(t) =
dσ(t)

γn(tn − Pn(t))
=

dσ(t)
Q(t)

we conclude that contrary to the

situation presented in the classical moment problem, the function ρ(t) is, in general,
unbounded. In fact, it can have an infinite jump at any of the zeros of Q. Actually, the
role of polynomial Q is to extinguish the unboundedness of ρ in order to make convergent
the integrals in (3). The function ρ(t) is readily seen to be a piecewise monotone function.

Remark 3. The possibility that the degree of Q be zero is not excluded. In this case the
function ρ(t) is bounded and the interpolating polynomial is absent from the represen-
tation. We shall assume in this case that Q(z) ≡ 1.

3. Uniqueness

In this section we present some results on the uniqueness of the elements involved
in (3).
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Having proved that we can define ρ(t) by means of dρ(t) =
dσ(t)

γn(tn − Pn(t))
=
dσ(t)
Q(t)

,

we can affirm that if the moment problem for the sequence {c̃k}∞k=0 is indeterminate
then the function ρ(t) is not unique. And we have to take into account also that the
polynomial Q(t) is not unique, as the next theorems show.

Let’s start proving that we can add real roots to Q without affecting representation (3).

Theorem 2. Let {ck}∞k=0 be a real sequence admitting the representation (3) and let
R(z) = z − z0, with z0 ∈ R fixed. If we denote Q̃(z) = Q(z)R(z) and m̃ = deg(Q̃(z)) =
m+ 1 then we have

(7) ck =
∫ ∞
−∞

(
tk − P̃k(t)

)
dρ(t) +

m̃−1∑
i=0

ã
(k)
i ci (k = 0, 1, . . .),

where P̃k(z) =
∑m̃−1
i=0 ã

(k)
i zi is the interpolating polynomial of zk at the zero multiset

of Q̃.

Proof. It is clear that the first m̃ elements of the sequence, c0, c1, . . . , cm̃−1, have the
representation (7).

To prove the representation for cm̃ = cm+1 we start noting that from the equation
zm = Q(z)Rm(z) +Pm(z) we have zm+1 = Q̃(z)Rm(z) + zPm(z) + z0 (zm − Pm(z)) and,
as a consequence,

(8) P̃m+1(z) = zPm(z) + z0 (zm − Pm(z)) .

Now, noting that(
z + a

(m)
m−1

)
Pm(z) =

(
z + a

(m)
m−1

)(
a

(m)
m−1z

m−1 + a
(m)
m−2z

m−2 + · · ·+ a
(m)
0

)
= a

(m)
m−1z

m + · · ·+
(
a

(m)
0 + a

(m)
m−1a

(m)
1

)
z + a

(m)
m−1a

(m)
0 ,

we conclude that
(
z + a

(m)
m−1

)
Pm(z)− a(m)

m−1z
m is a polynomial of degree less or equal to

m− 1 which at the zero multiset of Q(z) coincides with zm+1, in other words

(9) Pm+1(z) =
[
z + a

(m)
m−1

]
Pm(z)− a(m)

m−1z
m = zPm(z)− a(m)

m−1 [zm − Pm(z)] .

Combining (8) and (9) we get

(10) P̃m+1(z) = Pm+1(z) +
(
z0 + a

(m)
m−1

)
(zm − Pm(z)) .

In this way we have∫ ∞
−∞

(
tm+1 − P̃m+1(t)

)
dρ(t)

=
∫ ∞
−∞

(
tm+1 − Pm+1(t)

)
dρ(t)−

∫ ∞
−∞

(
z0 + a

(m)
m−1

)
(tm − Pm(t)) dρ(t)

= cm+1 −
m−1∑
i=0

a
(m+1)
i ci −

(
z0 + a

(m)
m−1

)(
cm −

m−1∑
i=0

a
(m)
i ci

)
,

from which follows by (10) the representation (7) for cm+1.
The rest of the proof is straightforward. �

We can also add pairs of conjugate non-real roots to Q, without affecting representa-
tion (3), as the next theorem shows. The addition of non-real roots has to be done by
conjugate pairs in order to ensure that the coefficients of Q remain real.

Theorem 3. Let {ck}∞k=0 be a real sequence admitting representation (3) and let R(z) =
(z − z0)(z − z0), with z0 ∈ C \ R fixed. Then, denoting Q̃(z) = Q(z)R(z) (and m̃ =
deg(Q̃(z)) = m+ 2), the sequence {ck}∞k=0 admits the representation (7).
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Proof. The proof, again, goes by induction. We really need to prove only that the
representation (7) holds for cm+2.

We start from zm = Q(z)Rm(z) + Pm(z). Denoting R(z) = (z − z0)(z − z0) =
z2 + αz + β, we have zm(z2 + αz + β) = Q(z)Rm(z)R(z) + (z2 + αz + β)Pm(z), from
which follows

zm+2 = Q̃(z)Rm(z) + z2Pm(z) + αz (Pm(z)− zm) + β (Pm(z)− zm) ,

i.e., P̃m+2(z) = z2Pm(z) + (αz + β) (Pm(z)− zm) .(8’)

Now, with a and b arbitrary consider the expression

(z2 + az + b)Pm(z) = (z2 + az + b)
(
a

(m)
m−1z

m−1 + · · ·+ a
(m)
1 z + a

(m)
0

)
= a

(m)
m−1z

m+1 + (aa(m)
m−1 + a

(m)
m−2)zm

+
(
ba

(m)
m−1 + aa

(m)
m−2 + a

(m)
m−3

)
zm−1 + · · ·

It follows that (z2+az+b)Pm(z)−a(m)
m−1z

m+1−
(
aa

(m)
m−1 + a

(m)
m−2

)
zm is a polynomial of

degree less or equal tom−1 which at the zero multiset ofQ coincides with (z2+az+b)zm−
a

(m)
m−1z

m+1−
[
aa

(m)
m−1 + a

(m)
m−2

]
zm = zm+2 +

[
a− a(m)

m−1

]
zm+1 +

[
b− aa(m)

m−1 − a
(m)
m−2

]
zm,

which is just zm+2 if we take a = a
(m)
m−1 and b = aa

(m)
m−1 +a

(m)
m−2 =

(
a

(m)
m−1

)2

+a
(m)
m−2. Thus

(9’) Pm+2(z) =
[
z2 + az + b

]
Pm(z)− azm+1 − bzm,

where a = a
(m)
m−1 and b = aa

(m)
m−1 + a

(m)
m−2 =

(
a

(m)
m−1

)2

+ a
(m)
m−2.

Now, by (8’), (9’) and (9) we have

(11)

P̃m+2(z) = Pm+2(z) + (α− a) [Pm+1(z) + azm − aPm(z)]− bPm(z)

+ azm+1 + bzm − αzm+1 + β [Pm(z)− zm]

= P̃m+2(z) = Pm+2(z) + (a− α)
[
zm+1 − Pm+1(z)

]
+ (a(α− a) + b− β) [zm − Pm(z)] .

In this way, ∫ ∞
−∞

(
tM+2 − P̃M+2(t)

)
dρ(t)

= cM+2 −
M−1∑
i=0

a
(M+2)
i ci − (a− α)

[
cM+1 −

M−1∑
i=0

a
(M+1)
i ci

]
+ (a(α− a)− b+ β)

[
cM −

M−1∑
i=0

a
(M)
i ci

]
,

whence follows (thanks to (11)) the representation (7) for cM+2. �

The next two theorems states (as can be guessed from the above theorems) that it
is also possible, in some cases, to remove some interpolating points without affecting
the representation of {ck}∞k=0. Even non-real roots of the polynomial Q can be removed
(sometimes) but this has to be done by conjugate pairs. We note that the remotion of
roots of Q has to be done with care as it can compromise the convergence of the integrals
in the representation (3) of the sequence {ck}∞k=0.

Theorem 4. Let {ck}∞k=0 be a real sequence admitting the representation (3). Suppose
that there exists some polynomial Q̌(z) =

∑m̌
i=0 γ̌iz

i such that Q(z) = Q̌(z)(z− z0) (with
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z0 ∈ R), the integral
∫∞
−∞ Q̌(t) dρ(t) is convergent and

(12) cm̌ =
1
γ̌m̌

∫ ∞
−∞

Q̌(t) dρ(t) +
m̌−1∑
i=0

ǎ
(m̌)
i ci,

where P̌m̌(z) =
∑m̌−1
i=0 ǎ

(m̌)
i zi is the interpolating polynomial of zm̌ at the zero multiset

of Q̌(z). Then {ck}∞k=0 admits the representation

(13) ck =
∫ ∞
−∞

(
tk − P̌k(t)

)
dρ(t) +

m̌−1∑
i=0

ǎ
(k)
i ci (k = 0, 1, . . .),

where P̌k(z) =
∑m̌−1
i=0 ǎ

(k)
i zi is the interpolating polynomial of zk at the zero multiset

of Q̌.

Proof. It suffices to show that representation (13) holds for cm̌ = cm−1. But since

P̌m−1(z) =
m−2∑
i=0

−γ̌i
γ̌m−1

zi = − 1
γ̌m−1

[
Q̌(z)− γ̌m−1z

m−1
]
,

then representation (13) for cm−1 is just (12). �

Clearly, in order to remove a pair of conjugate non-real roots of Q without affecting
the representation we just need that the representation (13) holds for cm−2. Thus we
have

Theorem 5. With the same notation used in theorem 4, if {ck}∞k=0 is a real sequence
admitting representation (3) and Q̌(z) = Q(z)

(z−z0)(z−z0) is a polynomial satisfying (12) (the
convergence of the integral is required) then {ck}∞k=0 admits the representation (13).

The question on the uniqueness of the function ρ (the density of the representation)
is subtler, as we can conclude from the following example.

Example 1. Let {dk}∞k=0 be a Hamburger moment sequence such that the corresponding
moment problem is indeterminate. Let σ be an N-extremal solution to the problem (see
[1] or [13]). Then σ corresponds to the spectral measure of some selfadjoint extension of
the symmetric operator associated to the moment problem and the set {1, x, x2, . . .} is
dense in L2

σ. As the deficiency index of the operator is (1, 1) (details can be consulted in
[1], [12] or [13]), the set {(x+ i), (x+ i)x, (x+ i)x2, . . .} is not dense in L2

σ.
Let {ck}∞k=0 be the sequence ck =

∫∞
−∞ xk 1

x2+1dσ(x) =
∫∞
−∞ tkdν(t), where dν(t) =

dσ(t)
t2+1 . Then we have

(1) {ck}∞k=0 is a Hamburger moment sequence.
(2) The set {1, x, x2, . . .} is dense in L2

ν . Indeed, denoting ψ[a,b] (with a < b) the
characteristic function

ψ[a,b](t) =

{
1 t ∈ [a, b]
0 t 6∈ [a, b],

there exists a sequence of polynomials {pn(t)}∞n=0 converging in L2
σ to ψ[a,b](t),

from which follows that∫ ∞
−∞
|pn(t)− ψ[a,b](t)|2dν(t) ≤

∫ ∞
−∞
|pn(t)− ψ[a,b](t)|2dσ(t) n→∞→ 0.

(3) The set {(x+ i), (x+ i)x, . . .} is also dense in L2
ν since∫ ∞

−∞
|(t+ i)qn(t)− ψ[a,b](t)|2dν(t) =

∫ ∞
−∞

∣∣∣qn(t)− 1
t+ i

ψ[a,b](t)
∣∣∣2dσ(t) n→∞→ 0,

where {qn(t)}∞n=0 is a polynomial sequence converging to 1
t+iψ[a,b](t) ∈ L2

σ.
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Now, these conditions implies that ν is a solution to a moment problem (for the
sequence {ck}∞k=0) whose associated operator has dense domain and deficiency index
(0, 0). Hence, the moment problem for the sequence {ck}∞k=0 is determinate.

Noticing that

ck + ck+2 =
∫ ∞
−∞

tk + tk+2

t2 + 1
dσ(t) = dk,

we conclude that any real sequence that can be mapped, by a difference operator, to
the sequence {ck}∞k=0 (whose associated moment problem is determinate) can also be
mapped to the sequence {dk}∞k=0 (whose associated moment problem is indeterminate).

The uniqueness of the function ρ (and the question on the constructability of solutions)
will be treated in a next paper.

Theorem 1 shows that definitizable sequences {ck}∞k=0 have representation (3). We
proceed now to show that the sequences having that representation are precisely the
definitizable ones.

Theorem 6. Let {ck}∞k=0 be a real sequence having representation (3), where Pk(z) =∑m−1
i=0 a

(k)
i zi is (for each k = 0, 1, . . .) the interpolating polynomial of the function zk

at zero multiset of some polynomial Q of degree m and ρ(t) is a piecewise monotone
function defined on R except the real roots of Q. Then {ck}∞k=0 is definitizable.

Proof. As ρ is piecewise monotone there exists real numbers α1 < α2 < · · · < αµ
such that the function ρ is monotone in each of the intervals (−∞, α1), (α1, α2), . . . ,
(αµ,+∞). We take now any polynomial Qρ such that the product Q(t)Qρ(t) is non-
negative in those intervals in which ρ is non-decreasing and negative in the other case (we
impose no conditions at the boundary of each interval). Let Q̃(t) denote the polynomial
Q̃(t) = Q(t)Qρ(t).

By theorem 2, representation (7) holds and we have

cm̃ =
∫ ∞
−∞

(
tm̃ − P̃m̃(t)

)
dρ(t) +

m̃−1∑
i=0

ã
(m̃)
i ci =

1
γ̃m̃

∫ ∞
−∞

Q̃(t) dρ(t) +
m̃−1∑
i=0

ã
(m̃)
i ci,

where we have used the notation of theorem 2 (the symbol ˜ refer to polynomial Q̃).

One important consequence of representation (7) is that the integral
∫ ∞
−∞

tkQ̃(t) dρ(t)

converges for each k = 0, 1, . . . Thus the sequence {c̃k}∞k=0, defined by

c̃k =
∫ ∞
−∞

tkQ̃(t) dρ(t) (k = 0, 1, . . .)

is a Hamburger moment sequence satisfying

c̃k =
m̃∑
i=0

γ̃ici+k ∀ k = 0, 1, 2, . . . ,

from which follows that {ck}∞k=0 is definitizable �

4. The Hausdorff case

Hausdorff-definitizable sequences were introduced in [14]. In order to obtain an
integro-polynomial representation of such sequences, it was imposed there an additional
condition on the growth of the sequence. We start this section by proving that the
restriction on the growth of the sequence is, actually, a consequence of its definitizability.

Theorem 7. Let {ck}∞k=0 be a Hausdorff-definitizable sequence with definitizing poly-
nomial Q(z) =

∑n
i=i γiz

i, c̃k =
∑n
i=0 γici+k and c̃k =

∫ b
a
tkdσ(t) with [a, b] ⊂ [−1, 1].

Then
|cn+k| ≤ Λ · ωk ∀ k = 0, 1, . . . ,
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where Λ = c̃0+γ̂
Pn−1

i=0 |ci|
|γn| and ω = 1 + γ̂

|γn| , being γ̂ = maxi=0,1,...,n−1 |γi|.

Proof. First note that since [a, b] ⊂ [−1, 1] then we have

(14) |c̃k| ≤
∫ b

a

|tk|dσ(t) ≤
∫ b

a

dσ(t) = c̃0 ∀ k = 0, 1, . . .

The proof goes by (generalized) induction.
From c̃0 =

∑n
i=0 γici+0 we get cn = 1

γn

[
c̃0 −

∑n−1
i=0 γici

]
. Hence,

|cn| ≤
1
|γn|

[
c̃0 + γ̂

n−1∑
i=0

|ci|
]

= Λ,

which proves that the thesis holds for k = 0.
Suppose now the thesis holds for k = 0, 1, . . . , l. To prove that the thesis holds for

k = l + 1 we start noting that from dl+1 =
∑n
i=0 γici+l+1 we get

cn+l+1 =
1
γn

[
dl+1 −

n−1∑
i=0

γici+l+1

]
.

Hence

|cn+l+1| ≤
1
|γn|

[
|c̃l+1|+ γ̂

n−1∑
i=0

|ci+l+1|
]
≤ 1
|γn|

[
c̃0 + γ̂

n+l∑
j=l+1

|cj |
]

≤ 1
|γn|

[
c̃0 + γ̂

n+l∑
j=0

|cj |
]

=
1
|γn|

[
c̃0 + γ̂

n−1∑
j=0

|cj |
]

+
γ̂

|γn|

l∑
i=0

|cn+i|.

Thus, by the inductive hypothesis we have

|cn+l+1| ≤ Λ +
γ̂

|γn|

l∑
i=0

Λωi = Λωl+1,

which concludes the proof. �

It is well known that any Hausdorff moment problem is determinate (unless it has
no solution). Thus it is natural to ask: Is it possible to have a real sequence {ck}∞k=0

which can be mapped simultaneously (by difference operators) to a Hausdorff moment
sequence (hence determinate) and to an indeterminate Hamburger (or Stieltjes) moment
sequence? This question, which is answered in the negative in the next theorem, acquire
special interest from a theorem of Boas (see [4] or [15], chapter 3, section 14 or [12], sec-
tions 11–13), according to which any real sequence is a Stieltjes moment sequence if we
relax the condition on the monotonicity of the distribution function σ to require only it
to be of bounded variation. This result is valid also for the Hamburger moment problem
but not in the Hausdorff case (the proofs can be found in the references just given). In
our case, the functions ρ are not non-decreasing but they can change its monotonicity
only a finite number of times and this fact prevents the trivial possibility we would get
from applying Boas’s result.

Theorem 8. Let {ck}∞k=0 be a definitizable sequence with definitizing polynomial Q(z) =∑n
i=0 γiz

i. If dρ(t) has not compact support then there can not exist constants Λ and ω
such that |ck| ≤ Λωk ∀ k = n, n+ 1, . . .

Proof. Suppose there exist Λ and ω (real) constants such that |ck| ≤ Λωk ∀ k = n, n+
1, . . . Then, from c̃k =

∑n
i=0 γici+k (k = 0, 1, . . .) we get

|c̃k| ≤
n∑
i=0

|γi| |ci+k| ≤
n∑
i=0

γ̂Λωi+k = γ̂Λωk
1− ωn+1

1− ω
,
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where γ̂ = maxi=0,1,...,n |γi| (as before). Now, denoting α = γ̂Λ
1− ωn+1

1− ω
we have

(15) |c̃k| ≤ αωk ∀ k = 0, 1, . . .

In the other hand, since |c̃k| =
∣∣∣∫∞−∞ tkdσ(t)

∣∣∣ we have

|c̃2k| =
∫ −λ
−∞

t2kdσ(t) +
∫ ∞
λ

t2kdσ(t) +
∫ λ

−λ
t2kdσ(t)

≥ λ2kVar(−∞,−λ)σ + λ2kVar(λ,∞)σ,

being λ any non-negative (real) number. But according to (15) this is not possible, unless
dσ(t) is supported in [−ω, ω]. �
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