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POLARIZATION FORMULA FOR (p,q)-POLYNOMIALS ON A
COMPLEX NORMED SPACE

T. V. VASYLYSHYN AND A. V. ZAGORODNYUK

ABSTRACT. The aim of this paper to give some analogues of polarization formu-
las and the polarization inequality for (p, q)-polynomials between complex normed
spaces. Obtained results are useful for investigation of real-differentiable mappings
on complex spaces.

INTRODUCTION

Let X and Y be complex linear spaces and X™ = X x --- x X be the Cartesian power
of X. An n-homogeneous polynomial P, from X to Y may be defined as a restriction to
the diagonal of an n-linear map B,,: X™ — Y. That is,

P,(z) = Bup(z,...,x).

It is well known that there is a unique symmetric n-linear map B,, which generates P,.
The map B,, can be recovered from P, using the following polarization formula:

1 n
Bu(x1,. .. xn) = Sl Z E1... anPn<Zejxj).
e,==+1 j=1

The polarization formula had been known since 1931 [3] and it was rediscovered later
in various forms by many authors (e.g. [6, 7]).

The polarization formula is an important tool in the theory of polynomials on normed
spaces. Using it we can get the polarization inequality. If X and Y are normed spaces,
then there is a constant ¢(n, X) such that for all n-homogeneous polynomials P,

[Pall < Bl < c(n, X)|[ Pa

(see e.g. [b] for details). The minimal constant satisfying the inequality in general can
be estimated as 1 < ¢(n, X) < ’ZL—T; More precise estimations depends on geometrical
properties of X (see [10]). For example if X = ¢y, then ¢(n, X) can not be less than "n—?
but if X = {5, then we can take ¢(n,X) = 1.

The purpose of the paper to consider the case of so-called (p,q) linear maps (which
are linear with respect to the first p components and anti-linear with respect to the
last ¢ components) and corresponding (p, g)-polynomials. We prove various versions
of polarization formulas and a polarization inequality for this case. The polarization
formulas for (p, ¢)-polynomials should be applicable for real-differentiable mappings on
complex Banach spaces because the Taylor formula expansion of a real-differentiable
mapping is a linear span of (p, q)-polynomials.

A detail information about polynomials can be found in [5, 9]. (p, ¢)-polynomials have
been considered in [8, 9, 11].
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1. Basic CONCEPTS
We denote by S, the group of all permutations on {1,...,n}.

Definition 1.1. The mapping By o(@1, ..., Tp;Tps1s-- s Tpiq)s Bpg @ XPTT — Y is
called a (p, q)-linear symmetric mapping if it has the following properties:
1°. Vie{l,...,p+q} Va/,z;/e€X
B;D,q(xla e 7%71,%/ + CU//,%H, e 7xp+q)
= Bp’q(.’L'l, ey Li_1, .’L'Z'/7 Lit1 - ,prrq) + Bp’q(fL'l, ey i1, xi"7 Lit1 - ,.’L'erq).

2°. Vied{l,...,p} VAeC

Bpg(x1,. ., AZi,y o T Tpgy - - Tpig) = ABpg(T1, -0, iy o, Tp; Tptty - oo s Tppq)-

3°. Vie{p+1,....,p+q} VIeC

Bpg(T1, oy T Tpi1y e oy AZiy e oy Tpig) = ABp g (T15 oo, Xpi Tpts e vy Tiy ooy Tppg)-
4°. Vo e S,
Bp,q(zo(lﬁ Ls2)s-+ryTa(p)s Tpt1y--- axp-‘rq) = prQ(x17 L2y Tp; Tp41y - - axp-‘rq)'
5°. Vo e S,
BPvQ(Ih s 7$p;xp+0'(l)a $p+0'(2)a s 7Ip+0(q)) = BPvQ(xlv <oy Tp; Tp+1, Tp42; -+ - 7xp+q)-
In other words, B, 4 is linear and symmetric with respect to x1,...,Tp, and anti-linear
and symmetric with respect 0 Tpi1, ..., Tpyq-

Definition 1.2. We define a (p, q)-polynomial as the restriction of a (p,q)-linear sym-
metric mapping By, , onto the diagonal
P,o(x) =By 4(z,...,2;2,...,2).
P a

Note that any (p,0)-polynomial is just a p-homogeneous polynomial and any (p, 0)-
linear symmetric mapping is just a p-linear symmetric mapping.

The aim of this work is to find a method of recovering a (p, ¢)-linear symmetric map-
ping from its restriction onto the diagonal. To do it we use the techniques of (classical)
Rademacher functions (see [10]) and generalized Rademacher functions (see [1] and [2]).
Note that using this approach in [4] were proved analogues of the polarization formula
for nonhomogeneous polynomials and analytic mappings.

Definition 1.3. The i-th Rademacher function r;(t) is defined on [0,1] by r;i(t) =
sign sin 2éwt, i € N.

Rademacher functions have the following properties:
o 2n
12 (ri() " = 15
o 2n+1
20 (ri(8))™"7 = ra(t);
3°. Let mq,...,m, € Z. Then

/o1 (ru ()™ (r2(8)™ ... (ra(£)™" dt = {

1, if all mq,...,m, are even,
0, otherwise.

oridi=1
n

be the complex nth
). The generalized Rademacher function

Definition 1.4. (see [2]) For a given integer n > 2 let a; = e
izl 3
n’n

SW : [0,1] — C is defined by setting Sgn] (t) = aj fort € I; where 1 < j <n. We set
S:[Ln] (t) =1 for all endpoints t.

roots of the unity, j =1,...,n and I; = (
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The function S{"] (t) has the following properties:
1°. Since Vt € [0,1] : [SI"(1)| =1,

st = (st)

1 .
o\, 1, fm=0 modn,
/0 (Sl (t)) dt = { 0, otherwise.

2°.

‘We denote
Bpg((x1)™ ooy ()™ (Tsg1)™ 5oy (25) ™)
=Bp (@1, T, Ty oy L3 Bagly ooy Tsply e v o s Thy o ooy ko)
—_——— —_——— — —— ——
ni Ns Ns41 Nk

The case n; = 0 for some j means that z; does not belong to the list of arguments at
the position.

Remark 1.1. Let c,...,cp44 € C. It is easy to see that

Ppqlc1mi + -+ ¢piqTpiq) = Bpg ((Clml +oe Tt Cp+q$p+q)p+q)

p! q!
- > kil k! > Il

k120, kpyq>0 T PR 50, g >0 ptq
kid-+kpiq=p Lt +lpig=q
k k . l l

X Bpgq ((Clxl) e (Cptaptg) P (121) - (CptgTptg) Hq)

_ Z k1 ko Fptq p! Z l1 02 Iptq q!

- g T A g T
k1>0,....kptq>0 PTa" 11>0,..,lp14>0 pTq
kit tkprq=p Lt tlprq=q

k Eptq. l l
X BIMI ((‘Tl) 17 teey (:CP-"-Q) p+q7 (1:1) 17 teey (IP-‘rq) p+q) .
2. POLARIZATION FORMULA FOR (p, q)-LINEAR MAPPINGS
Theorem 2.1. Let By, o(x1,...,Zpiq) be a (p,q)-linear symmetric mapping and P, 4(z)
be the corresponding (p, q)-polynomial. Then
Bpg(z1,...,Tptq)
Y Y R 2q+1-p
_ q+1]
=5 (sPr ) PL(0)r2(0) . .. i (6)
(2.1) I 70

x oy (SPN0) (m(0)as + -+ 1y (0))
+ (rp+1(0)zpsr + -+ + Tp+q(9)xp+q)> dt df.

Proof. Let us denote the right-hand side of (2.1) by A. From remark 1.1 we have

1 1
A= > X Ll D!

ki!.. . kpig! !
k120, kg >0 L PEE 120,004 420 i
R Lt +lpra=q

></01/01 <S§2q+1l(t))2q+l_prl(a)rg(())...rp+q(9)

x (SFqﬂ] (t)) frhy (W)lwmﬂp
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X (7"1 (9))k1+l1 (Tg(@))k2+l2 o (rp+q(0))kp+q+lp+q

X prq ((1’1)791 Sy (1'p+q)kp+q; (xl)ll e, (xp+q)lp+q) dt do

= 2 1 .

B TR 2 T
k120,....kp4q2>0 kl. T karq. 1120,...,0l,14>0 ll' T lerq'
k?1+"'+kp+q:p l1+...+lp+q:q

X Bpq ((xl)kl ey (l'p+q)kp+Q; (Il)ll N (xp+q)lp+q)

1 2q4+1—ptki+-Fkp—l1——lp
x / (SF"“] (t)) dt
0

1
: / (ra(0)) 5 (r2(0)) R L (g (0) oo o ee df.
0

Let us consider the integral
1
/ (7,1 (9))1+k1+11 (r2(9))1+k2+l2 L (Tp+q<9))1+kp+q+lp+q de.
0

If there exists a natural number i such that k; +1; = 0, then there is a multiplier (r;(6))*
in the above expression and therefore the property 3° of Rademacher functions implies

that the integral is equal to zero.
p+q
So for non-zero elements of the sum k;+1; > 1, i=1,...,p+q. Thus > (k;+1;) >
i=1
1,7=1,...,p+ q. But we know that

p + g and the equality holds only if k; + [;

p+q

k14 -+ kprg=pand iy + -+ 1,44 = ¢, that is why (k; +1;) = p+ q. Hence, for
i=1

non-zero elements of the sum k; +1; =1,i=1,...,p+¢q and

1
/ (7,1 (9))1+k1+l1 (T2(9))1+k2+l2 . (Tp+q(9))1+kp+q+lp+q do
0

- / (r1(0))2(r2(0))? ... (rpsq(0))? d0 = 1.

We can simplify the representation of A taking into account that for non-zero elements
li=1—ky,i=1,...,p+q.

1 1
A= x
OSklgL..Z,O:Skmgl kileckprgt (L =kl (1= Kpag)!
Fit otk =

X BP#Z ((xl)klv ey (xp+q)kp+q; (q;l)l_kl sy (.’L'p+q)1_kp+q)

! 2q+1—ptki+othy—(1—k1) = —(1—kp)
X / (SP‘”” (t)) dt
0

Let us find values of k; such that the integral is not equal to zero.

2 +1—p4+ki+- 4k —1—k)——(1—k)
=2q+1—p+ki+---+k,—p+ki+---+k
=2 +1 20—k — - —kp) =2¢+ 1 = 2(kpy1 + -+ kpig).

By the property 3° of generalized Rademacher functions the integral in (2.2) is not equal
to zero if and only if 2¢+1 is a divisor of 2¢+1—2(ky11+- - -+kp1q). But since 0 < k; <1,
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it will be only if 2 +1 — 2(kpy1 + -+ - + kptq) = 2q + 1, that is, kpr1 = -+ = kp1q = 0.
Hencep=ki+- -+ ky+kpp1+- +hkprg=k1+---+kpso0kr=---=k,=1.
Finally, we can rewrite A as

A= prq (($1)17 R (CC:D)17 ($p+1>07 R (merq)O; (xl)O’ SRR (xp)()’ (xp+1)1a R (merq)l)

1 2q+1
X /0 (SEQQ—H] (t)) dt = By o(T1,. ., Tp; Tpt1s- -, Tptq)-

3. POLARIZATION INEQUALITY
We can get an another form of the polarization formula from formula (2.1).

Theorem 3.1.

B;D,Q(Ih s 7wp+q)
2q+1

— 1 o2ati-p
(3.1) = optaply! > ams. €p+qz 2q+1 %

E1,-Eptq==t1
X Pp,q <OL¢€1I1 + ;oo + -+ - + Qi EpTp + Ep+1Tp+1 + -+ Ep—&-ql'p—&-q) .

Proof.

1 1 1 2q+1—p
Bpalar.szpea) = =1 [ [ (SE0) T 10ra0). . rpa00)
% Py (S0 (r(0)1 + -+ (0)c,)

+ (rp+1(O)@pir + - + 7“p+q(9)$p+q)) dt do

:ﬁ i r1(9)rz(9)r3(9)...rwq(g)/o (S£2q+1](t))2q+lfp

x Py (SE ) 01 + 5P (0)ra(0)as + -
+ SE @)y (O)p + 1 (O)p 1 + -+ + g (O 1y ) di
1 1/2 1 [2¢+1] 2q+1—p
- X /0 E1r2(0)r5(0) -1y g(0) /0 (5P )
x P (SET Y (02120 + P 0ra(0)22 + -

+ S Oy (0)2p + rpa (0)pis + - + 7”p+q(9)$1’+q> dtdo

] /2% L aen), 21
= W Z A €1€2€3 ... Eptq A (Sl (t))

D e1,esEppq==t1

X Ppg (SFqH] (t)err1 + SFqH] (t)eows + - - -

n S£2q+1] (t)Epl'p +epi1Tpr1 o+ 5p+qxp+q) dt db

1 b gl2atn) ) 2T
= 2P+‘1p!q! Z E€1€2€3 ... Eptq /O (Sl (t))

€1, sEppq==E1
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X Pp.q (SFQH] (t)erwy + SFQ—H] (t)eaza + -+ -

+ S?qﬂ] ()epTp + Epp1Tppr + -+ + 5p+q$p+q> dt

1 T
_ } : 2 : 2q+1-p
~ artaplgl F16283 - Epy £ 2+ 1%

15e-E€ptq==1
x Ppq (aislxl + aij€aa + -+ + QiEpTp + Epp1Tprr + 0+ 5p+q:rp+q).
O

Let X and Y be normed spaces. Let us define norms of (p, ¢)-polynomials and (p, q)-
linear symmetric mappings respectively by

pr,qnl = SUP{”PP,q(I)”Y : r € B}
and
||Bp7qH2 = SUP{HBP,q(wlw~~axp+q)HY X1, Tpyq € B},

where B is the closed unit ball of X.
From formula (3.1) we have the following estimations:

||Bp’qH2
2q+1
1 Z 1 2g+1—
= sup ’ W E €1€2€3 ... Eptq mai a+l-p
lz1llx <L,...l|lzp4qllx <1 ¢ E1yemrEppq=a1 i1 <4

x Ppq (aielzl + @igoxo + -0 + QiEpTp + Epp1Tpr1 + - + Ep+q$p+q) H

Y
1 2q+1
< 5oraa sup H (p+q)Pte
2rraplet g;q—ﬂ 2 2q T faslxstnlepsallxst
x P, (al&lxl + Q€22 + -+ + QiEpTp + Ep1Tpy1 00 F 5p+qxp+q) H
p,q p —+ q Y
1 2q+1 (p+ )"
= Sotaplgl 2rre 0Tl (P + Q)" [Pyl = TH Py allr-
Hence we have the polarization inequality:
Theorem 3.2. Let By, 4(x1,...,Zptq) be a (p,q)-linear symmetric mapping and P, 4(z)
be the corresponding (p, q)-polynomial between normed spaces X and Y. Then

(p+ )"
| Ppgllt < [[Bpgllz < T”Pp,q

1-
Note that the first part of this inequality is trivial. The following example shows that
the second part of the inequality is sharp.

Example 3.1. Let X = /;.
For given p > 0 and ¢ > 0 let B : XP*9 — C be the following (p, q)-linear map

1 . 1 — 1.2 p+1 p+q j -
B(ah, .. PPt aPt ) = gad . abal Ty ] where o7 € 4y, 5 =1,...,p4q.
The (p, q)-symmetrization of B,
1
1 . 1 — o1(1) p+oa(1) pto2(q)
Bs(x,...,a:p,xp+,...7xp+q)—ﬁ Z z]t ...a:gl(p) Z T Tty
pg: 01E€S, 02€8,

is a (p, ¢)-linear symmetric mapping.
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|Bs(x1,...,xp':vp+1 . :Cp+q)|
+oa(1 +
g X OO S O
0'1€S D'QGS
Lo
< —Nzte, .. 2P, .
ol ol
Hence || Bsl|2 < % On the other hand,
Bs(ela"'a6p+q) = Ma
where
¢t =(0,...,0,1,0,...)
——
i—1
Therefore, ||Bs|l2 = p,q,
Let By(z) = By(x,...,2) = a1 . . XTpTpt1 .- Tpiq, Wherex = (z1,...,2p1q,-..). Then

ES is a (p, ¢)-polynomial. Since the geometric mean of positive numbers is always less
than or equal to the arithmetic mean, we have

~ 1
|Bs(aj)| = |l‘1| cen |ij+q| < mﬂxl‘ + o+ |1‘p+q|)P+q
Thus || B, If we take z = ( — L o btain | B,(z)| =
us || Bsl|l1 < W we take x = (m,...,m, ,...), we obtain |Bg(z)| =
—_—
. p+q
(p+q)pte” R
This shows that || Bs||; = W’ and hence
p+qPte =
IBs = ZED B

The following example shows that in the case of Hilbert space the (p, ¢)-polarization
constant is greater than 1.

Example 3.2. Let X =/ly,p>1,¢>1, B,,: XPT1 - C,
By (zt, o aPy gt gt = e zlzg'H, . ,:1:123+q.
Obviously, B, 4 is a (p, g)-linear symmetric mapping. From the following estimations

T pF1
|Bpglat,...,a? )| = |aill]]... |2} ]]ad ] ... |25

1
= Jletla3l Sl 2y
< e leallz?le - e,

we have that ||Bp4ll2 < 1. On the other hand B, 4(e',...,e';€?,...,e?) = 1 and so
|1Bp,gll2 = 1. The map By, 4(z) = (x1)?(T2)? is a (p, ¢)-polynomial and

[Bpa(@)| = o1 731" = o Pl
Hence
~ ~ q
1Bpalh = sup 1Bypg(@)l = sup forfleal? = max & (V1)
lllle, <1 |21 |2+ 22| 2<1 Ost<1

It is easy to check that the function

rty =1 (Vi- t2)q
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has a maximal value at the point

and

Thus

and

Let Ppq4(X;Y) be the normed space of all continuous (p, ¢)-polynomials from X to
Y with the norm || - || and B, 4(X™;Y) the normed space of all continuous symmetric

1Byl _M
p,qlll — ptq
(p+q) =
+aq
P+9=" 5
HBp,q||2 = W”Bp,qnl-

(p, @)-linear maps from X" to Y, p+ ¢ = n, with the norm || - ||2.
Theorem 3.2 implies the following corollary:

Corollary 3.1. The space Pp (X;Y) is isomorphic to By, ((X™;Y).

Proof. The polarization formula gives us the required linear isomorphism from P, ,(X;Y")

onto By 4(X";Y) and the polarization inequality implies its continuity.

Remark 3.1. In [11] the authors proved some another forms of the polarization formula

using different approach

(3.2)

and

(3.3)

where

Bpg(T1,. . Tpi Tpg1, - -y Tpigq)

1 1

() -G) (P55 - 6) GR)

1 Z (_1)p+q7(61+--~+€p+q) Z (7“1’“7“2“2 o fmya

~ ompig!
2mp.q.E

1ses€ptq=0 H1seees o =0
/
X Pp’q((:zz +e1x1 4+ FEpty)

+ (T#ITQM s rrlﬁm)(m// + Ep+1Tpy1 + - + 5p+q$p+q))’

BILQ(xla sy Tp3 Tp41y - - - axp-i-q)
1
1 1
— M1, 12
= V= N — T
i IR R I T
Elyeney Eptq==1 1 yeee s b, =0

X Pyg((z + 1@y + -+ + )

+ (r{try k) (2 + Ep+1Tpy1 + -0+ 6p-l-qxp-&-q))’

U ...
Tk —COSF —i—zstk—i17

m = [logy(p+q)] +1

and 2/, 2’ are arbitrary elements of X.
Note that from formula (3.3) we can also get the polarization inequality.

s hmd
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