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ON EQUIANGULAR CONFIGURATIONS OF SUBSPACES OF A

HILBERT SPACE

YU. S. SAMOILENKO AND YULIA YU. YERSHOVA

Abstract. In this paper, we find τ , 0 < τ < 1, such that there exists an equiangular
(Γ, τ)-configuration of one-dimensional subspaces, and describe (Γ, τ)-configurations
that correspond to unicyclic graphs and to some graphs that have cyclomatic number
satisfying ν(Γ) ≥ 2.

0. Introduction

There are numerous publications, see [1] and references therein, studying systems
S = (H ;H1, H2, . . . , Hn) of subspaces Hi, i = 1, . . . , n, of a complex separable Hilbert
space H that may be finite dimensional or have countable dimension.

Denote by Pi an orthogonal projection of H onto the corresponding subspace Hi,
i = 1, . . . , n.

A system of subspaces is called irreducible if any operator C ∈ B(H) that commutes
with all orthogonal projections, CPi = PiC, i = 1, . . . , n, is a scalar operator, C = λI,
λ ∈ C.

Two systems S = (H ;H1, . . . , Hn) and S′ = (H ′;H ′
1, . . . , H

′
n) are called unitary equi-

valent if there is a unitary operator U ∈ B(H,H ′) such that U(Hi) = H ′
i for all i =

1, . . . , n or, equivalently, if UPi = PiU , i = 1, . . . , n.
To give a description of irreducible systems of n subspaces of a Hilbert space up to

unitary equivalence for n ≥ 3 is an unmanageable task, see [2, 3, 4].
In this paper, we consider equiangular (Γ, τ)-configurations of subspaces corresponding

to a connected simple (without loops or multiple edges) undirected graph Γ = (VΓ, EΓ),
where VΓ denotes the set of vertices of the graph, EΓ is the set of its edges, and τ ∈ R,
0 < τ < 1. An equiangular (Γ, τ)-configuration is a system S = (H ;H1, . . . , Hn) of
subspaces, n = |VΓ|, such that the orthogonal projections corresponding to each pair of
subspaces Hi, Hj satisfy the relation

{

PiPjPi = τ2Pi, PjPiPj = τ2Pj , if there is an edge γij ∈ EΓ,
PiPj = PjPi = 0, if γij /∈ EΓ.

Here we define an angle between each pair of subspaces Hi and Hj to be θ = arccos τ ,
0 < θ < π/2, if γij ∈ EΓ, and consider Hi and Hj to be orthogonal otherwise, that is,
if γij /∈ EΓ. Let us remark that if Γ = Kn is a complete graph, such (Γ, τ)-equiangular
one-dimensional configurations of subspaces in a Euclidean space were studied in [5].

If Γ is a tree or a cycle, all (Γ, τ)-irreducible configurations are described in, e.g., [6].
An irreducible (Γ, τ)-configuration corresponding to a tree or a unicycle graph is a con-
figuration of one-dimensional subspaces [1].
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In this paper, by finding τ such that there exists a (Γ, τ)-configuration of one-dimensio-
nal subspaces, we describe irreducible equiangular (Γ, τ)-configurations, of one-dimensio-
nal subspaces, corresponding to the graphs that are cactuses (Theorem 4), and give a
complete description, up to unitary equivalence, of all irreducible (Γ, τ)-configurations
corresponding to an arbitrary unicyclic graph (Theorem2).

1. Preliminaries

Consider an equiangular configuration of n one-dimensional subspaces, which corres-
ponds to a simple undirected graph Γ = (VΓ, EΓ), where VΓ denotes the set of vertices
of Γ and EΓ is the set of edges of the graph Γ. Let Φ be a mapping defined on edges of
the graph giving a grading of the graph, Φ(γkj) = eiφkj , k < j, γkj ∈ EΓ. Such a pair
(Γ,Φ) will be called an S-signed graph.

An adjacency matrix A(Γ,Φ) = (akj)
n
k,j=1 of an S-signed graph (Γ,Φ) is defined to be

akj =







eiφkj , γkj ∈ EΓ, k < j,
e−iφkj , γkj ∈ EΓ, k > j,

0, γkj /∈ EΓ.

Spectrum, σ(Γ), and index, ind(Γ,Φ), of an S-signed graph refers to the spectrum and
the largest eigenvalue of the matrix A(Γ,Φ), respectively.

Introduce an sw -equivalence, a switching equivalence, on the set of all S-signatures of
a graph by defining two S-sign graphs (Γ,Φ1) and (Γ,Φ2) to be equivalent if there exists
a function ψ : VΓ → S1 such that

Φ2(γkj) = eiψkΦ1(γkj)e
−iψj .

Lemma 1. Let |Γ| = n, and ν(Γ) be the cyclomatic number of the graph Γ. Then any S-
signature of the graph Γ is sw-equivalent to some S-signature with the function Φ taking
the value 1 on n − ν(Γ) edges, so that the corresponding φkj satisfy φkj = 0, and the
remaining ν(Γ) edges can be indexed so that Φ takes the values eiφj , j = 1, . . . , ν(Γ).
Thus any S-signature can be parametrized with ν(Γ) parameters φj .

This means that if Γ is a tree, then all S-signatures are sw-equivalent to the S-signature
Φ(γkj) = 1 for all γkj ∈ EΓ.

If Γ is a unicyclic graph, see Section 3, then there are only the following two sw -
nonequivalent S-signatures: the S-signature Φ(γkj) = 1 for all γkj ∈ EΓ, and the S-
signature Φ(γkj) = 1 for all γkj ∈ EΓ but one edge γ in the cycle, and for this edge,
Φ(γ) = eiφ, φ ∈ [0, 2π).

If Γ is a cactus with k cycles, see Section 3, then by indexing cycles of the graph in
a certain order, one can parametrize the set of all sw -nonequivalent S-signatures with k
parameters, (φ1, . . . , φk), such that Φ(γ) = 1 on all edges γ ∈ EΓ except for edges in the
set formed by picking one edge γj in each cycle Cj , where Φ(γj) = eiφj , j = 1, . . . , k.
Here ind(Γ,Φ) does not depend on the set {γj : γj ∈ Cj}.
Definition. The quantity

indS Γ = inf
φ∈ΩΦ

ind(Γ,Φ)

is called an S-index of the graph, where ΩΦ is the set of all values of the parameters
(φ1, . . . , φk), φj ∈ [0, 2π), j = 1, . . . , k.

If the graph is connected, then all subspaces of the simple system S corresponding to
the graph have the same dimension, see [1].

The main problem is to give a description of all irreducible unitary nonequivalent
equiangular configurations S corresponding to the graph Γ with a fixed τ , 0 < τ < 1.
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In what follows, we will only consider equiangular configurations of one-dimensional
subspaces, dimHi = 1, i = 1, . . . , n.

The following theorem describes τ , 0 < τ < 1, for which there exist (Γ, τ)-configurations
of one-dimensional subspaces.

Theorem 1. ([7]). Let Γ be an arbitrary fixed graph. There exist (Γ, τ)-configurations
of one-dimensional subspaces if and only if τ ≤ 1

indS Γ .

Proposition 1. ([6, 9]). If Γ is a tree, then the following assertions hold:

• if there exists an irreducible configuration S corresponding to a signed graph
(Γ, φ), then all the subspaces Hi, i = 1, . . . , n, are one-dimensional;

• an irreducible configuration S exists only if τ ≤ 1
ind Γ and, for each τ , such a

configuration is unique. Moreover, dimH = n if τ < 1
indΓ , and dimH = n − 1

if τ = 1
indΓ .

2. Equiangular configurations of subspaces corresponding to unicyclic

graphs

A unicyclic graph of girth g is a graph Γ = (Cg;T1, T2, . . . , Tg) obtained from a cycle
Cg of length g by identifying the i-th vertex of the cycle with the root vertex of some
tree Ti.

In the case where Γ is a unicyclic graph there can be infinitely many irreducible
configurations for some values of τ , but all such configurations are n-tuples of one-
dimensional subspaces [6] and are parametrized with φ ∈ Φτ ⊆ [0, 2π). Introduce a
matrix BΓ,τ,φ for the unicyclic graph as follows: BΓ,τ,φ = I − τAΓ,φ, where AΓ,φ =
(aij)

n
i,j=1 is the S-signed adjacency matrix of the graph,

aij =















0, if γij /∈ EΓ,
1, if γij ∈ EΓ, (i, j) /∈ {(1, g), (g, 1)},

eiφ, if (i, j) = (1, g),
e−iφ, if (i, j) = (g, 1).

Then the formula for the S-index of the unicyclic graph becomes

indS Γ = inf
φ∈[0,2π)

ind(Γ, φ).

In the sequel, we will need the following facts from the theory of graphs.

Proposition 2. ([13]).

(1) If Γ is a connected graph and x is an arbitrary vertex of the graph, then ind(Γ−
x) < ind Γ.

(2) Let Γ be a connected graph and H a proper spanning subgraph of Γ, which is
a subgraph that differs from the entire graph, constructed over a subset VH of
vertices of the graph Γ − VΓ, and containing all edges from EΓ the endpoints of
which belong to VH (the subgraph H is not necessarily connected). Then for all
λ ≥ ind Γ,

PH(λ) > PΓ(λ),

where PΓ(λ) is the characteristic polynomial of the graph Γ, and PH(λ) is the
characteristic polynomial of the graph H.

Lemma 2. The Schwenk formula for the characteristic polynomial of a unicyclic S-
signed graph Γ has the form

PΓ,φ(λ) = λPΓ−v1(λ) −
∑

u∼v1, u∈VΓ

PΓ−v1−u(λ) − 2 cosφ

g
∏

i=1

PTi−vi
(λ),
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where v1 is a vertex of the cycle of the graph and {u : u ∼ v1} denotes the set of vertices
of the graph Γ neighboring the vertex v1, and Γ−v is the subgraph of the graph Γ obtained
by removing the vertex v.

Proof. Let Γ be a cycle Cg of length g. Then, directly evaluating the determinant of the
corresponding adjacency matrix of the S-signed graph (Γ, φ) we get

P(Cg,φ)(λ) = λPg−1(λ) − 2Pg−2(λ) − 2 cosφ,

where Pn is the characteristic polynomial of the Dynkin graphAn, a chain with n vertices.
Let now Γ be a cycle Cg with a root vertex of a tree T attached to one of the vertices,

denoted by v1, and let the valency of the root vertex be 1. Denote the vertex of the tree
T neighboring to the root vertex by v. Then the graph Γ contains a bridge between the
vertices v1 and v, and we use the decomposition formula for the characteristic polynomial
of the graph with respect to the bridge γv1v,

P(Γ,φ)(λ) = P(Cg,φ)(λ)PT (λ) − Pg−1(λ)PT−v(λ).

Substituting the expression for the characteristic polynomial of the cycle we get

P(Γ,φ)(λ) = λPg−1(λ)PT (λ) −
(

2Pg−2(λ)PT (λ) + Pg−1(λ)PT−v(λ)
)

− 2 cosφPT (λ),

which coincides with the required formula for the graph Γ,

PΓ,φ(λ) = λPΓ−v1 (λ) −
∑

u∼v1, u∈VΓ

PΓ−w−u(λ) − 2 cosφPT−v(λ).

Now, using the same argument we can extend this formula to the case where there is a
tree with the root having an arbitrary valency attached to a vertex of the cycle. Then,
extend it to an arbitrary unicyclic graph. �

Proposition 3. Let Γ be a unicyclic S-signed graph. Then

indS Γ = ind(Γ, π).

Proof. To simplify the notations, denote

f(λ) = λPΓ−v1 (λ) −
∑

u∼v1, u∈VΓ

PΓ−v1−u(λ)

and

h(λ) =

g
∏

i=1

PTi−vi
(λ).

Then PΓ,φ(λ) = f(λ)−2 cosφ · h(λ). Consider this polynomial on the segment [ind(Γ, π);
ind(Γ, 0)].

Since h(λ) is a characteristic polynomial of the induced subgraph of the graph Γ, by
Proposition 2 (2), h

(

ind(Γ, π)
)

> 0 and h
(

ind(Γ, 0)
)

> 0. We have

PΓ,φ

(

ind(Γ, π)
)

= f
(

ind(Γ, π)
)

− 2 cosφh
(

ind(Γ, π)
)

= −2(1 + cosφ)h
(

ind(Γ, π)
)

≤ 0,

PΓ,φ

(

ind(Γ, 0)
)

= f
(

ind(Γ, 0)
)

− 2 cosφh
(

ind(Γ, 0)
)

= 2(1 − cosφ)h
(

ind(Γ, 0)
)

≥ 0.

Then, by the Weierstrass theorem, the polynomial PΓ,φ(λ) has a root on the segment
[

ind(Γ, π); ind(Γ, 0)
]

. This means that the S-signed graph (Γ, φ) has the least index for
φ = π. �
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Proposition 4. ([1]). For a unicyclic graph Γ there exists an irreducible simple n-tuple
of subspaces corresponding to a pair (Γ, φ) if and only if the set Φτ of parameters for
which the matrix BΓ,τ,φ is nonnegative definite is not empty. In such a case, for every
φ ∈ Φτ there exists a unique, up to unitary equivalence, nonzero irreducible simple n-tuple
of subspaces, Sτ,φ, and all of them are unitary nonequivalent.

All subspaces of the system Sτ,φ are one-dimensional, and dimH = n if the matrix
BΓ,τ,φ is positive definite, and dimH = n− 1 or dimH = n− 2 otherwise.

Theorem 2. Let Γ be a unicyclic graph with n vertices.

(1) If τ < 1
ind Γ , then for the pair (Γ, τ) there exists a corresponding irreducible simple

system Sτ,φ of subspaces for any φ ∈ [0, 2π), and dimH = n.
(2) If τ = 1

ind Γ , then there exists an infinite family of irreducible simple configura-
tions Sτ,φ, parametrized with φ ∈ [0, 2π), and dimH = n for all φ 6= 0, and
dimH = n− 1 for φ = 0.

(3) If 1
ind Γ < τ < 1

indS Γ , then there exists an infinite family of irreducible simple
configurations Sτ,φ parametrized with φ,

φ ∈
[

arccos
(1

2

f(τ−1)

h(τ−1

)

, 2π − arccos
(1

2

f(τ−1

h(τ−1)

)]

,

where

f(λ) = λPΓ−v1 −
∑

u∼v1, u∈VΓ

PΓ−v1−u(λ),

h(λ) =

g
∏

i=1

PTi−vi
(λ).

For

φ ∈
(

arccos
(1

2

f(τ−1)

h(τ−1

)

, 2π − arccos
(1

2

f(τ−1

h(τ−1)

))

,

dimH = n, and dimH = n− 1 for

φ = arccos
(1

2

f(τ−1)

h(τ−1

)

or φ = 2π − arccos
(1

2

f(τ−1)

h(τ−1)

)

.

(4) If τ = 1
indS Γ , then there is a unique configuration S corresponding to (Γ, τ) for

φ = π, and the dimension of the space is n − 2 if the graph is a cycle, and is
n− 1 otherwise.

(5) If τ > 1
indS Γ , then no corresponding configuration exists.

Proof. Let Γ = (Cg ;T1, . . . , Tg) be a unicyclic graph with n vertices.
First, by using the Schwenk formula,

PΓ,φ(λ) = λPΓ−v1 (λ) −
∑

u∼v1, u∈VΓ

PΓ−v1−u(λ) − 2 cosφ

g
∏

i=1

PTi−vi
(λ),

we get for the characteristic polynomial of the signed adjacency S-matrix of a unicyclic
graph that, as the value of φ increases in the segment [0, π], the corresponding value of
the index monotonically decrease, and ind(Γ, φ) = ind(Γ, 2π − φ). Then, for every value
of τ , τ ≤ 1

indS Γ , the matrix BΓ,τ,φ is nonnegative definite for all values of the parameter
lying in the interval

φ ∈
[

arccos
(1

2

f(τ−1)

h(τ−1)

)

, 2π − arccos
(1

2

f(τ−1)

h(τ−1)

)]

.
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Now, let the graph Γ be unicyclic and not just a cycle but having at least one nontrivial
tree T1. Then the matrix BU,τ,φ for this graph is

BΓ,τ,φ =





1 ∗ ∗
∗ BT1−v1,τ 0
∗ 0 BΓ\T1,τ



 .

Removing the first row and the first column we obtain a block diagonal matrix that does
not depend on φ and having blocks corresponding to BT1−v1 and BΓ\T1

,

rankBΓ,τ,φ ≥ rankBT1−v1,τ + rankBΓ\T1,τ ≥ n− 2.

Suppose that rankBΓ,τ,φ = n−2, which is possible if τ = 1
indS Γ . Then ind(Γ, π) must

be a root of the characteristic polynomial PΓ\T1
(λ), that is, PΓ\T1

(ind(Γ, π)) = 0. We
have

PΓ,φ(λ) = λPT1−v1(λ)PΓ\T1
(λ) −

(

∑

u∼v1 u∈VT1

PT1−v1−u(λ)

)

PΓ\T1
(λ)

−
(

∑

w∼v1, w∈VΓ\T1

PΓ\T1−w(λ)

)

PT1−v1(λ) − 2 cosφ

g
∏

i=1

PTi−vi
(λ).

For λ = ind(Γ, π), we have

0 = PΓ,π(ind(Γ, π)) =

(

2

g
∏

i=2

PTi−vi
(ind(Γ, π))

−
∑

w∼v1, w∈VΓ\T1

PΓ\T1−w(ind(Γ, π))

)

PT1−v1(ind(Γ, π)).

Since removing a vertex from a connected graph we have ind(Γ − v) < ind Γ, it follows
from Proposition 2 (2) that PT1−v1(ind(Γ, π)) > 0. The expression in the round brackets
must then be equal to zero,

2

g
∏

i=2

PTi−vi
(ind(Γ, π)) −

∑

w∼v1, w∈VΓ\T1

PΓ\T1−ω(ind(Γ, π)) = 0.

On the other hand,

2

g
∏

i=2

PTi−vi
(ind(Γ, π)) −

∑

w∼v1, w∈VΓ\T1

PΓ\T1−w(ind(Γ, π)

= 2

g
∏

i=2

PTi−vi
(ind(Γ, π)) − PT2−v2(ind(Γ, π))PΓ\T1∪T2

(ind(Γ, π))

− PTg−vg
(ind(Γ, π))PΓ\T1∪Tg

(ind(Γ, π))

= PT2−v2(ind(Γ, π))
[

PT3−v3(ind(Γ, π)) · . . . · PTg−vg
(ind(Γ, π))

− PΓ\T1∪T2
(ind(Γ, π))

]

+ PTg−vg
(ind(Γ, π))

[

Pt2−v2(ind(Γ, π)) · . . . · PTg−1−vg−1(ind(Γ, π))

− PΓ\T1∪Tg
(ind(Γ, π))

]

> 0,

since

PT2−v2(λ) · . . . · Ptg−1−vg−1(λ) > PΓ\T1∪Tg
(λ)

and

Pt3−v3(λ) · . . . · Ptg−vg
(λ) > PΓ\T1∪T2

(λ)
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for all values of λ satisfying

λ > max
{

g−1
∏

i=2

ind(Ti − vi),

g
∏

i=3

ind(Ti − vi)
}

.

Hence, we get PΓ\T1
(ind(Γ, π)) 6= 0 and dimH = n− 1. �

Remark. In case when the graph is a cycle, the dimension at the endpoint becomes n−2.
Indeed,

PCn,φ(λ) = λPn−1(λ) − 2Pn−2(λ) − 2 cosφ,

and indS Cn = indAn−1, Pn−2(indAn−1) = 1, since, for λ < 2, the characteristic poly-
nomial Pn−2(λ) for the Dynkin graph An−2 has the form

Pn−2(λ) =
sin
(

(n− 1) arccos λ2
)

√

1 −
(

λ
2

)2
,

and, for λ = indAn−1 = 2 cos π
n
,

Pn−2(λ) =
sin
(

(n− 1)π
n

)

sin π
n

= 1.

Example 1. Let Γ = Cn.

• If τ < 1
2 , then for any pair (Γ, τ) there exists a corresponding irreducible simple

system Sτ,φ of subspaces for any φ ∈ [0, 2π), and dimH = n.
• If τ = 1

2 , then there exists an infinite family of irreducible simple configurations
Sτ,φ, parametrized with φ ∈ [0, 2π), whereas dimH = n for all φ 6= 0, and
dimH = n− 1 for φ = 0.

• If 1
2 < τ < 1

2 cos π
n

, then there exists an infinite family Sτ,φ of irreducible simple

configurations parametrized with φ ∈ [nα; 2π − nα], with dimH = n for φ ∈
(nα; 2π − nα), dimH = n− 1 for φ = nα and φ = 2π − nα, where α is a root of
the equation τ = 1

2 cosα .

• If τ = 1
2 cos π

n

, then there is a unique configuration S corresponding to (Γ, τ) for

φ = π, and the dimension of the space is n− 2.
• If τ > 1

2 cos π
n

, then no corresponding configurations exist.

Example 2. Let Γ = (C4;m1, 0, 0, 0) be the graph consisting of a square with a tree
having the root attached to one of the corners, where the tree is a star with m1 rays and
the root is located in the vertex having the maximal valency.

• If τ <
√

2

4+m1+
√
m2

1+16
, then for any φ ∈ [0, 2π) there exists an irreducible simple

system Sτ,φ of subspaces, corresponding to the pair (Γ, τ), and dimH = m1 + 4.

• If τ =
√

2

4+m1+
√
m2

1+16
, then there is an infinite family of irreducible simple

configurations Sφ,τ parametrized with φ ∈ [0, 2π), and dimH = m1 + 4 for all
φ 6= 0, and dimH = m1 + 3 for φ = 0.

• If
√

2

4+m1+
√
m2

1+16
< τ <

√

1
m1+2 , then there is an infinite family Sφ,τ of irre-

ducible simple configurations parametrized with

φ ∈
[

arccos
(

2m1τ
4−(m1+4)τ2+1

2τ4

)

; 2π − arccos
(

2m1τ
4−(m1+4)τ2+1

2τ4

)]

.

We have dimH = m1 + 4 if

φ ∈
(

arccos
(

2m1τ
4−(m1+4)τ2+1

2τ4

)

; 2π − arccos
(

2m1τ
4−(m1+4)τ2+1

2τ4

))

,

and dimH = m1 + 3 if

φ = arccos
(

2m1τ
4−(m1+4)τ2+1

2τ4

)
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or

φ = 2π − arccos
(

2m1τ
4−(m1+4)τ2+1

2τ4

)

.

• If τ =
√

1
m1+2 , then there is a unique configuration S corresponding to (Γ, τ) for

φ = π, and the dimension of the space equals m1 + 3.

• If τ >
√

1
m1+2 , then no corresponding configurations exist.

3. Equiangular configurations, of one-dimensional subspaces, connected

with cactuses

A graph in which every two cycles have no more than 1 common vertex will be called
a cactus.

It follows from Lemma 1 that all irreducible equiangular (Γ τ)-configurations, of one-
dimensional subspaces, connected with a cactus having k cycles can be parametrized with
k parameters by picking one edge γj in every cycle Cj in an arbitrary way and setting
Φ(γj) = eiφj on these edges, and Φ(γ) = 1 for other edges. Such a parametrization φ

will be denoted by ~φ = (φ1, φ2, . . . , φn).

Lemma 3. Let Γ be a cactus and w ∈ EΓ. Then the characteristic polynomial for Γ
satisfies the following modification of the Schwenk formula:

PΓ,φ(λ) = λPΓ−w,φ′(λ) −
∑

u∼w,u∈VΓ

PΓ−u−w,φ′′(λ) − 2
∑

Cj∈C(w)

PΓ−Cj ,φ′′′(λ) cosφj ,

where φ′, φ′′, φ′′′ are restrictions of φ to the corresponding subgraphs of the graph Γ,
C(w) is the set of all cycles of the graph containing the vertex w.

Proof. The proof is obtained by induction similarly to the proof of the Schwenk formula
for a unicyclic graph. �

Lemma 4. Let λ > min{ind(Γ, ~φ), ind(Γ, ~χ)}, ~φ, ~χ ∈ Rk. Then, if cos(φj) > cos(χj) for
j = 1, . . . , k, then

{

PΓ,~φ(λ) > PΓ,~χ(λ), if ind(Γ, ~φ) < ind(Γ, ~χ),

PΓ,~φ(λ) < PΓ,~χ(λ), if ind(Γ, ~φ) > ind(Γ, ~χ).

This lemma can be easily proved by induction.

Theorem 3. Let Γ be a cactus. Then indS Γ = ind
(

Γ, (π, π, . . . , π)
)

.

Proof. The proof will be carried out by induction on the number of cycles in the graph.
If the graph is unicyclic, the claim is clear. Let it also hold for a cactus with k − 1

cycles. Consider a cactus with k cycles and having one of the following forms:

Γ
′

w′ w
U Γ

′ U

w = w′

where Γ′ is a cactus with (k − 1) cycles connected to a unicyclic graph U with a bridge
(a) or a common vertex (b), with w being a vertex of the cycle C1 of the graph U . Then
the characteristic polynomial for the graph Γ has the following form:

PΓ,~φ(λ) = PΓ′, ~φ′(λ)PU−w(λ) −
(

∑

u∼w,u∈VU

PU−w(λ) + 2PU−C1(λ) cosφ1

)

PΓ′−w′, ~φ′′(λ).
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Let for some set (φ̃1, . . . , φ̃k), distinct from (π, . . . , π), the index of the S-signed graph

(Γ,
~̃
φ) be the smallest. Then PΓ,(π,...,π)(ind(Γ,

~̃
φ)) < 0. Consider

P
Γ,~̃φ

(ind(Γ,
~̃
φ) − PΓ,(π,...,π)(ind(Γ,

~̃
φ)).

We get

P
Γ,
~̃
φ
(ind(Γ,

~̃
φ)) − PΓ,(π,...,π)(ind(Γ,

~̃
φ))

=
(

P
Γ′,

~̃′
φ
(ind(Γ,

~̃
φ)) − PΓ′,(π,...,π)(ind(Γ,

~̃
φ))
)

PU−w(ind(Γ,
~̃
φ))

+ 2(1 − cosφ1)PU−C1(ind(Γ,
~̃
φ))
(

P
Γ′−w′,

~̃′′
φ
(ind(Γ,

~̃
φ)) − PΓ′−w′,(π,...,π)(ind(Γ,

~̃
φ))
)

.

Since the graphs Γ′ and Γ′ − w are cactuses with numbers of cycles less than k, by the

inductive assumption we have that ind(Γ,
~̃
φ) > ind(Γ, (π, . . . , π)). Using Lemma 4 and

setting ~φ =
~̃
φ and ~χ = (π, . . . , π) we get

PΓ,(π,...,π)(ind(Γ,
~̃
φ)) > 0,

which is a contradiction. �

Theorem 4. Let K be a cactus with k cycles, K 6= Cn. Suppose that for some τ0,

1

indK
≤ τ0 ≤ 1

indSK
,

and
~φ ∈ Στ0 = {~φ = (φ1, . . . , φk) : ind(K, ~φ) ≤ τ−1

0 } 6= ∅
there exists a corresponding irreducible one-dimensional configuration (K, τ0, ~φ).

Then

dimH =

{

n, if ind(K, ~φ) < 1
τ0
,

n− 1, if ind(K, ~φ) = 1
τ0
.

Proof. 1. Let K be a bundle of cycles, i.e., a set of cycles having a common point, such
that the cycle Cj contains mj points, j = 1, . . . , k. Then

BK,τ,φ =















































1 −τ0eiφ10 . . . 0 − τ0 . . . −τ0eiφg0 . . . 0 − τ0
−τ0e−iφ1

0
... BAm1−1 . . . 0
0

−τ0
...

...
. . .

...

−τ0e−iφg

0
... 0 . . . BAmg−1

0
−τ0















































.

So,

rankB
K,~φ,τ0

≥
k
∑

j=1

rankBAmj−1 .
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The indices of the chain satisfy ind(Am) ր 2 for m→ ∞, that is, ind(Amj−1) < 2 for
all j = 1, . . . , g.

Let us show that ind(K, ~φ) > 2. By using the Schwenk formula for the characteristic
polynomial for the bundle, we get

PK(λ) = λ

k
∏

j=1

Pmj−1(λ) − 2

k
∑

i=1

(

k
∏

j=1, j 6=i

Pmj−1(λ)
)

Pmi−2(λ)

− 2
k
∑

i=1

(

k
∏

j=1, j 6=i

Pmj−1(λ)
)

cosφi,

where Pmj−1(λ) is the characteristic polynomial for the adjacency matrix of the graph
Amj−1.

If the graph Γ is a chain with n vertices, then Pn(2) = n+ 1, see [8]. Then

PK(2) = 2m1 . . .mk − 2

k
∑

i=1

m1 . . .mi−1mi+1 . . .mk(mi − 1)

− 2

k
∑

i=1

m1 . . .mi−1mi+1 . . .mg cosφi

= 2(1 − k)m1 . . .mk + (1 − cosφ1)m2 . . .mg + · · · + (1 − cosφg)m1 . . .mg−1.

This expression takes its maximal value at φ1 = φ2 = · · · = φg = π,

(1 − k)m1 . . .mk + 2m2 . . .mg + · · · + 2m1 . . .mg−1

= m1 . . .mk + (2 −m1)m2 . . .mg + . . .+ (2 −mg)m1 . . .mg−1.

For sufficiently large values of mj , mj ≥ 3, we have PK(2) < 0. This is true for all
bundles except for the following ones:

• C3,3, PC3,3(2) = 3 · 3 − 3 − 3 = 3 > 0;
• C3,4, PC3,4 = 3 · 4 − 2 · 3 − 4 = 2 > 0;
• C3,3,3, PC3,3,3(2) = 3 · 3 · 3 − 3 · 3 − 3 · 3 − 3 · 3 = 0.

� ��� � ��� � �����

This means that ind(K, ~φ) > 2 for all ~φ, and the claim is proved in this case.
Consider the exceptions. For C3,3 and C3,3,3, we have indK > 1, indA2 = 1, and, for

C3,4, ind(K, ~φ) ≥ 1.813606503 . . . , and indA3 = 2 cos π4 =
√

2 < ind(K, ~φ).

2. K is a “Christmas tree”, that is, a graph which is a cactus such that any two
bundles are connected with one edge. Such a graph contains at least one edge that is a
bridge,

K1 ν1 ν2
K2
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Then

PK(λ) = PK1(λ)PK2 (λ) − PK1−v1(λ)PK2−v2(λ).

(1) Let K1, K2 be bundles. If PK1(λK) = 0, then PK2−v2(ind(K, ~φ)) = 0 and, hence,

PK2(ind(K, ~φ)) = 0, which is not true for a bundle.
(2) Let K1 , K2 be “Christmas trees” such that all brunches have “leaves” (no

hanging edges with endpoints having valency 1 are allowed). Similarly to the
above, we use induction.

(3) Let K be a “Christmas tree” with hanging edges. The most simple case of such
a graph is a unicyclic graph. In this case, we use Theorem 2 and continue by
induction.

3. Let K be a “thread with beads”–type graph, which is a cactus consisting only of
cycles and not having bridge edges,

K1 K2

ν

In this case,

P
K,~φ

(ind(K, ~φ)) = λP
K1−v,~φ′

1
(ind(K, ~φ))P

K2−v,~φ′
2
(ind(K, ~φ))

−
(

∑

u∼v, u∈VK1

P
K1−v−u,~φ′′

1,u

(ind(K, ~φ))

+ 2
∑

Cj∈C1

P
K1\Cj , ~φ1,j

′′′(ind(K, ~φ)) cosφj

)

P
K2−v,~φ′

2
(ind(K, ~φ))

−
(

∑

w∼v, w∈VK2

P
K2−v−w,~φ′′

2,w
(ind(K, ~φ))

+ 2
∑

Ci∈C2

P
K2\Ci,~φ

′′′
2,i

(ind(K, ~φ)) cosφi

)

P
K1−v,~φ′

1
(ind(K, ~φ)) = 0.

Let, for example, PK1−v(ind(K, ~φ)) = 0. Then PK2−v(ind(K, ~φ)) = 0 or

∑

u∼v, u∈VK1

P
K1−v−u,~φ′′

1,u
(ind(K, ~φ)) + 2

∑

Cj∈C1

P
K1\Cj,~φ

′′′
1,j

(ind(K, ~φ)) cosφj = 0.

(1) Let PK2−v(ind(K, ~φ)) 6= 0. We remind that C1 is the set of cycles belonging
to the graph Γ1 that contain the vertex v. In each of the cycles belonging

to the set C1 there exist two vertices u
(1)
j and u

(2)
j adjacent to v. Without

any loss of generality one might assume that P
K1−v−u

(2)
j
,~φ′′

1,u
(1)
j

(ind(K, ~φ)) ≥

P
K1−v−u

(2)
j ,~φ′′

1,u
(2)
j

(ind(K, ~φ)) . Define the set a set ṼK1 = {u(1)
j |u(1)

j ∈ Cj , Cj ∈

C1}. Then |ṼK1 | = |C1| and since the induction hypothesis is valid for K1,

ind(K1 − v − uj , ~φ
′′
1,u1

) > ind(K \ Cj , ~φ′′′1,j).
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Then
∑

u∼v, u∈VK1

P
K1−v−u,~φ′′

1,u

(ind(K, ~φ))

+ 2
∑

Cj∈C1

P
K1\Cj ,~φ

′′′
1,j

(ind(K, ~φ)) cosφj

≥ 2

(

∑

u∼v, u∈ṼK1

P
K1−v−u,~φ′′

1,u
(ind(K, ~φ))

+
∑

Cj∈C1

P
K1\Cj ,~φ

′′′
1,j

(ind(K, ~φ)) cosφj

)

> 0,

which is a contradiction.
(2) Let now PK2−v(ind(K, ~φ)) = 0. Let us first show that, by adding a cycle to

a “thread with beads”, the index of the S-signed graph strictly increases. The
proof of this will be carried out by induction starting with the simplest case
where K1 is a bundle of k − 1 cycles such that there is a vertex v of the bundle,
distinct from the common vertex, that is identified with a vertex of the k-th cycle
Ck. The characteristic polynomial for such a cactus will be

P
K,~φ

(λ) = P
K1,~φ1

(λ)Pmk−1(λ) − 2(Pmk−2(λ) + cosφk)PK1−v,~φ′
1
(λ).

For λ = ind(K1, ~φ1), we get

P
K,~φ

(ind(K1, ~φ1))=−2(Pmk−2(ind(K1, ~φ1)) + cosφk)PK1−v,~φ′
1
(ind(K1, ~φ1)) ≤ 0,

that is, P
K,~φ

(ind(K1, ~φ1)) = 0 if and only if P
K1−v,~φ′

1)
(ind(K1, ~φ1)) = 0, but

since K1 was assumed to be a bundle, we get that PK(ind(K1, ~φ1)) < 0 and

ind(K, ~φ) > ind(K1, ~φ1).
Continuing now by induction we prove the needed claim that, by adding a cycle

to a “thread with beads”, the S-index of the signed graph strictly increases.

The proof in the general case is finished by induction. �

Theorem 5. Let Γ be a bundle of k cycles Cj of lengths mj.

• If τ < 1
ind Γ , then for the pair (Γ, φ) there exists a simple system Sτ,φ of one-

dimensional subspaces for any φ ∈ [0, 2π), and dimH = n.

• If τ = 1
indΓ , then there exists an infinite family Sτ,φ parametrized with ~φ ∈

[0, 2π) × · · · × [0, 2π) of irreducible simple configurations, and dimH = n for all
~φ 6= ~0, and dimH = n− 1 for ~φ = (0, 0, . . . , 0).

• If 1
indΓ < τ < 1

indS Γ , then there exist infinite families Sτ,(φ1,...,φk) of irreducible
simple configurations, where

(φ1, . . . , φk) ∈ Φτ =
{

(φ1, . . . , φk)
∣

∣

∣ τ−1
k
∏

j=1

Pmj−1

(

τ−1
)

− 2

k
∑

i=1

(

∏

j=1, j 6=i

Pmj−1

(

τ−1
)

)

Pmi−2

(

τ−1
)

> 2
k
∑

i=1

(

∏

j=1, j 6=i

Pmj−1

(

τ−1
)

)

cosφi

}

.
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• If τ = 1
indS Γ , then there exists a unique configuration S corresponding to Γ such

that φi = π for all i = 1, . . . , k, and dimension of the space equals n − 2 if the
graph is a cycle, and equals n− 1 in other cases.

• If τ > 1
indS Γ , then there are no corresponding configurations.

Proof. The proof is similar to the proof of Theorem 2. Note that the set Φτ is nonempty
for all τ , τ ≤ 1

indS Γ . In particular, if Γ is a bundle of cycles of equal lengths, then the
set Φτ is defined by

Φτ =
{

(φ1, . . . , φk)
∣

∣

∣

k
∑

i=1

cosφi <
1

2τ
Pm−1

(1

τ

)

− kPm−2

(1

τ

)

}

.

�
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