ON EQUIANGULAR CONFIGURATIONS OF SUBSPACES OF A HILBERT SPACE

YU. S. SAMOILENKO AND YULIA YU. YERSHOVA

Abstract

In this paper, we find $\tau, 0<\tau<1$, such that there exists an equiangular (Γ, τ)-configuration of one-dimensional subspaces, and describe (Γ, τ)-configurations that correspond to unicyclic graphs and to some graphs that have cyclomatic number satisfying $\nu(\Gamma) \geq 2$.

0. Introduction

There are numerous publications, see [1] and references therein, studying systems $S=\left(H ; H_{1}, H_{2}, \ldots, H_{n}\right)$ of subspaces $H_{i}, i=1, \ldots, n$, of a complex separable Hilbert space H that may be finite dimensional or have countable dimension.

Denote by P_{i} an orthogonal projection of H onto the corresponding subspace H_{i}, $i=1, \ldots, n$.

A system of subspaces is called irreducible if any operator $C \in \mathcal{B}(H)$ that commutes with all orthogonal projections, $C P_{i}=P_{i} C, i=1, \ldots, n$, is a scalar operator, $C=\lambda I$, $\lambda \in \mathbb{C}$.

Two systems $S=\left(H ; H_{1}, \ldots, H_{n}\right)$ and $S^{\prime}=\left(H^{\prime} ; H_{1}^{\prime}, \ldots, H_{n}^{\prime}\right)$ are called unitary equivalent if there is a unitary operator $U \in \mathcal{B}\left(H, H^{\prime}\right)$ such that $U\left(H_{i}\right)=H_{i}^{\prime}$ for all $i=$ $1, \ldots, n$ or, equivalently, if $U P_{i}=P_{i} U, i=1, \ldots, n$.

To give a description of irreducible systems of n subspaces of a Hilbert space up to unitary equivalence for $n \geq 3$ is an unmanageable task, see $[2,3,4]$.

In this paper, we consider equiangular (Γ, τ)-configurations of subspaces corresponding to a connected simple (without loops or multiple edges) undirected graph $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$, where V_{Γ} denotes the set of vertices of the graph, E_{Γ} is the set of its edges, and $\tau \in \mathbb{R}$, $0<\tau<1$. An equiangular (Γ, τ)-configuration is a system $S=\left(H ; H_{1}, \ldots, H_{n}\right)$ of subspaces, $n=\left|V_{\Gamma}\right|$, such that the orthogonal projections corresponding to each pair of subspaces H_{i}, H_{j} satisfy the relation

$$
\begin{cases}P_{i} P_{j} P_{i}=\tau^{2} P_{i}, P_{j} P_{i} P_{j}=\tau^{2} P_{j}, & \text { if there is an edge } \gamma_{i j} \in E_{\Gamma}, \\ P_{i} P_{j}=P_{j} P_{i}=0, & \text { if } \gamma_{i j} \notin E_{\Gamma} .\end{cases}
$$

Here we define an angle between each pair of subspaces H_{i} and H_{j} to be $\theta=\arccos \tau$, $0<\theta<\pi / 2$, if $\gamma_{i j} \in E_{\Gamma}$, and consider H_{i} and H_{j} to be orthogonal otherwise, that is, if $\gamma_{i j} \notin E_{\Gamma}$. Let us remark that if $\Gamma=K_{n}$ is a complete graph, such (Γ, τ)-equiangular one-dimensional configurations of subspaces in a Euclidean space were studied in [5].

If Γ is a tree or a cycle, all (Γ, τ)-irreducible configurations are described in, e.g., [6]. An irreducible (Γ, τ)-configuration corresponding to a tree or a unicycle graph is a configuration of one-dimensional subspaces [1].

[^0]In this paper, by finding τ such that there exists a (Γ, τ)-configuration of one-dimensional subspaces, we describe irreducible equiangular (Γ, τ)-configurations, of one-dimensional subspaces, corresponding to the graphs that are cactuses (Theorem 4), and give a complete description, up to unitary equivalence, of all irreducible (Γ, τ)-configurations corresponding to an arbitrary unicyclic graph (Theorem2).

1. Preliminaries

Consider an equiangular configuration of n one-dimensional subspaces, which corresponds to a simple undirected graph $\Gamma=\left(V_{\Gamma}, E_{\Gamma}\right)$, where V_{Γ} denotes the set of vertices of Γ and E_{Γ} is the set of edges of the graph Γ. Let Φ be a mapping defined on edges of the graph giving a grading of the graph, $\Phi\left(\gamma_{k j}\right)=e^{i \phi_{k j}}, k<j, \gamma_{k j} \in E_{\Gamma}$. Such a pair (Γ, Φ) will be called an \mathbf{S}-signed graph.

An adjacency matrix $A_{(\Gamma, \Phi)}=\left(a_{k j}\right)_{k, j=1}^{n}$ of an \mathbf{S}-signed graph (Γ, Φ) is defined to be

$$
a_{k j}=\left\{\begin{aligned}
e^{i \phi_{k j}}, & \gamma_{k j} \in E_{\Gamma}, \quad k<j, \\
e^{-i \phi_{k j}}, & \gamma_{k j} \in E_{\Gamma}, \quad k>j, \\
0, & \gamma_{k j} \notin E_{\Gamma} .
\end{aligned}\right.
$$

Spectrum, $\sigma(\Gamma)$, and index, $\operatorname{ind}(\Gamma, \Phi)$, of an \mathbf{S}-signed graph refers to the spectrum and the largest eigenvalue of the matrix $A_{(\Gamma, \Phi)}$, respectively.

Introduce an $s w$-equivalence, a switching equivalence, on the set of all \mathbf{S}-signatures of a graph by defining two \mathbf{S}-sign graphs $\left(\Gamma, \Phi_{1}\right)$ and $\left(\Gamma, \Phi_{2}\right)$ to be equivalent if there exists a function $\psi: V_{\Gamma} \rightarrow S^{1}$ such that

$$
\Phi_{2}\left(\gamma_{k j}\right)=e^{i \psi_{k}} \Phi_{1}\left(\gamma_{k j}\right) e^{-i \psi_{j}}
$$

Lemma 1. Let $|\Gamma|=n$, and $\nu(\Gamma)$ be the cyclomatic number of the graph Γ. Then any $\mathbf{S}-$ signature of the graph Γ is sw-equivalent to some \mathbf{S}-signature with the function Φ taking the value 1 on $n-\nu(\Gamma)$ edges, so that the corresponding $\phi_{k j}$ satisfy $\phi_{k j}=0$, and the remaining $\nu(\Gamma)$ edges can be indexed so that Φ takes the values $e^{i \phi_{j}}, j=1, \ldots, \nu(\Gamma)$. Thus any \mathbf{S}-signature can be parametrized with $\nu(\Gamma)$ parameters ϕ_{j}.

This means that if Γ is a tree, then all \mathbf{S}-signatures are sw-equivalent to the \mathbf{S}-signature $\Phi\left(\gamma_{k j}\right)=1$ for all $\gamma_{k j} \in E_{\Gamma}$.

If Γ is a unicyclic graph, see Section 3, then there are only the following two $s w$ nonequivalent \mathbf{S}-signatures: the \mathbf{S}-signature $\Phi\left(\gamma_{k j}\right)=1$ for all $\gamma_{k j} \in E_{\Gamma}$, and the \mathbf{S} signature $\Phi\left(\gamma_{k j}\right)=1$ for all $\gamma_{k j} \in E_{\Gamma}$ but one edge γ in the cycle, and for this edge, $\Phi(\gamma)=e^{i \phi}, \phi \in[0,2 \pi)$.

If Γ is a cactus with k cycles, see Section 3, then by indexing cycles of the graph in a certain order, one can parametrize the set of all $s w$-nonequivalent \mathbf{S}-signatures with k parameters, $\left(\phi_{1}, \ldots, \phi_{k}\right)$, such that $\Phi(\gamma)=1$ on all edges $\gamma \in E_{\Gamma}$ except for edges in the set formed by picking one edge γ_{j} in each cycle C_{j}, where $\Phi\left(\gamma_{j}\right)=e^{i \phi_{j}}, j=1, \ldots, k$. Here ind (Γ, Φ) does not depend on the set $\left\{\gamma_{j}: \gamma_{j} \in C_{j}\right\}$.

Definition. The quantity

$$
\operatorname{ind}_{\mathbf{S}} \Gamma=\inf _{\phi \in \Omega_{\Phi}} \operatorname{ind}(\Gamma, \Phi)
$$

is called an \mathbf{S}-index of the graph, where Ω_{Φ} is the set of all values of the parameters $\left(\phi_{1}, \ldots, \phi_{k}\right), \phi_{j} \in[0,2 \pi), j=1, \ldots, k$.

If the graph is connected, then all subspaces of the simple system S corresponding to the graph have the same dimension, see [1].

The main problem is to give a description of all irreducible unitary nonequivalent equiangular configurations S corresponding to the graph Γ with a fixed $\tau, 0<\tau<1$.

In what follows, we will only consider equiangular configurations of one-dimensional subspaces, $\operatorname{dim} H_{i}=1, i=1, \ldots, n$.

The following theorem describes $\tau, 0<\tau<1$, for which there exist (Γ, τ)-configurations of one-dimensional subspaces.
Theorem 1. ([7]). Let Γ be an arbitrary fixed graph. There exist (Γ, τ)-configurations of one-dimensional subspaces if and only if $\tau \leq \frac{1}{\operatorname{ind} \Gamma}$.
Proposition 1. ([6, 9]). If Γ is a tree, then the following assertions hold:

- if there exists an irreducible configuration S corresponding to a signed graph (Γ, ϕ), then all the subspaces $H_{i}, i=1, \ldots, n$, are one-dimensional;
- an irreducible configuration S exists only if $\tau \leq \frac{1}{\operatorname{ind} \Gamma}$ and, for each τ, such a configuration is unique. Moreover, $\operatorname{dim} H=n$ if $\tau<\frac{1}{\operatorname{ind} \Gamma}$, and $\operatorname{dim} H=n-1$ if $\tau=\frac{1}{\operatorname{ind} \Gamma}$.

2. Equiangular configurations of subspaces corresponding to unicyclic GRAPHS

A unicyclic graph of girth g is a graph $\Gamma=\left(C_{g} ; T_{1}, T_{2}, \ldots, T_{g}\right)$ obtained from a cycle C_{g} of length g by identifying the i-th vertex of the cycle with the root vertex of some tree T_{i}.

In the case where Γ is a unicyclic graph there can be infinitely many irreducible configurations for some values of τ, but all such configurations are n-tuples of onedimensional subspaces [6] and are parametrized with $\phi \in \Phi_{\tau} \subseteq[0,2 \pi)$. Introduce a matrix $B_{\Gamma, \tau, \phi}$ for the unicyclic graph as follows: $B_{\Gamma, \tau, \phi}=I-\tau A_{\Gamma, \phi}$, where $A_{\Gamma, \phi}=$ $\left(a_{i j}\right)_{i, j=1}^{n}$ is the \mathbf{S}-signed adjacency matrix of the graph,

$$
a_{i j}=\left\{\begin{aligned}
0, & \text { if } \gamma_{i j} \notin E_{\Gamma}, \\
1, & \text { if } \gamma_{i j} \in E_{\Gamma},(i, j) \notin\{(1, g),(g, 1)\}, \\
e^{i \phi}, & \text { if }(i, j)=(1, g), \\
e^{-i \phi}, & \text { if }(i, j)=(g, 1)
\end{aligned}\right.
$$

Then the formula for the \mathbf{S}-index of the unicyclic graph becomes

$$
\operatorname{ind}_{\mathbf{S}} \Gamma=\inf _{\phi \in[0,2 \pi)} \operatorname{ind}(\Gamma, \phi)
$$

In the sequel, we will need the following facts from the theory of graphs.
Proposition 2. ([13]).
(1) If Γ is a connected graph and x is an arbitrary vertex of the graph, then ind $(\Gamma$ $x)<$ ind Γ.
(2) Let Γ be a connected graph and H a proper spanning subgraph of Γ, which is a subgraph that differs from the entire graph, constructed over a subset V_{H} of vertices of the graph $\Gamma-V_{\Gamma}$, and containing all edges from E_{Γ} the endpoints of which belong to V_{H} (the subgraph H is not necessarily connected). Then for all $\lambda \geq \operatorname{ind} \Gamma$,

$$
P_{H}(\lambda)>P_{\Gamma}(\lambda)
$$

where $P_{\Gamma}(\lambda)$ is the characteristic polynomial of the graph Γ, and $P_{H}(\lambda)$ is the characteristic polynomial of the graph H.

Lemma 2. The Schwenk formula for the characteristic polynomial of a unicyclic \mathbf{S} signed graph Γ has the form

$$
P_{\Gamma, \phi}(\lambda)=\lambda P_{\Gamma-v_{1}}(\lambda)-\sum_{u \sim v_{1}, u \in V_{\Gamma}} P_{\Gamma-v_{1}-u}(\lambda)-2 \cos \phi \prod_{i=1}^{g} P_{T_{i}-v_{i}}(\lambda),
$$

where v_{1} is a vertex of the cycle of the graph and $\left\{u: u \sim v_{1}\right\}$ denotes the set of vertices of the graph Γ neighboring the vertex v_{1}, and $\Gamma-v$ is the subgraph of the graph Γ obtained by removing the vertex v.

Proof. Let Γ be a cycle C_{g} of length g. Then, directly evaluating the determinant of the corresponding adjacency matrix of the \mathbf{S}-signed graph (Γ, ϕ) we get

$$
P_{\left(C_{g}, \phi\right)}(\lambda)=\lambda P_{g-1}(\lambda)-2 P_{g-2}(\lambda)-2 \cos \phi
$$

where P_{n} is the characteristic polynomial of the Dynkin graph A_{n}, a chain with n vertices.
Let now Γ be a cycle C_{g} with a root vertex of a tree T attached to one of the vertices, denoted by v_{1}, and let the valency of the root vertex be 1 . Denote the vertex of the tree T neighboring to the root vertex by v. Then the graph Γ contains a bridge between the vertices v_{1} and v, and we use the decomposition formula for the characteristic polynomial of the graph with respect to the bridge $\gamma_{v_{1} v}$,

$$
P_{(\Gamma, \phi)}(\lambda)=P_{\left(C_{g}, \phi\right)}(\lambda) P_{T}(\lambda)-P_{g-1}(\lambda) P_{T-v}(\lambda) .
$$

Substituting the expression for the characteristic polynomial of the cycle we get

$$
P_{(\Gamma, \phi)}(\lambda)=\lambda P_{g-1}(\lambda) P_{T}(\lambda)-\left(2 P_{g-2}(\lambda) P_{T}(\lambda)+P_{g-1}(\lambda) P_{T-v}(\lambda)\right)-2 \cos \phi P_{T}(\lambda),
$$

which coincides with the required formula for the graph Γ,

$$
P_{\Gamma, \phi}(\lambda)=\lambda P_{\Gamma-v_{1}}(\lambda)-\sum_{u \sim v_{1}, u \in V_{\Gamma}} P_{\Gamma-w-u}(\lambda)-2 \cos \phi P_{T-v}(\lambda)
$$

Now, using the same argument we can extend this formula to the case where there is a tree with the root having an arbitrary valency attached to a vertex of the cycle. Then, extend it to an arbitrary unicyclic graph.

Proposition 3. Let Γ be a unicyclic \mathbf{S}-signed graph. Then

$$
\operatorname{ind}_{\mathbf{S}} \Gamma=\operatorname{ind}(\Gamma, \pi)
$$

Proof. To simplify the notations, denote

$$
f(\lambda)=\lambda P_{\Gamma-v_{1}}(\lambda)-\sum_{u \sim v_{1}, u \in V_{\Gamma}} P_{\Gamma-v_{1}-u}(\lambda)
$$

and

$$
h(\lambda)=\prod_{i=1}^{g} P_{T_{i}-v_{i}}(\lambda)
$$

Then $P_{\Gamma, \phi}(\lambda)=f(\lambda)-2 \cos \phi \cdot h(\lambda)$. Consider this polynomial on the segment $[\operatorname{ind}(\Gamma, \pi) ;$ $\operatorname{ind}(\Gamma, 0)]$.

Since $h(\lambda)$ is a characteristic polynomial of the induced subgraph of the graph Γ, by Proposition $2(2), h(\operatorname{ind}(\Gamma, \pi))>0$ and $h(\operatorname{ind}(\Gamma, 0))>0$. We have

$$
\begin{aligned}
P_{\Gamma, \phi}(\operatorname{ind}(\Gamma, \pi)) & =f(\operatorname{ind}(\Gamma, \pi))-2 \cos \phi h(\operatorname{ind}(\Gamma, \pi)) \\
& =-2(1+\cos \phi) h(\operatorname{ind}(\Gamma, \pi)) \leq 0, \\
P_{\Gamma, \phi}(\operatorname{ind}(\Gamma, 0)) & =f(\operatorname{ind}(\Gamma, 0))-2 \cos \phi h(\operatorname{ind}(\Gamma, 0)) \\
& =2(1-\cos \phi) h(\operatorname{ind}(\Gamma, 0)) \geq 0 .
\end{aligned}
$$

Then, by the Weierstrass theorem, the polynomial $P_{\Gamma, \phi}(\lambda)$ has a root on the segment $[\operatorname{ind}(\Gamma, \pi) ; \operatorname{ind}(\Gamma, 0)]$. This means that the \mathbf{S}-signed graph (Γ, ϕ) has the least index for $\phi=\pi$.

Proposition 4. ([1]). For a unicyclic graph Γ there exists an irreducible simple n-tuple of subspaces corresponding to a pair (Γ, ϕ) if and only if the set Φ_{τ} of parameters for which the matrix $B_{\Gamma, \tau, \phi}$ is nonnegative definite is not empty. In such a case, for every $\phi \in \Phi_{\tau}$ there exists a unique, up to unitary equivalence, nonzero irreducible simple n-tuple of subspaces, $S_{\tau, \phi}$, and all of them are unitary nonequivalent.

All subspaces of the system $S_{\tau, \phi}$ are one-dimensional, and $\operatorname{dim} H=n$ if the matrix $B_{\Gamma, \tau, \phi}$ is positive definite, and $\operatorname{dim} H=n-1$ or $\operatorname{dim} H=n-2$ otherwise.

Theorem 2. Let Γ be a unicyclic graph with n vertices.
(1) If $\tau<\frac{1}{\operatorname{ind} \Gamma}$, then for the pair (Γ, τ) there exists a corresponding irreducible simple system $S_{\tau, \phi}$ of subspaces for any $\phi \in[0,2 \pi)$, and $\operatorname{dim} H=n$.
(2) If $\tau=\frac{1}{\text { ind } \Gamma}$, then there exists an infinite family of irreducible simple configurations $S_{\tau, \phi}$, parametrized with $\phi \in[0,2 \pi)$, and $\operatorname{dim} H=n$ for all $\phi \neq 0$, and $\operatorname{dim} H=n-1$ for $\phi=0$.
(3) If $\frac{1}{\operatorname{ind} \Gamma}<\tau<\frac{1}{\operatorname{inds} \Gamma}$, then there exists an infinite family of irreducible simple configurations $S_{\tau, \phi}$ parametrized with ϕ,

$$
\phi \in\left[\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right)}{h\left(\tau^{-1}\right.}\right), 2 \pi-\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right.}{h\left(\tau^{-1}\right)}\right)\right]
$$

where

$$
\begin{gathered}
f(\lambda)=\lambda P_{\Gamma-v_{1}}-\sum_{u \sim v_{1}, u \in V_{\Gamma}} P_{\Gamma-v_{1}-u}(\lambda) \\
h(\lambda)=\prod_{i=1}^{g} P_{T_{i}-v_{i}}(\lambda) .
\end{gathered}
$$

For

$$
\phi \in\left(\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right)}{h\left(\tau^{-1}\right.}\right), 2 \pi-\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right.}{h\left(\tau^{-1}\right)}\right)\right)
$$

$\operatorname{dim} H=n$, and $\operatorname{dim} H=n-1$ for

$$
\phi=\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right)}{h\left(\tau^{-1}\right.}\right) \quad \text { or } \quad \phi=2 \pi-\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right)}{h\left(\tau^{-1}\right)}\right) .
$$

(4) If $\tau=\frac{1}{\operatorname{inds}_{\mathrm{s}} \Gamma}$, then there is a unique configuration S corresponding to (Γ, τ) for $\phi=\pi$, and the dimension of the space is $n-2$ if the graph is a cycle, and is $n-1$ otherwise.
(5) If $\tau>\frac{1}{\operatorname{inds} \Gamma}$, then no corresponding configuration exists.

Proof. Let $\Gamma=\left(C_{g} ; T_{1}, \ldots, T_{g}\right)$ be a unicyclic graph with n vertices.
First, by using the Schwenk formula,

$$
P_{\Gamma, \phi}(\lambda)=\lambda P_{\Gamma-v_{1}}(\lambda)-\sum_{u \sim v_{1}, u \in V_{\Gamma}} P_{\Gamma-v_{1}-u}(\lambda)-2 \cos \phi \prod_{i=1}^{g} P_{T_{i}-v_{i}}(\lambda)
$$

we get for the characteristic polynomial of the signed adjacency S-matrix of a unicyclic graph that, as the value of ϕ increases in the segment $[0, \pi]$, the corresponding value of the index monotonically decrease, and $\operatorname{ind}(\Gamma, \phi)=\operatorname{ind}(\Gamma, 2 \pi-\phi)$. Then, for every value of $\tau, \tau \leq \frac{1}{\text { inds } \Gamma}$, the matrix $B_{\Gamma, \tau, \phi}$ is nonnegative definite for all values of the parameter lying in the interval

$$
\phi \in\left[\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right)}{h\left(\tau^{-1}\right)}\right), 2 \pi-\arccos \left(\frac{1}{2} \frac{f\left(\tau^{-1}\right)}{h\left(\tau^{-1}\right)}\right)\right]
$$

Now, let the graph Γ be unicyclic and not just a cycle but having at least one nontrivial tree T_{1}. Then the matrix $B_{U, \tau, \phi}$ for this graph is

$$
B_{\Gamma, \tau, \phi}=\left(\begin{array}{ccc}
1 & * & * \\
* & B_{T_{1}-v_{1}, \tau} & 0 \\
* & 0 & B_{\Gamma \backslash T_{1}, \tau}
\end{array}\right) .
$$

Removing the first row and the first column we obtain a block diagonal matrix that does not depend on ϕ and having blocks corresponding to $B_{T_{1}-v_{1}}$ and $B_{\Gamma \backslash T_{1}}$,

$$
\operatorname{rank} B_{\Gamma, \tau, \phi} \geq \operatorname{rank} B_{T_{1}-v_{1}, \tau}+\operatorname{rank} B_{\Gamma \backslash T_{1}, \tau} \geq n-2
$$

Suppose that $\operatorname{rank} B_{\Gamma, \tau, \phi}=n-2$, which is possible if $\tau=\frac{1}{\operatorname{inds} \Gamma}$. Then $\operatorname{ind}(\Gamma, \pi)$ must be a root of the characteristic polynomial $P_{\Gamma \backslash T_{1}}(\lambda)$, that is, $P_{\Gamma \backslash T_{1}}(\operatorname{ind}(\Gamma, \pi))=0$. We have

$$
\begin{aligned}
P_{\Gamma, \phi}(\lambda) & =\lambda P_{T_{1}-v_{1}}(\lambda) P_{\Gamma \backslash T_{1}}(\lambda)-\left(\sum_{u \sim v_{1} u \in V_{T_{1}}} P_{T_{1}-v_{1}-u}(\lambda)\right) P_{\Gamma \backslash T_{1}}(\lambda) \\
& -\left(\sum_{w \sim v_{1}, w \in V_{\Gamma \backslash T_{1}}} P_{\Gamma \backslash T_{1}-w}(\lambda)\right) P_{T_{1}-v_{1}}(\lambda)-2 \cos \phi \prod_{i=1}^{g} P_{T_{i}-v_{i}}(\lambda) .
\end{aligned}
$$

For $\lambda=\operatorname{ind}(\Gamma, \pi)$, we have

$$
\begin{aligned}
0=P_{\Gamma, \pi}(\operatorname{ind}(\Gamma, \pi)) & =\left(2 \prod_{i=2}^{g} P_{T_{i}-v_{i}}(\operatorname{ind}(\Gamma, \pi))\right. \\
& \left.-\sum_{w \sim v_{1}, w \in V_{\Gamma \backslash T_{1}}} P_{\Gamma \backslash T_{1}-w}(\operatorname{ind}(\Gamma, \pi))\right) P_{T_{1}-v_{1}}(\operatorname{ind}(\Gamma, \pi)) .
\end{aligned}
$$

Since removing a vertex from a connected graph we have $\operatorname{ind}(\Gamma-v)<\operatorname{ind} \Gamma$, it follows from Proposition $2(2)$ that $P_{T_{1}-v_{1}}(\operatorname{ind}(\Gamma, \pi))>0$. The expression in the round brackets must then be equal to zero,

$$
2 \prod_{i=2}^{g} P_{T_{i}-v_{i}}(\operatorname{ind}(\Gamma, \pi))-\sum_{w \sim v_{1}, w \in V_{\Gamma \backslash T_{1}}} P_{\Gamma \backslash T_{1}-\omega}(\operatorname{ind}(\Gamma, \pi))=0 .
$$

On the other hand,

$$
\begin{aligned}
& 2 \prod_{i=2}^{g} P_{T_{i}-v_{i}}(\operatorname{ind}(\Gamma, \pi))-\sum_{w \sim v_{1}, w \in V_{\Gamma} \backslash T_{1}} P_{\Gamma \backslash T_{1}-w}(\operatorname{ind}(\Gamma, \pi) \\
& \quad=2 \prod_{i=2}^{g} P_{T_{i}-v_{i}}(\operatorname{ind}(\Gamma, \pi))-P_{T_{2}-v_{2}}(\operatorname{ind}(\Gamma, \pi)) P_{\Gamma \backslash T_{1} \cup T_{2}}(\operatorname{ind}(\Gamma, \pi)) \\
& \quad-P_{T_{g}-v_{g}}(\operatorname{ind}(\Gamma, \pi)) P_{\Gamma \backslash T_{1} \cup T_{g}}(\operatorname{ind}(\Gamma, \pi)) \\
& \quad=P_{T_{2}-v_{2}}(\operatorname{ind}(\Gamma, \pi))\left[P_{T_{3}-v_{3}}(\operatorname{ind}(\Gamma, \pi)) \cdot \ldots \cdot P_{T_{g}-v_{g}}(\operatorname{ind}(\Gamma, \pi))\right. \\
& \left.\quad-P_{\Gamma \backslash T_{1} \cup T_{2}}(\operatorname{ind}(\Gamma, \pi))\right] \\
& \quad+P_{T_{g}-v_{g}}(\operatorname{ind}(\Gamma, \pi))\left[P_{t_{2}-v_{2}}(\operatorname{ind}(\Gamma, \pi)) \cdot \ldots \cdot P_{T_{g-1}-v_{g-1}}(\operatorname{ind}(\Gamma, \pi))\right. \\
& \left.\quad-P_{\Gamma \backslash T_{1} \cup T_{g}}(\operatorname{ind}(\Gamma, \pi))\right]>0,
\end{aligned}
$$

since

$$
P_{T_{2}-v_{2}}(\lambda) \cdot \ldots \cdot P_{t_{g-1}-v_{g-1}}(\lambda)>P_{\Gamma \backslash T_{1} \cup T_{g}}(\lambda)
$$

and

$$
P_{t_{3}-v_{3}}(\lambda) \cdot \ldots \cdot P_{t_{g}-v_{g}}(\lambda)>P_{\Gamma \backslash T_{1} \cup T_{2}}(\lambda)
$$

for all values of λ satisfying

$$
\lambda>\max \left\{\prod_{i=2}^{g-1} \operatorname{ind}\left(T_{i}-v_{i}\right), \prod_{i=3}^{g} \operatorname{ind}\left(T_{i}-v_{i}\right)\right\}
$$

Hence, we get $P_{\Gamma \backslash T_{1}}(\operatorname{ind}(\Gamma, \pi)) \neq 0$ and $\operatorname{dim} H=n-1$.
Remark. In case when the graph is a cycle, the dimension at the endpoint becomes $n-2$. Indeed,

$$
P_{C_{n}, \phi}(\lambda)=\lambda P_{n-1}(\lambda)-2 P_{n-2}(\lambda)-2 \cos \phi
$$

and $\operatorname{ind}_{\mathbf{S}} C_{n}=$ ind $A_{n-1}, P_{n-2}\left(\right.$ ind $\left.A_{n-1}\right)=1$, since, for $\lambda<2$, the characteristic polynomial $P_{n-2}(\lambda)$ for the Dynkin graph A_{n-2} has the form

$$
P_{n-2}(\lambda)=\frac{\sin \left((n-1) \arccos \frac{\lambda}{2}\right)}{\sqrt{1-\left(\frac{\lambda}{2}\right)^{2}}}
$$

and, for $\lambda=\operatorname{ind} A_{n-1}=2 \cos \frac{\pi}{n}$,

$$
P_{n-2}(\lambda)=\frac{\sin \left((n-1) \frac{\pi}{n}\right)}{\sin \frac{\pi}{n}}=1 .
$$

Example 1. Let $\Gamma=C_{n}$.

- If $\tau<\frac{1}{2}$, then for any pair (Γ, τ) there exists a corresponding irreducible simple system $S_{\tau, \phi}$ of subspaces for any $\phi \in[0,2 \pi)$, and $\operatorname{dim} H=n$.
- If $\tau=\frac{1}{2}$, then there exists an infinite family of irreducible simple configurations $S_{\tau, \phi}$, parametrized with $\phi \in[0,2 \pi)$, whereas $\operatorname{dim} H=n$ for all $\phi \neq 0$, and $\operatorname{dim} H=n-1$ for $\phi=0$.
- If $\frac{1}{2}<\tau<\frac{1}{2 \cos \frac{\pi}{n}}$, then there exists an infinite family $S_{\tau, \phi}$ of irreducible simple configurations parametrized with $\phi \in[n \alpha ; 2 \pi-n \alpha]$, with $\operatorname{dim} H=n$ for $\phi \in$ $(n \alpha ; 2 \pi-n \alpha), \operatorname{dim} H=n-1$ for $\phi=n \alpha$ and $\phi=2 \pi-n \alpha$, where α is a root of the equation $\tau=\frac{1}{2 \cos \alpha}$.
- If $\tau=\frac{1}{2 \cos \frac{\pi}{n}}$, then there is a unique configuration S corresponding to (Γ, τ) for $\phi=\pi$, and the dimension of the space is $n-2$.
- If $\tau>\frac{1}{2 \cos \frac{\pi}{n}}$, then no corresponding configurations exist.

Example 2. Let $\Gamma=\left(C_{4} ; m_{1}, 0,0,0\right)$ be the graph consisting of a square with a tree having the root attached to one of the corners, where the tree is a star with m_{1} rays and the root is located in the vertex having the maximal valency.

- If $\tau<\sqrt{\frac{2}{4+m_{1}+\sqrt{m_{1}^{2}+16}}}$, then for any $\phi \in[0,2 \pi)$ there exists an irreducible simple system $S_{\tau, \phi}$ of subspaces, corresponding to the pair (Γ, τ), and $\operatorname{dim} H=m_{1}+4$.
- If $\tau=\sqrt{\frac{2}{4+m_{1}+\sqrt{m_{1}^{2}+16}}}$, then there is an infinite family of irreducible simple configurations $S_{\phi, \tau}$ parametrized with $\phi \in[0,2 \pi)$, and $\operatorname{dim} H=m_{1}+4$ for all $\phi \neq 0$, and $\operatorname{dim} H=m_{1}+3$ for $\phi=0$.
- If $\sqrt{\frac{2}{4+m_{1}+\sqrt{m_{1}^{2}+16}}}<\tau<\sqrt{\frac{1}{m_{1}+2}}$, then there is an infinite family $S_{\phi, \tau}$ of irreducible simple configurations parametrized with

$$
\phi \in\left[\arccos \left(\frac{2 m_{1} \tau^{4}-\left(m_{1}+4\right) \tau^{2}+1}{2 \tau^{4}}\right) ; 2 \pi-\arccos \left(\frac{2 m_{1} \tau^{4}-\left(m_{1}+4\right) \tau^{2}+1}{2 \tau^{4}}\right)\right] .
$$

We have $\operatorname{dim} H=m_{1}+4$ if

$$
\phi \in\left(\arccos \left(\frac{2 m_{1} \tau^{4}-\left(m_{1}+4\right) \tau^{2}+1}{2 \tau^{4}}\right) ; 2 \pi-\arccos \left(\frac{2 m_{1} \tau^{4}-\left(m_{1}+4\right) \tau^{2}+1}{2 \tau^{4}}\right)\right)
$$

and $\operatorname{dim} H=m_{1}+3$ if

$$
\phi=\arccos \left(\frac{2 m_{1} \tau^{4}-\left(m_{1}+4\right) \tau^{2}+1}{2 \tau^{4}}\right)
$$

Or

$$
\phi=2 \pi-\arccos \left(\frac{2 m_{1} \tau^{4}-\left(m_{1}+4\right) \tau^{2}+1}{2 \tau^{4}}\right) .
$$

- If $\tau=\sqrt{\frac{1}{m_{1}+2}}$, then there is a unique configuration S corresponding to (Γ, τ) for $\phi=\pi$, and the dimension of the space equals $m_{1}+3$.
- If $\tau>\sqrt{\frac{1}{m_{1}+2}}$, then no corresponding configurations exist.

3. EQuiangular configurations, of one-dimensional subspaces, connected WITH CACTUSES

A graph in which every two cycles have no more than 1 common vertex will be called a cactus.

It follows from Lemma 1 that all irreducible equiangular $(\Gamma \tau)$-configurations, of onedimensional subspaces, connected with a cactus having k cycles can be parametrized with k parameters by picking one edge γ_{j} in every cycle C_{j} in an arbitrary way and setting $\Phi\left(\gamma_{j}\right)=e^{i \phi_{j}}$ on these edges, and $\Phi(\gamma)=1$ for other edges. Such a parametrization ϕ will be denoted by $\vec{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$.

Lemma 3. Let Γ be a cactus and $w \in E_{\Gamma}$. Then the characteristic polynomial for Γ satisfies the following modification of the Schwenk formula:

$$
P_{\Gamma, \phi}(\lambda)=\lambda P_{\Gamma-w, \phi^{\prime}}(\lambda)-\sum_{u \sim w, u \in V_{\Gamma}} P_{\Gamma-u-w, \phi^{\prime \prime}}(\lambda)-2 \sum_{C_{j} \in \mathcal{C}(w)} P_{\Gamma-C_{j}, \phi^{\prime \prime \prime}}(\lambda) \cos \phi_{j},
$$

where $\phi^{\prime}, \phi^{\prime \prime}, \phi^{\prime \prime \prime}$ are restrictions of ϕ to the corresponding subgraphs of the graph Γ, $\mathcal{C}(w)$ is the set of all cycles of the graph containing the vertex w.

Proof. The proof is obtained by induction similarly to the proof of the Schwenk formula for a unicyclic graph.

Lemma 4. Let $\lambda>\min \{\operatorname{ind}(\Gamma, \vec{\phi}), \operatorname{ind}(\Gamma, \vec{\chi})\}, \vec{\phi}, \vec{\chi} \in \mathbb{R}^{k}$. Then, if $\cos \left(\phi_{j}\right)>\cos \left(\chi_{j}\right)$ for $j=1, \ldots, k$, then

$$
\left\{\begin{array}{lll}
P_{\Gamma, \vec{\phi}}(\lambda)>P_{\Gamma, \vec{\chi}}(\lambda), & \text { if } \quad \operatorname{ind}(\Gamma, \vec{\phi})<\operatorname{ind}(\Gamma, \vec{\chi}), \\
P_{\Gamma, \vec{\phi}}(\lambda)<P_{\Gamma, \vec{\chi}}(\lambda), & \text { if } \quad \operatorname{ind}(\Gamma, \vec{\phi})>\operatorname{ind}(\Gamma, \vec{\chi}) .
\end{array}\right.
$$

This lemma can be easily proved by induction.
Theorem 3. Let Γ be a cactus. Then $\operatorname{ind}_{\mathbf{s}} \Gamma=\operatorname{ind}(\Gamma,(\pi, \pi, \ldots, \pi))$.
Proof. The proof will be carried out by induction on the number of cycles in the graph.
If the graph is unicyclic, the claim is clear. Let it also hold for a cactus with $k-1$ cycles. Consider a cactus with k cycles and having one of the following forms:

$w=w^{\prime}$
where Γ^{\prime} is a cactus with $(k-1)$ cycles connected to a unicyclic graph U with a bridge (a) or a common vertex (b), with w being a vertex of the cycle C_{1} of the graph U. Then the characteristic polynomial for the graph Γ has the following form:

$$
P_{\Gamma, \vec{\phi}}(\lambda)=P_{\Gamma^{\prime}, \vec{\phi}^{\prime}}(\lambda) P_{U-w}(\lambda)-\left(\sum_{u \sim w, u \in V_{U}} P_{U-w}(\lambda)+2 P_{U-C_{1}}(\lambda) \cos \phi_{1}\right) P_{\Gamma^{\prime}-w^{\prime}, \vec{\phi}^{\prime \prime}}(\lambda) .
$$

Let for some set $\left(\tilde{\phi}_{1}, \ldots, \tilde{\phi}_{k}\right)$, distinct from (π, \ldots, π), the index of the \mathbf{S}-signed graph $(\Gamma, \overrightarrow{\tilde{\phi}})$ be the smallest. Then $P_{\Gamma,(\pi, \ldots, \pi)}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))<0$. Consider

$$
P_{\Gamma, \overrightarrow{\tilde{\phi}}}\left(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}})-P_{\Gamma,(\pi, \ldots, \pi)}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))\right.
$$

We get

$$
\begin{aligned}
& P_{\Gamma, \vec{\phi}}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))-P_{\Gamma,(\pi, \ldots, \pi)}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}})) \\
& \quad=\left(P_{\Gamma^{\prime}, \vec{\phi}}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))-P_{\Gamma^{\prime},(\pi, \ldots, \pi)}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))\right) P_{U-w}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}})) \\
& \quad+2\left(1-\cos \phi_{1}\right) P_{U-C_{1}}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))\left(P_{\Gamma^{\prime}-w^{\prime},, \vec{\phi}^{\prime}}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))-P_{\Gamma^{\prime}-w^{\prime},(\pi, \ldots, \pi)}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))\right)
\end{aligned}
$$

Since the graphs Γ^{\prime} and $\Gamma^{\prime}-w$ are cactuses with numbers of cycles less than k, by the inductive assumption we have that $\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}})>\operatorname{ind}(\Gamma,(\pi, \ldots, \pi))$. Using Lemma 4 and setting $\vec{\phi}=\overrightarrow{\tilde{\phi}}$ and $\vec{\chi}=(\pi, \ldots, \pi)$ we get

$$
P_{\Gamma,(\pi, \ldots, \pi)}(\operatorname{ind}(\Gamma, \overrightarrow{\tilde{\phi}}))>0
$$

which is a contradiction.
Theorem 4. Let K be a cactus with k cycles, $K \neq C_{n}$. Suppose that for some τ_{0},

$$
\frac{1}{\operatorname{ind} K} \leq \tau_{0} \leq \frac{1}{\operatorname{ind} K}
$$

and

$$
\vec{\phi} \in \Sigma_{\tau_{0}}=\left\{\vec{\phi}=\left(\phi_{1}, \ldots, \phi_{k}\right): \operatorname{ind}(K, \vec{\phi}) \leq \tau_{0}^{-1}\right\} \neq \emptyset
$$

there exists a corresponding irreducible one-dimensional configuration $\left(K, \tau_{0}, \vec{\phi}\right)$.
Then

$$
\operatorname{dim} H= \begin{cases}n, & \text { if } \operatorname{ind}(K, \vec{\phi})<\frac{1}{\tau_{0}} \\ n-1, & \text { if } \operatorname{ind}(K, \vec{\phi})=\frac{1}{\tau_{0}}\end{cases}
$$

Proof. 1. Let K be a bundle of cycles, i.e., a set of cycles having a common point, such that the cycle C_{j} contains m_{j} points, $j=1, \ldots, k$. Then
$B_{K, \tau, \phi}=\left(\begin{array}{c|c|c|c}1 & -\tau_{0} e^{i \phi_{1}} 0 \ldots 0-\tau_{0} & \ldots & -\tau_{0} e^{i \phi_{g}} 0 \ldots 0-\tau_{0} \\ \hline-\tau_{0} e^{-i \phi_{1}} & & & \\ 0 & & \ldots & 0 \\ \vdots & B_{A_{m_{1}-1}} & \ldots & \\ 0 & & & \\ -\tau_{0} & & \ddots & \vdots \\ \vdots & \vdots & & \\ \hline-\tau_{0} e^{-i \phi_{g}} & & B_{A_{m_{g}-1}} \\ 0 & 0 & & \\ \vdots & & & \end{array}\right)$.

So,

$$
\operatorname{rank} B_{K, \vec{\phi}, \tau_{0}} \geq \sum_{j=1}^{k} \operatorname{rank} B_{A_{m_{j}-1}}
$$

The indices of the chain satisfy $\operatorname{ind}\left(A_{m}\right) \nearrow 2$ for $m \rightarrow \infty$, that is, $\operatorname{ind}\left(A_{m_{j}-1}\right)<2$ for all $j=1, \ldots, g$.

Let us show that $\operatorname{ind}(K, \vec{\phi})>2$. By using the Schwenk formula for the characteristic polynomial for the bundle, we get

$$
\begin{aligned}
P_{K}(\lambda) & =\lambda \prod_{j=1}^{k} P_{m_{j}-1}(\lambda)-2 \sum_{i=1}^{k}\left(\prod_{j=1, j \neq i}^{k} P_{m_{j}-1}(\lambda)\right) P_{m_{i}-2}(\lambda) \\
& -2 \sum_{i=1}^{k}\left(\prod_{j=1, j \neq i}^{k} P_{m_{j}-1}(\lambda)\right) \cos \phi_{i},
\end{aligned}
$$

where $P_{m_{j}-1}(\lambda)$ is the characteristic polynomial for the adjacency matrix of the graph $A_{m_{j}-1}$.

If the graph Γ is a chain with n vertices, then $P_{n}(2)=n+1$, see [8]. Then

$$
\begin{aligned}
P_{K}(2) & =2 m_{1} \ldots m_{k}-2 \sum_{i=1}^{k} m_{1} \ldots m_{i-1} m_{i+1} \ldots m_{k}\left(m_{i}-1\right) \\
& -2 \sum_{i=1}^{k} m_{1} \ldots m_{i-1} m_{i+1} \ldots m_{g} \cos \phi_{i} \\
& =2(1-k) m_{1} \ldots m_{k}+\left(1-\cos \phi_{1}\right) m_{2} \ldots m_{g}+\cdots+\left(1-\cos \phi_{g}\right) m_{1} \ldots m_{g-1} .
\end{aligned}
$$

This expression takes its maximal value at $\phi_{1}=\phi_{2}=\cdots=\phi_{g}=\pi$,

$$
\begin{aligned}
& (1-k) m_{1} \ldots m_{k}+2 m_{2} \ldots m_{g}+\cdots+2 m_{1} \ldots m_{g-1} \\
& \quad=m_{1} \ldots m_{k}+\left(2-m_{1}\right) m_{2} \ldots m_{g}+\ldots+\left(2-m_{g}\right) m_{1} \ldots m_{g-1}
\end{aligned}
$$

For sufficiently large values of $m_{j}, m_{j} \geq 3$, we have $P_{K}(2)<0$. This is true for all bundles except for the following ones:

- $C_{3,3}, P_{C_{3,3}}(2)=3 \cdot 3-3-3=3>0 ;$
- $C_{3,4}, P_{C_{3,4}}=3 \cdot 4-2 \cdot 3-4=2>0$;
- $C_{3,3,3}, P_{C_{3,3,3}}(2)=3 \cdot 3 \cdot 3-3 \cdot 3-3 \cdot 3-3 \cdot 3=0$.

This means that $\operatorname{ind}(K, \vec{\phi})>2$ for all $\vec{\phi}$, and the claim is proved in this case.
Consider the exceptions. For $C_{3,3}$ and $C_{3,3,3}$, we have ind $K>1$, ind $A_{2}=1$, and, for $C_{3,4}, \operatorname{ind}(K, \vec{\phi}) \geq 1.813606503 \ldots$, and ind $A_{3}=2 \cos \frac{\pi}{4}=\sqrt{2}<\operatorname{ind}(K, \vec{\phi})$.
2. K is a "Christmas tree", that is, a graph which is a cactus such that any two bundles are connected with one edge. Such a graph contains at least one edge that is a bridge,

Then

$$
P_{K}(\lambda)=P_{K_{1}}(\lambda) P_{K_{2}}(\lambda)-P_{K_{1}-v_{1}}(\lambda) P_{K_{2}-v_{2}}(\lambda)
$$

(1) Let K_{1}, K_{2} be bundles. If $P_{K_{1}}\left(\lambda_{K}\right)=0$, then $P_{K_{2}-v_{2}}(\operatorname{ind}(K, \vec{\phi}))=0$ and, hence, $P_{K_{2}}(\operatorname{ind}(K, \vec{\phi}))=0$, which is not true for a bundle.
(2) Let K_{1}, K_{2} be "Christmas trees" such that all brunches have "leaves" (no hanging edges with endpoints having valency 1 are allowed). Similarly to the above, we use induction.
(3) Let K be a "Christmas tree" with hanging edges. The most simple case of such a graph is a unicyclic graph. In this case, we use Theorem 2 and continue by induction.
3. Let K be a "thread with beads"-type graph, which is a cactus consisting only of cycles and not having bridge edges,

In this case,

$$
\begin{aligned}
P_{K, \vec{\phi}}(\operatorname{ind}(K, \vec{\phi})) & =\lambda P_{K_{1}-v, \vec{\phi}_{1}^{\prime}}(\operatorname{ind}(K, \vec{\phi})) P_{K_{2}-v, \vec{\phi}_{2}^{\prime}}(\operatorname{ind}(K, \vec{\phi})) \\
& -\left(\sum_{u \sim v, u \in V_{K_{1}}} P_{K_{1}-v-u, \vec{\phi}_{1, u}^{\prime \prime}}(\operatorname{ind}(K, \vec{\phi}))\right. \\
& \left.+2 \sum_{C_{j} \in \mathcal{C}_{1}} P_{K_{1} \backslash C_{j}, \vec{\phi}_{1, j}^{\prime \prime \prime}}(\operatorname{ind}(K, \vec{\phi})) \cos \phi_{j}\right) P_{K_{2}-v, \vec{\phi}_{2}^{\prime}}(\operatorname{ind}(K, \vec{\phi})) \\
& -\left(\sum_{w \sim v, w \in V_{K_{2}}} P_{K_{2}-v-w, \vec{\phi}_{2, w}^{\prime \prime}}(\operatorname{ind}(K, \vec{\phi}))\right. \\
& \left.+2 \sum_{C_{i} \in \mathcal{C}_{2}} P_{K_{2} \backslash C_{i}, \vec{\phi}_{2, i}^{\prime \prime}}(\operatorname{ind}(K, \vec{\phi})) \cos \phi_{i}\right) P_{K_{1}-v, \vec{\phi}_{1}^{\prime}}(\operatorname{ind}(K, \vec{\phi}))=0 .
\end{aligned}
$$

Let, for example, $P_{K_{1}-v}(\operatorname{ind}(K, \vec{\phi}))=0$. Then $P_{K_{2}-v}(\operatorname{ind}(K, \vec{\phi}))=0$ or

$$
\sum_{u \sim v, u \in V_{K_{1}}} P_{K_{1}-v-u, \vec{\phi}_{1, u}^{\prime \prime}}(\operatorname{ind}(K, \vec{\phi}))+2 \sum_{C_{j} \in \mathcal{C}_{1}} P_{K_{1} \backslash C_{j}, \vec{\phi}_{1, j}^{\prime \prime \prime}}(\operatorname{ind}(K, \vec{\phi})) \cos \phi_{j}=0
$$

(1) Let $P_{K_{2}-v}(\operatorname{ind}(K, \vec{\phi})) \neq 0$. We remind that \mathcal{C}_{1} is the set of cycles belonging to the graph Γ_{1} that contain the vertex v. In each of the cycles belonging to the set \mathcal{C}_{1} there exist two vertices $u_{j}^{(1)}$ and $u_{j}^{(2)}$ adjacent to v. Without any loss of generality one might assume that $P_{K_{1}-v-u_{j}^{(2)}, \vec{\phi}_{1, u_{j}^{\prime \prime}}^{(1)}}(\operatorname{ind}(K, \vec{\phi})) \geq$ $P_{K_{1}-v-u_{j}^{(2)}, \vec{\phi}_{1, u_{j}^{\prime \prime}}^{\prime 2}}(\operatorname{ind}(K, \vec{\phi}))$. Define the set a set $\tilde{V}_{K_{1}}=\left\{u_{j}^{(1)} \mid u_{j}^{(1)} \in C_{j}, C_{j} \in\right.$ $\left.\mathcal{C}_{1}\right\}$. Then $\left|\tilde{V}_{K_{1}}\right|=\left|\mathcal{C}_{1}\right|$ and since the induction hypothesis is valid for K_{1},

$$
\operatorname{ind}\left(K_{1}-v-u_{j}, \vec{\phi}_{1, u_{1}}^{\prime \prime}\right)>\operatorname{ind}\left(K \backslash C_{j}, \vec{\phi}_{1, j}^{\prime \prime \prime}\right)
$$

Then

$$
\begin{aligned}
& \sum_{u \sim v, u \in V_{K_{1}}} P_{K_{1}-v-u, \vec{\phi}_{1, u}^{\prime \prime}}(\operatorname{ind}(K, \vec{\phi})) \\
& +2 \sum_{C_{j} \in \mathcal{C}_{1}} P_{K_{1} \backslash C_{j}, \vec{\phi}_{1, j}^{\prime \prime \prime}}(\operatorname{ind}(K, \vec{\phi})) \cos \phi_{j} \\
& \geq 2\left(\sum_{u \sim v, u \in \tilde{V}_{K_{1}}} P_{K_{1}-v-u, \vec{\phi}_{1, u}^{\prime \prime}}(\operatorname{ind}(K, \vec{\phi}))\right. \\
& \left.+\sum_{C_{j} \in \mathcal{C}_{1}} P_{K_{1} \backslash C_{j}, \vec{\phi}_{1, j}^{\prime \prime \prime}}(\operatorname{ind}(K, \vec{\phi})) \cos \phi_{j}\right)>0,
\end{aligned}
$$

which is a contradiction.
(2) Let now $P_{K_{2}-v}(\operatorname{ind}(K, \vec{\phi}))=0$. Let us first show that, by adding a cycle to a "thread with beads", the index of the \mathbf{S}-signed graph strictly increases. The proof of this will be carried out by induction starting with the simplest case where K_{1} is a bundle of $k-1$ cycles such that there is a vertex v of the bundle, distinct from the common vertex, that is identified with a vertex of the k-th cycle C_{k}. The characteristic polynomial for such a cactus will be

$$
P_{K, \vec{\phi}}(\lambda)=P_{K_{1}, \vec{\phi}_{1}}(\lambda) P_{m_{k}-1}(\lambda)-2\left(P_{m_{k}-2}(\lambda)+\cos \phi_{k}\right) P_{K_{1}-v, \vec{\phi}_{1}^{\prime}}(\lambda) .
$$

For $\lambda=\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)$, we get
$P_{K, \vec{\phi}}\left(\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)\right)=-2\left(P_{m_{k}-2}\left(\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)\right)+\cos \phi_{k}\right) P_{K_{1}-v, \vec{\phi}_{1}^{\prime}}\left(\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)\right) \leq 0$,
that is, $P_{K, \vec{\phi}}\left(\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)\right)=0$ if and only if $P_{\left.K_{1}-v, \vec{\phi}_{1}^{\prime}\right)}\left(\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)\right)=0$, but since K_{1} was assumed to be a bundle, we get that $P_{K}\left(\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)\right)<0$ and $\operatorname{ind}(K, \vec{\phi})>\operatorname{ind}\left(K_{1}, \vec{\phi}_{1}\right)$.

Continuing now by induction we prove the needed claim that, by adding a cycle to a "thread with beads", the S-index of the signed graph strictly increases.
The proof in the general case is finished by induction.
Theorem 5. Let Γ be a bundle of k cycles C_{j} of lengths m_{j}.

- If $\tau<\frac{1}{\text { ind } \Gamma}$, then for the pair (Γ, ϕ) there exists a simple system $S_{\tau, \phi}$ of onedimensional subspaces for any $\phi \in[0,2 \pi)$, and $\operatorname{dim} H=n$.
- If $\tau=\frac{1}{\operatorname{ind} \Gamma}$, then there exists an infinite family $S_{\tau, \phi}$ parametrized with $\vec{\phi} \in$ $[0,2 \pi) \times \cdots \times[0,2 \pi)$ of irreducible simple configurations, and $\operatorname{dim} H=n$ for all $\vec{\phi} \neq \overrightarrow{0}$, and $\operatorname{dim} H=n-1$ for $\vec{\phi}=(0,0, \ldots, 0)$.
- If $\frac{1}{\operatorname{ind} \Gamma}<\tau<\frac{1}{\operatorname{inds} \Gamma}$, then there exist infinite families $S_{\tau,\left(\phi_{1}, \ldots, \phi_{k}\right)}$ of irreducible simple configurations, where

$$
\begin{aligned}
& \left(\phi_{1}, \ldots, \phi_{k}\right) \in \Phi_{\tau}=\left\{\left(\phi_{1}, \ldots, \phi_{k}\right) \mid \tau^{-1} \prod_{j=1}^{k} P_{m_{j}-1}\left(\tau^{-1}\right)\right. \\
& -2 \sum_{i=1}^{k}\left(\prod_{j=1, j \neq i} P_{m_{j}-1}\left(\tau^{-1}\right)\right) P_{m_{i}-2}\left(\tau^{-1}\right) \\
& \left.\quad>2 \sum_{i=1}^{k}\left(\prod_{j=1, j \neq i} P_{m_{j}-1}\left(\tau^{-1}\right)\right) \cos \phi_{i}\right\}
\end{aligned}
$$

- If $\tau=\frac{1}{\operatorname{inds} \Gamma}$, then there exists a unique configuration S corresponding to Γ such that $\phi_{i}=\pi$ for all $i=1, \ldots, k$, and dimension of the space equals $n-2$ if the graph is a cycle, and equals $n-1$ in other cases.
- If $\tau>\frac{1}{\operatorname{inds} \Gamma}$, then there are no corresponding configurations.

Proof. The proof is similar to the proof of Theorem 2. Note that the set Φ_{τ} is nonempty for all $\tau, \tau \leq \frac{1}{\text { inds } \Gamma}$. In particular, if Γ is a bundle of cycles of equal lengths, then the set Φ_{τ} is defined by

$$
\Phi_{\tau}=\left\{\left(\phi_{1}, \ldots, \phi_{k}\right) \left\lvert\, \sum_{i=1}^{k} \cos \phi_{i}<\frac{1}{2 \tau} P_{m-1}\left(\frac{1}{\tau}\right)-k P_{m-2}\left(\frac{1}{\tau}\right)\right.\right\}
$$

References

1. A. V. Strelets, Yu. S. Samoilenko, On simple n-tuples of a Hilbert space, Ukrain. Mat. Zh. 61 (2009), no. 1, 48-60.
2. Yu. S. Samoilenko, S. A. Kruglyak, On complexity of description of representations of *-algebras generated by idempotents, Proc. Amer. Math. Soc. 128 (2000), no. 6, 1655-1664.
3. Yu. S. Samoilenko, S. A. Kruglyak, On unitary equivalence of collections of self-adjoint operators, Funktsional. Anal. i Prilozhen. 14 (1998), no. 1, 60-62.
4. V. L. Ostrovskyi, Yu. S. Samoilenko, Introduction to the Theory of Representations of Finitely Presented *-Algebras, I. Representations by Bounded Operators, Rev. Math. Math. Phys., 11, Harwood Academic Publishers, Amsterdam, 1999.
5. J. J. Seidel, P. W. H. Lemmens, Equiangular lines, J. Algebra 24 (1973), 494-512.
6. N. D. Popova, M. A. Vlasenko, On configurations of subspaces of a Hilbert space with fixed angles between the subspaces, Ukrain. Mat. Zh. 56 (2004), no. 5, 606-615.
7. Yu. S. Samoilenko, R. V. Grushevoy, Systems of one-dimensional subspaces of a Hilbert space, Methods Funct. Anal. Topology 16 (2010), no. 2, 131-139.
8. Z. Radosavljevic' and M. Rasajski, Multicyclic treelike reflexive graphs, Discrete Math. 296 (2005), no. 1, 43-57.
9. N. D. Popova, Yu. S. Samoilenko, On the existence of configurations of subspaces in a Hilbert space with fixed angles, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 55 (2006), 1-5.
10. A. J. Schwenk, Computing the characteristic polynomial of a graph, Lecture Notes in Mathematics, 406, Springer, Berlin, 1974, pp. 153-172.
11. N. D. Popova, On finite-dimensional representations of one algebra of Temperley-Lieb type, Methods Funct. Anal. Topology 7 (2001), no. 3, 80-92.
12. P. J. Cameron, J. J. Seidel, and S. V. Tsaranov, Signed graphs, root lattices, and Coxeter groups, J. Algebra 164 (1994), 173-209.
13. S. Simic, On the largest eigenvalue of unicyclic graphs, Publ. Inst. Mat. (Beograd) 42 (1987), 13-19.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: Yurii_Sam@imath.kiev.ua
Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

[^0]: 2000 Mathematics Subject Classification. 47A62, 16G20.
 Key words and phrases. System of subspaces, equiangular configurations, unicyclic graphs, S-index of graph.

