ON C*-ALGEBRA GENERATED BY FOCK REPRESENTATION OF WICK ALGEBRA WITH BRAIDED COEFFICIENTS

D. PROSKURIN

ABSTRACT. We consider C^* -algebras $\mathcal{W}(T)$ generated by operators of Fock representations of Wick *-algebras with a braided coefficient operator T. It is shown that for any braided T with ||T|| < 1 one has the inclusion $\mathcal{W}(0) \subset \mathcal{W}(T)$. Conditions for existence of an isomorphism $\mathcal{W}(T) \simeq \mathcal{W}(0)$ are discussed.

1. INTRODUCTION

In this note we study the Fock representation of the Wick *-algebra W(T) with a braided coefficient operator. Recall, see [4], that

(1)
$$W(T) = \mathbb{C}\langle a_i, a_i^*, i = \overline{1, d} \mid a_i a_j^* = \delta_{ij} 1 + \sum_{k,l=1}^d T_{ij}^{kl} a_l^* a_k, T_{ij}^{kl} = \overline{T_{ji}^{lk}} \rangle.$$

Let $\mathcal{H} = \langle e_1, \ldots, e_d \rangle$ and put

$$T: \mathcal{H} \otimes \mathcal{H} \mapsto \mathcal{H} \otimes \mathcal{H}, \quad Te_k \otimes e_l = \sum_{i,j=1}^d T_{ik}^{lj} e_i \otimes e_j, \quad T = T^*,$$

$$T_i: \mathcal{H}^{\otimes n} \mapsto \mathcal{H}^{\otimes n}, \quad T_i = \underbrace{\mathbf{1}_{\mathcal{H}} \otimes \cdots \otimes \mathbf{1}_{\mathcal{H}}}_{i-1} \otimes T \otimes \underbrace{\mathbf{1}_{\mathcal{H}} \otimes \cdots \otimes \mathbf{1}_{\mathcal{H}}}_{n-i-1}, \quad i = 1, \dots, n-1.$$

An operator T is called a **coefficient operator** for W(T). We say that T satisfies the **braid** relation if on $\mathcal{H}^{\otimes 3}$

(2)
$$T_1 T_2 T_1 = T_2 T_1 T_2.$$

The Fock representation of W(T), see [1, 4], is defined on the full tensor space over \mathcal{H} ,

$$\mathcal{T}(\mathcal{H}) = \mathbb{C}\Omega \oplus \mathcal{H} \oplus \mathcal{H}^{\otimes 2} \oplus \cdots, \quad ||\Omega|| = 1$$

, by the following rules, see

$$\pi_F(a_i^*)e_{i_1} \otimes \cdots \otimes e_{i_n} = e_i \otimes e_{i_1} \otimes \cdots \otimes e_{i_n},$$

$$\pi_F(a_i)e_{i_1} \otimes \cdots \otimes e_{i_n} = \mu(e_i)M_ne_{i_1} \otimes \cdots \otimes e_{i_n}, \quad n \ge 1,$$

$$\pi_F(a_i)\Omega = 0, \quad i = 1, \dots, d,$$

where

$$\mu(e_i)e_{i_1}\otimes\cdots\otimes e_{i_n}=\delta_{ii_1}e_{i_2}\otimes\cdots\otimes e_{i_n},\quad \mu(e_i)\Omega=0,\quad i=1,\ldots,d$$

, and

$$M_n: \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}, \quad M_n = \mathbf{1}_{\mathcal{H}^{\otimes n}} + T_1 + T_1 T_2 + \dots + T_1 T_2 \cdots T_{n-1}, \quad n \ge 2,$$

 $M_0=1, M_1=\mathbf{1}_{\mathcal{H}}.$

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L65; Secondary 81T05.

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ Fock representation, Cuntz-Topelitz algebra, Braid relation.

The author was supported by DFG grant SCHM1009/4-1.

Theorem 1. ([4]). There exists a unique Hermitian sesquilinear form $\langle \cdot, \cdot \rangle_T$ on $\mathcal{T}(\mathcal{H})$ such that

$$\langle \pi_F(a_i^*)X,Y\rangle_T = \langle X,\pi_F(a_i)Y\rangle_T, \quad X,Y\in\mathcal{T}(\mathcal{H}), \quad i=1,\ldots,d.$$

More precisely,

 $\langle X,Y\rangle_T = \langle X,P_nY\rangle, \ X,Y\in \mathcal{H}^{\otimes n}, \quad \langle X,Y\rangle_T = 0, \ X\in \mathcal{H}^{\otimes n}, \quad Y\in \mathcal{H}^{\otimes m}, \quad n\neq m, \\ where$

$$P_n: \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}, \quad P_n^* = P_n,$$

$$P_0 = 1, \quad P_1 = \mathbf{1}_{\mathcal{H}},$$

$$P_n = (\mathbf{1}_{\mathcal{H}} \otimes P_{n-1})M_n, \quad n \ge 2.$$

The following statement is a combination of the main results of [1] and [3].

Theorem 2. Let T be braided and ||T|| < 1, then $P_n > 0$, $n \ge 2$, hence $\langle \cdot, \cdot \rangle_T$ is positive definite and the Fock representation π_F of W(T) can be extended to a *-representation on the Hilbert space. Moreover, the Fock representation is a faithful bounded *-representation of the *-algebra W(T) and

$$\|\pi_F(a_i)\|^2 \le \frac{1}{1-\|T\|}, \quad i=1,\ldots,d.$$

Below we denote by $\mathcal{T}(\mathcal{H})_0$ the closure of $\mathcal{T}(\mathcal{H})$ with respect to the standard scalar product, and by $\mathcal{T}(\mathcal{H})_T$ the closure with respect to the Fock scalar product $\langle \cdot, \cdot \rangle_T$. Also $\mathcal{H}^{\otimes n}$ will denote the *n*-th tensor component of $\mathcal{T}(\mathcal{H})_0$, and $\mathcal{H}_T^{\otimes n}$ the corresponding component of $\mathcal{T}(\mathcal{H})_T$.

In paper [2], the authors proved that for any $q \in (0, 1)$ the C^* -algebra $\mathcal{E}_q^{(d)}$ generated by the Fock representation of q-CCR with d generators contains the C^* -algebra $\mathcal{E}_0^{(d)}$ that is isomorphic to the Cuntz-Topelitz C^* -algebra $\mathcal{O}_d^{(0)}$. It was also shown in [2] that for qsatisfying the condition

(3)
$$q^{2} < \prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}} = \sum_{k=-\infty}^{+\infty} (-1)^{k} q^{k^{2}},$$

one has an isomorphism $\mathcal{E}_q^{(d)} \simeq \mathcal{E}_0^{(d)}$.

In this note we show that results of [2] can easily be extended to the C^* -algebras $\mathcal{W}(T)$ generated by operators of Fock representations of W(T) with braided T and ||T|| = q, q < 1.

2. C^* -Algebra generated by Fock representation of W(T)

Let W(T) be the Wick *-algebra with braided T and ||T|| = q < 1. Consider the C^* -algebra $\mathcal{W}(T)$ generated by the operators $\pi_F(a_i)$, $\pi_F(a_i^*)$, $i = 1, \ldots, d$, of the Fock representation of W(T).

Following [2] construct the unitary operator $U: \mathcal{T}(\mathcal{H})_T \to \mathcal{T}(\mathcal{H})_0$.

Namely, consider the operators

$$U_n: \mathcal{H}_T^{\otimes n} \to \mathcal{H}^{\otimes n}$$

defined by

(4)
$$U_n = (\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}) M_n^{\frac{1}{2}}, \quad n \ge 2, \quad U_0 \Omega = \Omega, \quad U_1 = \mathbf{1}_{\mathcal{H}}.$$

It is easy to verify that on $\mathcal{H}_T^{\otimes n}$, $n \geq 2$, one has

$$M_n = \sum_{i=1}^d \pi_F(a_i^*) \pi_F(a_i) > 0,$$

so $M_n^{\frac{1}{2}}$ is well defined.

Proposition 1. Put
$$U = \bigoplus_{n=0}^{\infty} U_n$$
. Then
 $U: \mathcal{T}(\mathcal{H})_T \to \mathcal{T}(\mathcal{H})_0$

is a unitary operator.

Proof. As in [2] one has to verify that $[U_n]^*[U_n] = [P_n]$, where $[U_n]$, $[P_n]$ denote matrices of the corresponding operators with respect to the standard basis of $\mathcal{H}^{\otimes n}$. Note also that $[P_n]$ is just the Gramm matrix for the standard basis of $\mathcal{H}_T^{\otimes n}$.

Indeed, using induction on d and the definition of P_n one can get

$$[U_n]^*[U_n] = [M_n^{\frac{1}{2}}]^* [\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}]^* [\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}] [M_n^{\frac{1}{2}}]$$

= $[P_n] [M_n^{\frac{1}{2}}] [P_n]^{-1} (\mathbf{1}_d \otimes [P_{n-1}]) [M_n^{\frac{1}{2}}]$
= $[P_n] [M_n^{\frac{1}{2}}] [M_n]^{-1} [M_n^{\frac{1}{2}}] = [P_n].$

Set $R = UM^{\frac{1}{2}}U^* \colon \mathcal{T}(\mathcal{H})_0 \to \mathcal{T}(\mathcal{H})_0.$

Theorem 3. 1. $U\pi_F(a_i)U^* = V_iR$, where

$$V_i^* e_{i_1} \otimes \cdots \otimes e_{i_n} = e_i \otimes e_{i_1} \otimes \cdots \otimes e_{i_n}, \quad n \ge 1, \quad V_i^* \Omega = e_i, \quad i = 1, \dots, d.$$

2. *R* is a unique linear operator on $\mathcal{T}(\mathcal{H})_0$ leaving $\mathcal{H}^{\otimes n}$ invariant, $R_{\mathbb{C}} = 0$, and satisfying the relation

(5)
$$R^{2} = P + \sum_{i,j,k,l=1}^{d} T_{ij}^{kl} V_{i}^{*} R V_{l}^{*} V_{k} R V_{j},$$

where $P = \sum_{j=1}^{d} V_i^* V_i$.

Proof. The proof is essentially the same as the similar result in [2]. 1.

$$(U\pi_F(a_i)U^*R^{-1})_{|\mathcal{H}^{\otimes n}} = U_{n-1}\mu(e_i)M_nU_n^*U_nM_n^{-\frac{1}{2}}U_n^* = \mu(e_i)(\mathbf{1}_{\mathcal{H}} \otimes U_{n-1})M_n^{\frac{1}{2}}U_n^*$$

= $\mu(e_i)U_nU_n^* = \mu(e_i) = V_i, \quad i = 1, \dots, d.$

2. The second statement follows from induction arguments.

Evidently, the operators V_i , i = 1, ..., d, determine the Fock representation of W(0), i.e., $W(0) = C^*(V_i, V_i^*, i = 1, ..., d)$.

Let us show that $\mathcal{W}(0) \subset U\mathcal{W}(T)U^*$ for any braided T with ||T|| = q, q < 1. To prove the inclusion above it is sufficient to show that $V_i \in U\mathcal{W}(T)U^*$ for any $i = 1, \ldots, d$. Indeed, $R = UM^{\frac{1}{2}}U^*$ and

$$M = \sum_{i=1}^d \pi_F(a_i^*) \pi_F(a_i)$$

imply $R \in U\mathcal{W}(T)U^*$.

Since $R\Omega = 0$ and $V_i\Omega = 0$, to show that $V_i \in U\mathcal{W}(T)U^*$, it is sufficient to prove that R_n , the component of R corresponding to $\mathcal{H}^{\otimes n}$, is invertible and $||R_n^{-1}|| \leq C$ for some fixed C > 0 and any $n \in \mathbb{N}$. First we need some auxiliary results.

Lemma 1. Let T be braided. Then for any $n \ge 2$ and $1 \le k \le n-1$, we have

$$(T_1T_2\cdots T_n)T_1T_2\cdots T_k=T_1T_2\cdots T_{k+1}(T_1T_2\cdots T_n).$$

170

Proof. Indeed from relations $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ and $T_i T_j = T_j T_i$, $|i-j| \ge 2$, it follows that

 $(T_1T_2\cdots T_n)T_i = T_{i+1}(T_1T_2\cdots T_n), \quad 1 \le i \le n-1,$

proving the statement of the lemma.

Lemma 2. Let T satisfy the braid relation. Then, for any $n \in \mathbb{N}$,

(6)
$$M_{n+1}T_1T_2\cdots T_n = T_1T_2\cdots T_n + T_1^2T_2\cdots T_n(M_n\otimes \mathbf{1}_{\mathcal{H}}).$$

Proof. Using the previous lemma we get

$$M_{n+1}T_1T_2\cdots T_n$$

= $T_1T_2\cdots T_n + T_1(\mathbf{1}_{\mathcal{H}^{\otimes n+1}} + T_2 + T_2T_3 + \dots + T_2T_3\cdots T_n)T_1T_2\cdots T_n$
= $T_1T_2\cdots T_n + T_1^2T_2\cdots T_n(\mathbf{1}_{\mathcal{H}^{\otimes n+1}} + T_1 + T_1T_2 + \dots + T_1T_2\cdots T_{n-1})$
= $T_1T_2\cdots T_n + T_1^2T_2\cdots T_n(M_n \otimes \mathbf{1}_{\mathcal{H}}).$

As an immediate corollary we obtain the following result.

Lemma 3. For any $n \geq 2$,

(7)
$$M_{n+1}(\mathbf{1}_{\mathcal{H}^{\otimes n+1}} - T_1T_2\cdots T_n) = (\mathbf{1}_{\mathcal{H}^{\otimes n+1}} - T_1^2T_2\cdots T_n)(M_n \otimes \mathbf{1}_{\mathcal{H}}).$$

Proof.

$$M_{n+1} - M_{n+1}T_1T_2\cdots T_n$$

= $M_n \otimes \mathbf{1}_{\mathcal{H}} + T_1T_2\cdots T_n - T_1T_2\cdots T_n - T_1^2T_2\cdots T_n(M_n \otimes \mathbf{1}_{\mathcal{H}})$
= $(\mathbf{1}_{\mathcal{H}^{\otimes n+1}} - T_1^2T_2\cdots T_n)(M_n \otimes \mathbf{1}_{\mathcal{H}}).$

Now we can show that the main estimate in [2] is true in our case.

Proposition 2. Let T be braided, ||T|| = q < 1, and $R_n = R_{|\mathcal{H}^{\otimes n}}$. Then

$$\frac{1}{1-q}\prod_{k=1}^{\infty}\frac{1-q^k}{1+q^k} \le R_n^2 \le \frac{1}{1-q}, \quad n \ge 1.$$

Proof. The idea of proof is the same as in [2].

Since $R^2 = UMU^*$,

$$M = \bigoplus_{n \ge 0} M_n, \quad M_0 = 0, \quad M_1 = \mathbf{1}_{\mathcal{H}},$$

it is sufficient to prove the required inequalities for M. Note that $||T|| = ||T_i|| = q$. Further, since M_n is self-adjoint on $\mathcal{H}_T^{\otimes n}$, its norm equals to spectral radius and

$$|M_n||_T = r(M_n) \le ||M_n||$$

(here by $|| \cdot ||_T$ we denote the operator norm corresponding to the norm on $\mathcal{H}_T^{\otimes n}$). Analogously, $||M_n^{-1}||_T \leq ||M_n^{-1}||$. Then, as in [2], we get

4

(8)
$$M_n \le ||M_n||_T \le ||\mathbf{1}_{\mathcal{H}^{\otimes n}} + T_1 + T_1T_2 + \dots + T_1T_2 \dots T_{n-1}|| \le \frac{1}{1-q}.$$

From (7) we have

(9)
$$M_n^{-1} = (\mathbf{1}_{\mathcal{H}^{\otimes n}} - T_1 T_2 \cdots T_{n-1}) (M_{n-1}^{-1} \otimes \mathbf{1}_{\mathcal{H}}) (\mathbf{1}_{\mathcal{H}^{\otimes n}} - T_1^2 T_2 \cdots T_{n-1})^{-1}.$$

This implies that

This implies that

(10)
$$||M_n^{-1}|| \le \frac{1+q^{n-1}}{1-q^n} ||M_{n-1}^{-1}||.$$

D. PROSKURIN

Hence,

(11)
$$||M_n^{-1}||_T \le ||M_n^{-1}|| \le (1-q) \prod_{i=1}^n \frac{1+q^i}{1-q^i}$$

and

$$M_n^{-1} \le (1-q) \prod_{i=1}^{\infty} \frac{1+q^i}{1-q^i}.$$

Corollary 1. Let T be braided and ||T|| = q < 1. Then, for any $j = 1, \ldots, d$, $V_j \in C^*(U\pi_F(a_i)U^*, i = 1, \ldots, d)$, i.e., $W(0) \subset UW(T)U^*$.

Proof. The same as in [2].

Finally let us make a few remarks about the isomorphism $\mathcal{W}(0) \simeq \mathcal{W}(T)$ if ||T|| = q satisfies (3). The crucial step here is to show that under this assumption one has $R \in \mathcal{W}(0)$.

As in [2] denote by R_n the restriction of R to $\mathcal{H}^{\otimes n}$ and put $X_n \colon \mathcal{T}(\mathcal{H}) \to \mathcal{T}(\mathcal{H})$ to be

(12) $X_n = R_0 \oplus R_1 \oplus \cdots \oplus R_n \oplus R_n \otimes \mathbf{1}_{\mathcal{H}} \oplus R_n \otimes \mathbf{1}_{\mathcal{H}} \otimes \mathbf{1}_{\mathcal{H}} \oplus \cdots$

Note that Theorem 3 gives

(13)
$$R_{n+1}^{2} = \mathbf{1}_{\mathcal{H}^{\otimes n+1}} + \sum_{i,j,k,l=1}^{d} T_{ij}^{kl} V_{i}^{*} R_{n} V_{l}^{*} V_{k} R_{n} V_{j}, \quad n \in \mathbb{N}.$$

Since

$$V_i^* R_n = (\mathbf{1}_{\mathcal{H}} \otimes R_n) V_i^*, \quad R_n V_i = V_i (\mathbf{1}_{\mathcal{H}} \otimes R_n), \quad i = 1, \dots, d,$$

one can present (13) in the following form:

(14)
$$R_{n+1}^2 = \mathbf{1}_{\mathcal{H}^{\otimes n+1}} + \sum_{i,j,k,l=1}^d T_{ij}^{kl} (\mathbf{1}_{\mathcal{H}} \otimes R_n) V_i^* V_l^* V_k V_j (\mathbf{1}_{\mathcal{H}} \otimes R_n), \quad n \in \mathbb{N}.$$

Since

$$\sum_{j,k,l=1}^{d} T_{ij}^{kl} V_i^* V_l^* V_k V_j |_{\mathcal{H}^{\otimes 2}} = T,$$

we have

$$\sum_{i,j,k,l=1}^{d} T_{ij}^{kl} V_i^* V_l^* V_k V_j |_{\mathcal{H}^{\otimes n}} = T_1.$$

Then

(15)
$$R_{n+1}^2 = \mathbf{1}_{\mathcal{H}^{\otimes n+1}} + (\mathbf{1}_{\mathcal{H}} \otimes R_n) T_1(\mathbf{1}_{\mathcal{H}} \otimes R_n), \quad n \ge 2.$$

i

Evidently, $\{X_n, n \ge 1\}$ converges to R weakly and $X_n \in \mathcal{W}(0)$ for any $n \in \mathbb{N}$. So, the idea is to examine when $\{X_n, n \ge 1\}$ is norm convergent. Then evident modifications of the technique given in [2], using (15), allow to show that the following statement is true.

Proposition 3. Let $\alpha_n(q)$ denote the smallest eigenvalue of R_n^2 . Then

$$||X_{n+2} - X_{n+1}|| \le \frac{q}{\sqrt{(1-q)\min(\alpha_{n+1}(q), \alpha_{n+2}(q))}} ||X_{n+1} - X_n||, \quad n \ge 1.$$

172

Further, recall some considerations from [2]. The condition

(16)
$$\lim \inf_{n \to \infty} \alpha_n(q) > \frac{q^2}{1-q}, \quad n \ge 1.$$

is sufficient for the sequence $\{X_n, n \ge 1\}$ to be norm convergent. Indeed, with the condition above one has that

$$\sum_{n \to \infty} \|X_{n+2} - X_{n+1}\| < \infty.$$

Further, since $\alpha_n(q) \geq \frac{1}{1-q} \prod_{k=1}^{\infty} \frac{1-q^k}{1+q^k}$, $n \geq 2$, see Proposition 2, one has that $\frac{1}{1-q} \prod_{k=1}^{\infty} \frac{1-q^k}{1+q^k} > \frac{q^2}{1-q}$. So, under the following assumption, $\alpha_n(q)$ satisfies (16):

(17)
$$q^{2} < \prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}} = \sum_{k=-\infty}^{+\infty} (-1)^{k} q^{k^{2}}$$

I.e. the main result of [2] is true for $\mathcal{W}(T)$ with braided T, ||T|| = q.

Theorem 4. Let W(T) be the C^{*}-algebra generated by the operators of Fock representation of the Wick *-algebra W(T) with coefficient operator T. Then if T satisfies the braid relation and ||T|| = q with q satisfying (17), then $W(T) \simeq W(0)$.

Acknowledgments. The work on the paper was initiated during my visit to Chalmers University of Technology. The warm hospitality and stimulating atmosphere are gratefully appreciated. I am grateful also to Prof. Lyudmila Turowska for stimulating discussions on the subject.

References

- 1. M. Bożejko and R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Mat. Ann. **300** (1994), 97–120.
- K. Dykema and A. Nica, On the Fock representation of q-commutation relations, J. Reine Angew. Math. 440 (1993), 201–212.
- P. E. T. Jørgensen, D. P. Proskurin and Yu. S. Samoĭlenko, The kernel of Fock representation of Wick algebras with braided operator of coefficients, Pacific J. Math. 198 (2001), 109–122.
- P. E. T. Jørgensen, L. M. Schmitt, and R. F. Werner, *Positive representations of general commutation relations allowing Wick ordering*, J. Funct. Anal. **134** (1995), 33–99.
- P. E. T. Jørgensen, L. M. Schmitt, and R. F. Werner, q-canonical commutation relations and stability of the Cuntz algebra, Pacific J. Math. 163 (1994), no. 1, 131–151.

Kyiv Taras Shevchenko University, Cybernetics Department, 64 Volodymyrska, Kyiv, 01033, Ukraine

 $E\text{-}mail \ address: \verb"prosk@univ.kiev.ua"$

Received 20/09/2010