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ON C∗-ALGEBRA GENERATED BY FOCK REPRESENTATION OF

WICK ALGEBRA WITH BRAIDED COEFFICIENTS

D. PROSKURIN

Abstract. We consider C∗-algebras W(T ) generated by operators of Fock repre-
sentations of Wick ∗-algebras with a braided coefficient operator T . It is shown that

for any braided T with ||T || < 1 one has the inclusion W(0) ⊂ W(T ). Conditions for

existence of an isomorphism W(T ) ' W(0) are discussed.

1. Introduction

In this note we study the Fock representation of the Wick ∗-algebra W (T ) with a
braided coefficient operator. Recall, see [4], that

(1) W (T ) = C
〈
ai, a

∗
i , i = 1, d | aia∗j = δij1 +

d∑
k,l=1

T kl
ij a
∗
l ak, T

kl
ij = T lk

ji

〉
.

Let H = 〈e1, . . . , ed〉 and put

T : H⊗H 7→ H⊗H, T ek ⊗ el =

d∑
i,j=1

T lj
ikei ⊗ ej , T = T ∗,

Ti : H⊗n 7→ H⊗n, Ti = 1H ⊗ · · · ⊗ 1H︸ ︷︷ ︸
i−1

⊗T ⊗ 1H ⊗ · · · ⊗ 1H︸ ︷︷ ︸
n−i−1

, i = 1, . . . , n− 1.

An operator T is called a coefficient operator for W (T ). We say that T satisfies the
braid relation if on H⊗3

(2) T1T2T1 = T2T1T2.

The Fock representation of W(T), see [1, 4], is defined on the full tensor space over H,

T (H) = CΩ⊕H⊕H⊗2 ⊕ · · · , ||Ω|| = 1

, by the following rules, see

πF (a∗i )ei1 ⊗ · · · ⊗ ein = ei ⊗ ei1 ⊗ · · · ⊗ ein ,
πF (ai)ei1 ⊗ · · · ⊗ ein = µ(ei)Mnei1 ⊗ · · · ⊗ ein , n ≥ 1,

πF (ai)Ω = 0, i = 1, . . . , d,

where

µ(ei)ei1 ⊗ · · · ⊗ ein = δii1ei2 ⊗ · · · ⊗ ein , µ(ei)Ω = 0, i = 1, . . . , d

, and

Mn : H⊗n → H⊗n, Mn = 1H⊗n + T1 + T1T2 + · · ·+ T1T2 · · ·Tn−1, n ≥ 2,

M0 = 1, M1 = 1H.
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Theorem 1. ([4]). There exists a unique Hermitian sesquilinear form 〈·, ·〉T on T (H)
such that

〈πF (a∗i )X,Y 〉T = 〈X,πF (ai)Y 〉T , X, Y ∈ T (H), i = 1, . . . , d.

More precisely,

〈X,Y 〉T = 〈X,PnY 〉, X, Y ∈ H⊗n, 〈X,Y 〉T = 0, X ∈ H⊗n, Y ∈ H⊗m, n 6= m,

where

Pn : H⊗n → H⊗n, P ∗n = Pn,

P0 = 1, P1 = 1H,

Pn = (1H ⊗ Pn−1)Mn, n ≥ 2.

The following statement is a combination of the main results of [1] and [3].

Theorem 2. Let T be braided and ‖T‖ < 1, then Pn > 0, n ≥ 2, hence 〈·, ·〉T is positive
definite and the Fock representation πF of W (T ) can be extended to a *-representation on
the Hilbert space. Moreover, the Fock representation is a faithful bounded *-representation
of the *-algebra W (T ) and

‖πF (ai)‖2 ≤
1

1− ‖T‖
, i = 1, . . . , d.

Below we denote by T (H)0 the closure of T (H) with respect to the standard scalar
product, and by T (H)T the closure with respect to the Fock scalar product 〈·, ·〉T . Also
H⊗n will denote the n-th tensor component of T (H)0, and H⊗nT the corresponding com-
ponent of T (H)T .

In paper [2], the authors proved that for any q ∈ (0, 1) the C∗-algebra E(d)q generated

by the Fock representation of q-CCR with d generators contains the C∗-algebra E(d)0 that

is isomorphic to the Cuntz-Topelitz C∗-algebra O(0)
d . It was also shown in [2] that for q

satisfying the condition

(3) q2 <

∞∏
k=1

1− qk

1 + qk
=

+∞∑
k=−∞

(−1)kqk
2

,

one has an isomorphism E(d)q ' E(d)0 .
In this note we show that results of [2] can easily be extended to the C∗-algebrasW(T )

generated by operators of Fock representations of W (T ) with braided T and ||T || = q,
q < 1.

2. C∗-algebra generated by Fock representation of W (T )

Let W (T ) be the Wick ∗-algebra with braided T and ||T || = q < 1. Consider the
C∗-algebra W(T ) generated by the operators πF (ai), πF (a∗i ), i = 1, . . . , d, of the Fock
representation of W (T ).

Following [2] construct the unitary operator U : T (H)T → T (H)0.
Namely, consider the operators

Un : H⊗nT → H⊗n

defined by

(4) Un = (1H ⊗ Un−1)M
1
2
n , n ≥ 2, U0Ω = Ω, U1 = 1H.

It is easy to verify that on H⊗nT , n ≥ 2, one has

Mn =

d∑
i=1

πF (a∗i )πF (ai) > 0,
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so M
1
2
n is well defined.

Proposition 1. Put U =
⊕∞

n=0 Un. Then

U : T (H)T → T (H)0

is a unitary operator.

Proof. As in [2] one has to verify that [Un]∗[Un] = [Pn], where [Un], [Pn] denote matrices
of the corresponding operators with respect to the standard basis of H⊗n. Note also that
[Pn] is just the Gramm matrix for the standard basis of H⊗nT .

Indeed, using induction on d and the definition of Pn one can get

[Un]∗[Un] = [M
1
2
n ]∗[1H ⊗ Un−1]∗[1H ⊗ Un−1][M

1
2
n ]

= [Pn][M
1
2
n ][Pn]−1(1d ⊗ [Pn−1])[M

1
2
n ]

= [Pn][M
1
2
n ][Mn]−1[M

1
2
n ] = [Pn].

�

Set R = UM
1
2U∗ : T (H)0 → T (H)0.

Theorem 3. 1. UπF (ai)U
∗ = ViR, where

V ∗i ei1 ⊗ · · · ⊗ ein = ei ⊗ ei1 ⊗ · · · ⊗ ein , n ≥ 1, V ∗i Ω = ei, i = 1, . . . , d.

2. R is a unique linear operator on T (H)0 leaving H⊗n invariant, RC = 0, and satisfying
the relation

(5) R2 = P +

d∑
i,j,k,l=1

T kl
ij V

∗
i RV

∗
l VkRVj ,

where P =
∑d

j=1 V
∗
i Vi.

Proof. The proof is essentially the same as the similar result in [2].
1.

(UπF (ai)U
∗R−1)|H⊗n = Un−1µ(ei)MnU

∗
nUnM

− 1
2

n U∗n = µ(ei)(1H ⊗ Un−1)M
1
2
n U
∗
n

= µ(ei)UnU
∗
n = µ(ei) = Vi, i = 1, . . . , d.

2. The second statement follows from induction arguments. �

Evidently, the operators Vi, i = 1, . . . , d, determine the Fock representation of W (0),
i.e., W(0) = C∗(Vi, V

∗
i , i = 1, . . . , d).

Let us show thatW(0) ⊂ UW(T )U∗ for any braided T with ||T || = q, q < 1. To prove
the inclusion above it is sufficient to show that Vi ∈ UW(T )U∗ for any i = 1, . . . , d.

Indeed, R = UM
1
2U∗ and

M =

d∑
i=1

πF (a∗i )πF (ai)

imply R ∈ UW(T )U∗.
Since RΩ = 0 and ViΩ = 0, to show that Vi ∈ UW(T )U∗, it is sufficient to prove that

Rn, the component of R corresponding to H⊗n, is invertible and ||R−1n || ≤ C for some
fixed C > 0 and any n ∈ N. First we need some auxiliary results.

Lemma 1. Let T be braided. Then for any n ≥ 2 and 1 ≤ k ≤ n− 1, we have

(T1T2 · · ·Tn)T1T2 · · ·Tk = T1T2 · · ·Tk+1(T1T2 · · ·Tn).
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Proof. Indeed from relations TiTi+1Ti = Ti+1TiTi+1 and TiTj = TjTi, |i − j| ≥ 2, it
follows that

(T1T2 · · ·Tn)Ti = Ti+1(T1T2 · · ·Tn), 1 ≤ i ≤ n− 1,

proving the statement of the lemma. �

Lemma 2. Let T satisfy the braid relation. Then, for any n ∈ N,

(6) Mn+1T1T2 · · ·Tn = T1T2 · · ·Tn + T 2
1 T2 · · ·Tn(Mn ⊗ 1H).

Proof. Using the previous lemma we get

Mn+1T1T2 · · ·Tn
= T1T2 · · ·Tn + T1(1H⊗n+1 + T2 + T2T3 + · · ·+ T2T3 · · ·Tn)T1T2 · · ·Tn
= T1T2 · · ·Tn + T 2

1 T2 · · ·Tn(1H⊗n+1 + T1 + T1T2 + · · ·+ T1T2 · · ·Tn−1)

= T1T2 · · ·Tn + T 2
1 T2 · · ·Tn(Mn ⊗ 1H).

�

As an immediate corollary we obtain the following result.

Lemma 3. For any n ≥ 2,

(7) Mn+1(1H⊗n+1 − T1T2 · · ·Tn) = (1H⊗n+1 − T 2
1 T2 · · ·Tn)(Mn ⊗ 1H).

Proof.

Mn+1 −Mn+1T1T2 · · ·Tn
= Mn ⊗ 1H + T1T2 · · ·Tn − T1T2 · · ·Tn − T 2

1 T2 · · ·Tn(Mn ⊗ 1H)

= (1H⊗n+1 − T 2
1 T2 · · ·Tn)(Mn ⊗ 1H).

�

Now we can show that the main estimate in [2] is true in our case.

Proposition 2. Let T be braided, ‖T‖ = q < 1, and Rn = R|H⊗n . Then

1

1− q

∞∏
k=1

1− qk

1 + qk
≤ R2

n ≤
1

1− q
, n ≥ 1.

Proof. The idea of proof is the same as in [2].
Since R2 = UMU∗,

M =
⊕
n≥0

Mn, M0 = 0, M1 = 1H,

it is sufficient to prove the required inequalities for M . Note that ‖T‖ = ‖Ti‖ = q.
Further, since Mn is self-adjoint on H⊗nT , its norm equals to spectral radius and

‖Mn‖T = r(Mn) ≤ ‖Mn‖
(here by || · ||T we denote the operator norm corresponding to the norm on H⊗nT ). Anal-
ogously, ‖M−1n ‖T ≤ ‖M−1n ‖. Then, as in [2], we get

(8) Mn ≤ ‖Mn‖T ≤ ‖1H⊗n + T1 + T1T2 + · · ·+ T1T2 · · ·Tn−1‖ ≤
1

1− q
.

From (7) we have

(9) M−1n = (1H⊗n − T1T2 · · ·Tn−1)(M−1n−1 ⊗ 1H)(1H⊗n − T 2
1 T2 · · ·Tn−1)−1.

This implies that

(10) ‖M−1n ‖ ≤
1 + qn−1

1− qn
‖M−1n−1‖.
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Hence,

(11) ‖M−1n ‖T ≤ ‖M−1n ‖ ≤ (1− q)
n∏

i=1

1 + qi

1− qi

and

M−1n ≤ (1− q)
∞∏
i=1

1 + qi

1− qi
.

�

Corollary 1. Let T be braided and ||T || = q < 1. Then, for any j = 1, . . . , d, Vj ∈
C∗(UπF (ai)U

∗, i = 1, . . . , d), i.e., W(0) ⊂ UW(T )U∗.

Proof. The same as in [2]. �

Finally let us make a few remarks about the isomorphism W(0) ' W(T ) if ||T || = q
satisfies (3). The crucial step here is to show that under this assumption one has R ∈
W(0).

As in [2] denote by Rn the restriction of R to H⊗n and put Xn : T (H)→ T (H) to be

(12) Xn = R0 ⊕R1 ⊕ · · · ⊕Rn ⊕Rn ⊗ 1H ⊕Rn ⊗ 1H ⊗ 1H ⊕ · · ·

Note that Theorem 3 gives

(13) R2
n+1 = 1H⊗n+1 +

d∑
i,j,k,l=1

T kl
ij V

∗
i RnV

∗
l VkRnVj , n ∈ N.

Since

V ∗i Rn = (1H ⊗Rn)V ∗i , RnVi = Vi(1H ⊗Rn), i = 1, . . . , d,

one can present (13) in the following form:

(14) R2
n+1 = 1H⊗n+1 +

d∑
i,j,k,l=1

T kl
ij (1H ⊗Rn)V ∗i V

∗
l VkVj(1H ⊗Rn), n ∈ N.

Since
d∑

i,j,k,l=1

T kl
ij V

∗
i V
∗
l VkVj |H⊗2 = T,

we have
d∑

i,j,k,l=1

T kl
ij V

∗
i V
∗
l VkVj |H⊗n = T1.

Then

(15) R2
n+1 = 1H⊗n+1 + (1H ⊗Rn)T1(1H ⊗Rn), n ≥ 2.

Evidently, {Xn, n ≥ 1} converges to R weakly and Xn ∈ W(0) for any n ∈ N. So, the
idea is to examine when {Xn, n ≥ 1} is norm convergent. Then evident modifications of
the technique given in [2], using (15), allow to show that the following statement is true.

Proposition 3. Let αn(q) denote the smallest eigenvalue of R2
n. Then

‖Xn+2 −Xn+1‖ ≤
q√

(1− q) min(αn+1(q), αn+2(q))
‖Xn+1 −Xn‖, n ≥ 1.
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Further, recall some considerations from [2]. The condition

(16) lim inf
n→∞

αn(q) >
q2

1− q
, n ≥ 1,

is sufficient for the sequence {Xn, n ≥ 1} to be norm convergent. Indeed, with the
condition above one has that ∑

n→∞
‖Xn+2 −Xn+1‖ <∞.

Further, since αn(q) ≥ 1
1−q

∏∞
k=1

1−qk
1+qk

, n ≥ 2, see Proposition 2, one has that

1
1−q

∏∞
k=1

1−qk
1+qk

> q2

1−q . So, under the following assumption, αn(q) satisfies (16):

(17) q2 <

∞∏
k=1

1− qk

1 + qk
=

+∞∑
k=−∞

(−1)kqk
2

.

I.e. the main result of [2] is true for W(T ) with braided T , ||T || = q.

Theorem 4. Let W(T ) be the C∗-algebra generated by the operators of Fock represen-
tation of the Wick ∗-algebra W (T ) with coefficient operator T . Then if T satisfies the
braid relation and ‖T‖ = q with q satisfying (17), then W(T ) ' W(0).
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