ON C^{*}-ALGEBRA GENERATED BY FOCK REPRESENTATION OF WICK ALGEBRA WITH BRAIDED COEFFICIENTS

D. PROSKURIN

Abstract

We consider C^{*}-algebras $\mathcal{W}(T)$ generated by operators of Fock representations of Wick *-algebras with a braided coefficient operator T. It is shown that for any braided T with $\|T\|<1$ one has the inclusion $\mathcal{W}(0) \subset \mathcal{W}(T)$. Conditions for existence of an isomorphism $\mathcal{W}(T) \simeq \mathcal{W}(0)$ are discussed.

1. Introduction

In this note we study the Fock representation of the Wick $*$-algebra $W(T)$ with a braided coefficient operator. Recall, see [4], that

$$
\begin{equation*}
W(T)=\mathbb{C}\left\langle a_{i}, a_{i}^{*}, i=\overline{1, d} \mid a_{i} a_{j}^{*}=\delta_{i j} 1+\sum_{k, l=1}^{d} T_{i j}^{k l} a_{l}^{*} a_{k}, T_{i j}^{k l}=\overline{T_{j i}^{l k}}\right\rangle . \tag{1}
\end{equation*}
$$

Let $\mathcal{H}=\left\langle e_{1}, \ldots, e_{d}\right\rangle$ and put

$$
\begin{aligned}
& T: \mathcal{H} \otimes \mathcal{H} \mapsto \mathcal{H} \otimes \mathcal{H}, \quad T e_{k} \otimes e_{l}=\sum_{i, j=1}^{d} T_{i k}^{l j} e_{i} \otimes e_{j}, \quad T=T^{*}, \\
& T_{i}: \mathcal{H}^{\otimes n} \mapsto \mathcal{H}^{\otimes n}, \quad T_{i}=\underbrace{\mathbf{1}_{\mathcal{H}} \otimes \cdots \otimes \mathbf{1}_{\mathcal{H}}}_{i-1} \otimes T \otimes \underbrace{\mathbf{1}_{\mathcal{H}} \otimes \cdots \otimes \mathbf{1}_{\mathcal{H}}}_{n-i-1}, \quad i=1, \ldots, n-1 .
\end{aligned}
$$

An operator T is called a coefficient operator for $W(T)$. We say that T satisfies the braid relation if on $\mathcal{H}^{\otimes 3}$

$$
\begin{equation*}
T_{1} T_{2} T_{1}=T_{2} T_{1} T_{2} . \tag{2}
\end{equation*}
$$

The Fock representation of $\mathrm{W}(\mathrm{T})$, see $[1,4]$, is defined on the full tensor space over \mathcal{H},

$$
\mathcal{T}(\mathcal{H})=\mathbb{C} \Omega \oplus \mathcal{H} \oplus \mathcal{H}^{\otimes 2} \oplus \cdots, \quad\|\Omega\|=1
$$

, by the following rules, see

$$
\begin{aligned}
\pi_{F}\left(a_{i}^{*}\right) e_{i_{1}} \otimes \cdots \otimes e_{i_{n}} & =e_{i} \otimes e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}, \\
\pi_{F}\left(a_{i}\right) e_{i_{1}} \otimes \cdots \otimes e_{i_{n}} & =\mu\left(e_{i}\right) M_{n} e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}, \quad n \geq 1, \\
\pi_{F}\left(a_{i}\right) \Omega & =0, \quad i=1, \ldots, d,
\end{aligned}
$$

where

$$
\mu\left(e_{i}\right) e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}=\delta_{i i_{1}} e_{i_{2}} \otimes \cdots \otimes e_{i_{n}}, \quad \mu\left(e_{i}\right) \Omega=0, \quad i=1, \ldots, d
$$

, and

$$
M_{n}: \mathcal{H}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n}, \quad M_{n}=\mathbf{1}_{\mathcal{H}^{\otimes n}}+T_{1}+T_{1} T_{2}+\cdots+T_{1} T_{2} \cdots T_{n-1}, \quad n \geq 2,
$$

$M_{0}=1, M_{1}=\mathbf{1}_{\mathcal{H}}$.

Key words and phrases. Fock representation, Cuntz-Topelitz algebra, Braid relation.
The author was supported by DFG grant SCHM1009/4-1.

Theorem 1. ([4]). There exists a unique Hermitian sesquilinear form $\langle\cdot, \cdot\rangle_{T}$ on $\mathcal{T}(\mathcal{H})$ such that

$$
\left\langle\pi_{F}\left(a_{i}^{*}\right) X, Y\right\rangle_{T}=\left\langle X, \pi_{F}\left(a_{i}\right) Y\right\rangle_{T}, \quad X, Y \in \mathcal{T}(\mathcal{H}), \quad i=1, \ldots, d
$$

More precisely,

$$
\langle X, Y\rangle_{T}=\left\langle X, P_{n} Y\right\rangle, \quad X, Y \in \mathcal{H}^{\otimes n}, \quad\langle X, Y\rangle_{T}=0, X \in \mathcal{H}^{\otimes n}, \quad Y \in \mathcal{H}^{\otimes m}, \quad n \neq m
$$

where

$$
\begin{aligned}
& P_{n}: \mathcal{H}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n}, \quad P_{n}^{*}=P_{n} \\
& P_{0}=1, \quad P_{1}=\mathbf{1}_{\mathcal{H}}, \\
& P_{n}=\left(\mathbf{1}_{\mathcal{H}} \otimes P_{n-1}\right) M_{n}, \quad n \geq 2
\end{aligned}
$$

The following statement is a combination of the main results of [1] and [3].
Theorem 2. Let T be braided and $\|T\|<1$, then $P_{n}>0, n \geq 2$, hence $\langle\cdot, \cdot\rangle_{T}$ is positive definite and the Fock representation π_{F} of $W(T)$ can be extended to a^{*}-representation on the Hilbert space. Moreover, the Fock representation is a faithful bounded ${ }^{*}$-representation of the *-algebra $W(T)$ and

$$
\left\|\pi_{F}\left(a_{i}\right)\right\|^{2} \leq \frac{1}{1-\|T\|}, \quad i=1, \ldots, d
$$

Below we denote by $\mathcal{T}(\mathcal{H})_{0}$ the closure of $\mathcal{T}(\mathcal{H})$ with respect to the standard scalar product, and by $\mathcal{T}(\mathcal{H})_{T}$ the closure with respect to the Fock scalar product $\langle\cdot, \cdot\rangle_{T}$. Also $\mathcal{H}^{\otimes n}$ will denote the n-th tensor component of $\mathcal{T}(\mathcal{H})_{0}$, and $\mathcal{H}_{T}^{\otimes n}$ the corresponding component of $\mathcal{T}(\mathcal{H})_{T}$.

In paper [2], the authors proved that for any $q \in(0,1)$ the C^{*}-algebra $\mathcal{E}_{q}^{(d)}$ generated by the Fock representation of q-CCR with d generators contains the C^{*}-algebra $\mathcal{E}_{0}^{(d)}$ that is isomorphic to the Cuntz-Topelitz C^{*}-algebra $\mathcal{O}_{d}^{(0)}$. It was also shown in [2] that for q satisfying the condition

$$
\begin{equation*}
q^{2}<\prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}}=\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{k^{2}} \tag{3}
\end{equation*}
$$

one has an isomorphism $\mathcal{E}_{q}^{(d)} \simeq \mathcal{E}_{0}^{(d)}$.
In this note we show that results of [2] can easily be extended to the C^{*}-algebras $\mathcal{W}(T)$ generated by operators of Fock representations of $W(T)$ with braided T and $\|T\|=q$, $q<1$.

2. C^{*}-algebra generated by Fock representation of $W(T)$

Let $W(T)$ be the Wick $*$-algebra with braided T and $\|T\|=q<1$. Consider the C^{*}-algebra $\mathcal{W}(T)$ generated by the operators $\pi_{F}\left(a_{i}\right), \pi_{F}\left(a_{i}^{*}\right), i=1, \ldots, d$, of the Fock representation of $W(T)$.

Following [2] construct the unitary operator $U: \mathcal{T}(\mathcal{H})_{T} \rightarrow \mathcal{T}(\mathcal{H})_{0}$.
Namely, consider the operators

$$
U_{n}: \mathcal{H}_{T}^{\otimes n} \rightarrow \mathcal{H}^{\otimes n}
$$

defined by

$$
\begin{equation*}
U_{n}=\left(\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}\right) M_{n}^{\frac{1}{2}}, \quad n \geq 2, \quad U_{0} \Omega=\Omega, \quad U_{1}=\mathbf{1}_{\mathcal{H}} \tag{4}
\end{equation*}
$$

It is easy to verify that on $\mathcal{H}_{T}^{\otimes n}, n \geq 2$, one has

$$
M_{n}=\sum_{i=1}^{d} \pi_{F}\left(a_{i}^{*}\right) \pi_{F}\left(a_{i}\right)>0
$$

so $M_{n}^{\frac{1}{2}}$ is well defined.
Proposition 1. Put $U=\bigoplus_{n=0}^{\infty} U_{n}$. Then

$$
U: \mathcal{T}(\mathcal{H})_{T} \rightarrow \mathcal{T}(\mathcal{H})_{0}
$$

is a unitary operator.
Proof. As in [2] one has to verify that $\left[U_{n}\right]^{*}\left[U_{n}\right]=\left[P_{n}\right]$, where $\left[U_{n}\right],\left[P_{n}\right]$ denote matrices of the corresponding operators with respect to the standard basis of $\mathcal{H}^{\otimes n}$. Note also that $\left[P_{n}\right]$ is just the Gramm matrix for the standard basis of $\mathcal{H}_{T}^{\otimes n}$.

Indeed, using induction on d and the definition of P_{n} one can get

$$
\begin{aligned}
{\left[U_{n}\right]^{*}\left[U_{n}\right] } & =\left[M_{n}^{\frac{1}{2}}\right]^{*}\left[\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}\right]^{*}\left[\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}\right]\left[M_{n}^{\frac{1}{2}}\right] \\
& =\left[P_{n}\right]\left[M_{n}^{\frac{1}{2}}\right]\left[P_{n}\right]^{-1}\left(\mathbf{1}_{d} \otimes\left[P_{n-1}\right]\right)\left[M_{n}^{\frac{1}{2}}\right] \\
& =\left[P_{n}\right]\left[M_{n}^{\frac{1}{2}}\right]\left[M_{n}\right]^{-1}\left[M_{n}^{\frac{1}{2}}\right]=\left[P_{n}\right]
\end{aligned}
$$

Set $R=U M^{\frac{1}{2}} U^{*}: \mathcal{T}(\mathcal{H})_{0} \rightarrow \mathcal{T}(\mathcal{H})_{0}$.
Theorem 3. 1. $U \pi_{F}\left(a_{i}\right) U^{*}=V_{i} R$, where

$$
V_{i}^{*} e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}=e_{i} \otimes e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}, \quad n \geq 1, \quad V_{i}^{*} \Omega=e_{i}, \quad i=1, \ldots, d
$$

2. R is a unique linear operator on $\mathcal{T}(\mathcal{H})_{0}$ leaving $\mathcal{H}^{\otimes n}$ invariant, $R_{\mathbb{C}}=0$, and satisfying the relation

$$
\begin{equation*}
R^{2}=P+\sum_{i, j, k, l=1}^{d} T_{i j}^{k l} V_{i}^{*} R V_{l}^{*} V_{k} R V_{j} \tag{5}
\end{equation*}
$$

where $P=\sum_{j=1}^{d} V_{i}^{*} V_{i}$.
Proof. The proof is essentially the same as the similar result in [2].
1.

$$
\begin{aligned}
\left(U \pi_{F}\left(a_{i}\right) U^{*} R^{-1}\right)_{\mid \mathcal{H} \otimes n} & =U_{n-1} \mu\left(e_{i}\right) M_{n} U_{n}^{*} U_{n} M_{n}^{-\frac{1}{2}} U_{n}^{*}=\mu\left(e_{i}\right)\left(\mathbf{1}_{\mathcal{H}} \otimes U_{n-1}\right) M_{n}^{\frac{1}{2}} U_{n}^{*} \\
& =\mu\left(e_{i}\right) U_{n} U_{n}^{*}=\mu\left(e_{i}\right)=V_{i}, \quad i=1, \ldots, d
\end{aligned}
$$

2. The second statement follows from induction arguments.

Evidently, the operators $V_{i}, i=1, \ldots, d$, determine the Fock representation of $W(0)$, i.e., $\mathcal{W}(0)=C^{*}\left(V_{i}, V_{i}^{*}, i=1, \ldots, d\right)$.

Let us show that $\mathcal{W}(0) \subset U \mathcal{W}(T) U^{*}$ for any braided T with $\|T\|=q, q<1$. To prove the inclusion above it is sufficient to show that $V_{i} \in U \mathcal{W}(T) U^{*}$ for any $i=1, \ldots, d$. Indeed, $R=U M^{\frac{1}{2}} U^{*}$ and

$$
M=\sum_{i=1}^{d} \pi_{F}\left(a_{i}^{*}\right) \pi_{F}\left(a_{i}\right)
$$

imply $R \in U \mathcal{W}(T) U^{*}$.
Since $R \Omega=0$ and $V_{i} \Omega=0$, to show that $V_{i} \in U \mathcal{W}(T) U^{*}$, it is sufficient to prove that R_{n}, the component of R corresponding to $\mathcal{H}^{\otimes n}$, is invertible and $\left\|R_{n}^{-1}\right\| \leq C$ for some fixed $C>0$ and any $n \in \mathbb{N}$. First we need some auxiliary results.

Lemma 1. Let T be braided. Then for any $n \geq 2$ and $1 \leq k \leq n-1$, we have

$$
\left(T_{1} T_{2} \cdots T_{n}\right) T_{1} T_{2} \cdots T_{k}=T_{1} T_{2} \cdots T_{k+1}\left(T_{1} T_{2} \cdots T_{n}\right)
$$

Proof. Indeed from relations $T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}$ and $T_{i} T_{j}=T_{j} T_{i},|i-j| \geq 2$, it follows that

$$
\left(T_{1} T_{2} \cdots T_{n}\right) T_{i}=T_{i+1}\left(T_{1} T_{2} \cdots T_{n}\right), \quad 1 \leq i \leq n-1
$$

proving the statement of the lemma.
Lemma 2. Let T satisfy the braid relation. Then, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
M_{n+1} T_{1} T_{2} \cdots T_{n}=T_{1} T_{2} \cdots T_{n}+T_{1}^{2} T_{2} \cdots T_{n}\left(M_{n} \otimes \mathbf{1}_{\mathcal{H}}\right) \tag{6}
\end{equation*}
$$

Proof. Using the previous lemma we get

$$
\begin{aligned}
& M_{n+1} T_{1} T_{2} \cdots T_{n} \\
& \quad=T_{1} T_{2} \cdots T_{n}+T_{1}\left(\mathbf{1}_{\mathcal{H} \otimes n+1}+T_{2}+T_{2} T_{3}+\cdots+T_{2} T_{3} \cdots T_{n}\right) T_{1} T_{2} \cdots T_{n} \\
& \quad=T_{1} T_{2} \cdots T_{n}+T_{1}^{2} T_{2} \cdots T_{n}\left(\mathbf{1}_{\mathcal{H} \otimes n+1}+T_{1}+T_{1} T_{2}+\cdots+T_{1} T_{2} \cdots T_{n-1}\right) \\
& \quad=T_{1} T_{2} \cdots T_{n}+T_{1}^{2} T_{2} \cdots T_{n}\left(M_{n} \otimes \mathbf{1}_{\mathcal{H}}\right) .
\end{aligned}
$$

As an immediate corollary we obtain the following result.
Lemma 3. For any $n \geq 2$,

$$
\begin{equation*}
M_{n+1}\left(\mathbf{1}_{\mathcal{H} \otimes n+1}-T_{1} T_{2} \cdots T_{n}\right)=\left(\mathbf{1}_{\mathcal{H} \otimes n+1}-T_{1}^{2} T_{2} \cdots T_{n}\right)\left(M_{n} \otimes \mathbf{1}_{\mathcal{H}}\right) \tag{7}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
M_{n+1} & -M_{n+1} T_{1} T_{2} \cdots T_{n} \\
& =M_{n} \otimes \mathbf{1}_{\mathcal{H}}+T_{1} T_{2} \cdots T_{n}-T_{1} T_{2} \cdots T_{n}-T_{1}^{2} T_{2} \cdots T_{n}\left(M_{n} \otimes \mathbf{1}_{\mathcal{H}}\right) \\
& =\left(\mathbf{1}_{\mathcal{H} \otimes n+1}-T_{1}^{2} T_{2} \cdots T_{n}\right)\left(M_{n} \otimes \mathbf{1}_{\mathcal{H}}\right)
\end{aligned}
$$

Now we can show that the main estimate in [2] is true in our case.
Proposition 2. Let T be braided, $\|T\|=q<1$, and $R_{n}=R_{\mid \mathcal{H} \otimes n}$. Then

$$
\frac{1}{1-q} \prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}} \leq R_{n}^{2} \leq \frac{1}{1-q}, \quad n \geq 1
$$

Proof. The idea of proof is the same as in [2].
Since $R^{2}=U M U^{*}$,

$$
M=\bigoplus_{n \geq 0} M_{n}, \quad M_{0}=0, \quad M_{1}=\mathbf{1}_{\mathcal{H}}
$$

it is sufficient to prove the required inequalities for M. Note that $\|T\|=\left\|T_{i}\right\|=q$. Further, since M_{n} is self-adjoint on $\mathcal{H}_{T}^{\otimes n}$, its norm equals to spectral radius and

$$
\left\|M_{n}\right\|_{T}=r\left(M_{n}\right) \leq\left\|M_{n}\right\|
$$

(here by $\|\cdot\|_{T}$ we denote the operator norm corresponding to the norm on $\mathcal{H}_{T}^{\otimes n}$). Analogously, $\left\|M_{n}^{-1}\right\|_{T} \leq\left\|M_{n}^{-1}\right\|$. Then, as in [2], we get

$$
\begin{equation*}
M_{n} \leq\left\|M_{n}\right\|_{T} \leq\left\|\mathbf{1}_{\mathcal{H} \otimes n}+T_{1}+T_{1} T_{2}+\cdots+T_{1} T_{2} \cdots T_{n-1}\right\| \leq \frac{1}{1-q} \tag{8}
\end{equation*}
$$

From (7) we have

$$
\begin{equation*}
M_{n}^{-1}=\left(\mathbf{1}_{\mathcal{H} \otimes n}-T_{1} T_{2} \cdots T_{n-1}\right)\left(M_{n-1}^{-1} \otimes \mathbf{1}_{\mathcal{H}}\right)\left(\mathbf{1}_{\mathcal{H} \otimes n}-T_{1}^{2} T_{2} \cdots T_{n-1}\right)^{-1} \tag{9}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left\|M_{n}^{-1}\right\| \leq \frac{1+q^{n-1}}{1-q^{n}}\left\|M_{n-1}^{-1}\right\| \tag{10}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left\|M_{n}^{-1}\right\|_{T} \leq\left\|M_{n}^{-1}\right\| \leq(1-q) \prod_{i=1}^{n} \frac{1+q^{i}}{1-q^{i}} \tag{11}
\end{equation*}
$$

and

$$
M_{n}^{-1} \leq(1-q) \prod_{i=1}^{\infty} \frac{1+q^{i}}{1-q^{i}}
$$

Corollary 1. Let T be braided and $\|T\|=q<1$. Then, for any $j=1, \ldots, d, V_{j} \in$ $C^{*}\left(U \pi_{F}\left(a_{i}\right) U^{*}, i=1, \ldots, d\right)$, i.e., $\mathcal{W}(0) \subset U \mathcal{W}(T) U^{*}$.

Proof. The same as in [2].
Finally let us make a few remarks about the isomorphism $\mathcal{W}(0) \simeq \mathcal{W}(T)$ if $\|T\|=q$ satisfies (3). The crucial step here is to show that under this assumption one has $R \in$ $\mathcal{W}(0)$.

As in [2] denote by R_{n} the restriction of R to $\mathcal{H}^{\otimes n}$ and put $X_{n}: \mathcal{T}(\mathcal{H}) \rightarrow \mathcal{T}(\mathcal{H})$ to be

$$
\begin{equation*}
X_{n}=R_{0} \oplus R_{1} \oplus \cdots \oplus R_{n} \oplus R_{n} \otimes \mathbf{1}_{\mathcal{H}} \oplus R_{n} \otimes \mathbf{1}_{\mathcal{H}} \otimes \mathbf{1}_{\mathcal{H}} \oplus \cdots \tag{12}
\end{equation*}
$$

Note that Theorem 3 gives

$$
\begin{equation*}
R_{n+1}^{2}=\mathbf{1}_{\mathcal{H}^{\otimes n+1}}+\sum_{i, j, k, l=1}^{d} T_{i j}^{k l} V_{i}^{*} R_{n} V_{l}^{*} V_{k} R_{n} V_{j}, \quad n \in \mathbb{N} \tag{13}
\end{equation*}
$$

Since

$$
V_{i}^{*} R_{n}=\left(\mathbf{1}_{\mathcal{H}} \otimes R_{n}\right) V_{i}^{*}, \quad R_{n} V_{i}=V_{i}\left(\mathbf{1}_{\mathcal{H}} \otimes R_{n}\right), \quad i=1, \ldots, d
$$

one can present (13) in the following form:

$$
\begin{equation*}
R_{n+1}^{2}=\mathbf{1}_{\mathcal{H} \otimes n+1}+\sum_{i, j, k, l=1}^{d} T_{i j}^{k l}\left(\mathbf{1}_{\mathcal{H}} \otimes R_{n}\right) V_{i}^{*} V_{l}^{*} V_{k} V_{j}\left(\mathbf{1}_{\mathcal{H}} \otimes R_{n}\right), \quad n \in \mathbb{N} . \tag{14}
\end{equation*}
$$

Since

$$
\left.\sum_{i, j, k, l=1}^{d} T_{i j}^{k l} V_{i}^{*} V_{l}^{*} V_{k} V_{j}\right|_{\mathcal{H} \otimes^{\otimes 2}}=T
$$

we have

$$
\left.\sum_{i, j, k, l=1}^{d} T_{i j}^{k l} V_{i}^{*} V_{l}^{*} V_{k} V_{j}\right|_{\mathcal{H} \otimes n}=T_{1}
$$

Then

$$
\begin{equation*}
R_{n+1}^{2}=\mathbf{1}_{\mathcal{H} \otimes n+1}+\left(\mathbf{1}_{\mathcal{H}} \otimes R_{n}\right) T_{1}\left(\mathbf{1}_{\mathcal{H}} \otimes R_{n}\right), \quad n \geq 2 \tag{15}
\end{equation*}
$$

Evidently, $\left\{X_{n}, n \geq 1\right\}$ converges to R weakly and $X_{n} \in \mathcal{W}(0)$ for any $n \in \mathbb{N}$. So, the idea is to examine when $\left\{X_{n}, n \geq 1\right\}$ is norm convergent. Then evident modifications of the technique given in [2], using (15), allow to show that the following statement is true.
Proposition 3. Let $\alpha_{n}(q)$ denote the smallest eigenvalue of R_{n}^{2}. Then

$$
\left\|X_{n+2}-X_{n+1}\right\| \leq \frac{q}{\sqrt{(1-q) \min \left(\alpha_{n+1}(q), \alpha_{n+2}(q)\right)}}\left\|X_{n+1}-X_{n}\right\|, \quad n \geq 1
$$

Further, recall some considerations from [2]. The condition

$$
\begin{equation*}
\lim \inf _{n \rightarrow \infty} \alpha_{n}(q)>\frac{q^{2}}{1-q}, \quad n \geq 1 \tag{16}
\end{equation*}
$$

is sufficient for the sequence $\left\{X_{n}, n \geq 1\right\}$ to be norm convergent. Indeed, with the condition above one has that

$$
\sum_{n \rightarrow \infty}\left\|X_{n+2}-X_{n+1}\right\|<\infty
$$

Further, since $\alpha_{n}(q) \geq \frac{1}{1-q} \prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}}, n \geq 2$, see Proposition 2, one has that $\frac{1}{1-q} \prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}}>\frac{q^{2}}{1-q}$. So, under the following assumption, $\alpha_{n}(q)$ satisfies (16):

$$
\begin{equation*}
q^{2}<\prod_{k=1}^{\infty} \frac{1-q^{k}}{1+q^{k}}=\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{k^{2}} \tag{17}
\end{equation*}
$$

I.e. the main result of [2] is true for $\mathcal{W}(T)$ with braided $T,\|T\|=q$.

Theorem 4. Let $\mathcal{W}(T)$ be the C^{*}-algebra generated by the operators of Fock representation of the Wick *-algebra $W(T)$ with coefficient operator T. Then if T satisfies the braid relation and $\|T\|=q$ with q satisfying (17), then $\mathcal{W}(T) \simeq \mathcal{W}(0)$.

Acknowledgments. The work on the paper was initiated during my visit to Chalmers University of Technology. The warm hospitality and stimulating atmosphere are gratefully appreciated. I am grateful also to Prof. Lyudmila Turowska for stimulating discussions on the subject.

References

1. M. Bożejko and R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Mat. Ann. 300 (1994), 97-120.
2. K. Dykema and A. Nica, On the Fock representation of q-commutation relations, J. Reine Angew. Math. 440 (1993), 201-212.
3. P. E. T. Jørgensen, D. P. Proskurin and Yu. S. Samoĭlenko, The kernel of Fock representation of Wick algebras with braided operator of coefficients, Pacific J. Math. 198 (2001), 109-122.
4. P. E. T. Jørgensen, L. M. Schmitt, and R. F. Werner, Positive representations of general commutation relations allowing Wick ordering, J. Funct. Anal. 134 (1995), 33-99.
5. P. E. T. Jørgensen, L. M. Schmitt, and R. F. Werner, q-canonical commutation relations and stability of the Cuntz algebra, Pacific J. Math. 163 (1994), no. 1, 131-151.

Kyiv Taras Shevchenko University, Cybernetics Department, 64 Volodymyrska, Kyiv, 01033, Ukraine

E-mail address: prosk@univ.kiev.ua
Received 20/09/2010

