BOUNDARY PROBLEMS AND INITIAL-BOUNDARY VALUE PROBLEMS FOR ONE CLASS OF NONLINEAR PARABOLIC EQUATIONS WITH LÉVY LAPLACIAN

M. N. FELLER AND I. I. KOVTUN

Abstract

We develop a method to construct a solution to a boundary problem and an initial-boundary value problem in a fundamental domain of a Hilbert space for a class of nonlinear parabolic equations not containing explicitly the unknown function, $$
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right)
$$

where Δ_{L} is the infinite dimensional Lévy Laplacian.

1. Introduction

In the paper by M. N. Feller [1] (see also [2]) we have constructed a solution of the Cauchy problem for a nonlinear parabolic equations with the Lévy Laplacian Δ_{L},

$$
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right), \quad U(0, x)=U_{0}(x)
$$

where $f(t, \zeta)$ is a function on R^{2}.
The present paper is devoted to solution of the boundary value problem for a nonlinear parabolic equations with the Lévy Laplacian,

$$
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right) \quad \text { in } \quad \Omega, \quad U(t, x)=G(t, x) \quad \text { on } \quad \Gamma
$$

and the initial-boundary value problem for a nonlinear parabolic equations with the Lévy Laplacian,

$$
\begin{gathered}
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right) \quad \text { in } \quad \Omega, \\
U(0, x)=U_{0}(x), \quad U(t, x)=G(t, x) \quad \text { on } \quad \Gamma,
\end{gathered}
$$

in a fundamental domain $\Omega \cup \Gamma$ of a Hilbert space H.

2. Preliminaries

Let H be a separable real Hilbert space, $F(x)$ be a scalar function defined on $H, x \in$ H.

An infinite-dimensional Laplacian was introduced by P. Lévy [3]. For a function $F(x)$ twice strongly differentiable at the point x_{0} the Lévy Laplacian in this point is defined (when it exists) by the formula

$$
\begin{equation*}
\Delta_{L} F\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(F^{\prime \prime}\left(x_{0}\right) f_{k}, f_{k}\right)_{H} \tag{1}
\end{equation*}
$$

where $F^{\prime \prime}(x)$ is the Hessian of the function $F(x),\left\{f_{k}\right\}_{1}^{\infty}$ is an orthonormal basis in H.

[^0]In general, the Lévy Laplacian depends on the choice of the basis. However for specific classes of functions \mathcal{F}, the Lévy Laplacian often either does not depend on the choice of a basis in H (for example, if \mathcal{F} is the Shilov class of functions [4]). Otherwise it can be independent of a basis from some set \mathcal{B} of bases in H (for example, if $H=L_{2}(0,1), \mathcal{F}$ is the class of functions whose second differential has the normal form, \mathcal{B} is the set of uniformly dense bases in $L_{2}(0,1)$ [2], [3]).

In the sequel we will need a property of the Lévy Laplacian studied in [3] (see as well [2]). Set

$$
F(x)=f\left(U_{1}(x), \ldots, U_{m}(x)\right),
$$

where $f\left(u_{1}, \ldots, u_{m}\right)$ is a twice continuously differentiable function with m arguments defined on the domain $\left\{U_{1}(x), \ldots, U_{m}(x)\right\} \subset R^{m}$, where $\left(U_{1}(x), \ldots, U_{m}(x)\right)$ is a vector of values of the functions $U_{1}(x), \ldots, U_{m}(x)$. Assume that $U_{j}(x)$ are uniformly continuous in a bounded domain $\Omega \subset H$ and twice strongly differentiable functions and $\Delta_{L} U_{j}(x)$ exist $(j=1,2, \ldots, m)$. Then $\Delta_{L} F(x)$ exists and

$$
\begin{equation*}
\Delta_{L} F(x)=\left.\sum_{j=1}^{m} \frac{\partial f}{\partial u_{j}}\right|_{u_{j}=U_{j}(x)} \Delta_{L} U_{j}(x) \tag{2}
\end{equation*}
$$

Let Ω be a bounded domain in H (that is a bounded open set in H), while $\bar{\Omega}=\Omega \bigcup \Gamma-$ be a closed domain in H with the boundary Γ.

Define a domain Ω in H with a surface Γ as follows:

$$
\Omega=\left\{x \in H: 0 \leq Q(x)<R^{2}\right\}, \quad \Gamma=\left\{x \in H: Q(x)=R^{2}\right\}
$$

where $Q(x)$ is a twice continuously differentiable function such that $\Delta_{L} Q(x)=\gamma$ and γ is a strictly positive constant. A domain of this type is called a fundamental domain.

Let us give some examples of fundamental domains.

1) A ball $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$.
2) An ellipsoid $\bar{\Omega}=\left\{x \in H:(B x, x)_{H} \leq R^{2}\right\}$, where $B=\gamma E+S(x)$, E is an identity operator, $S(x)$ is a compact operator in H.

Introduce a function $T(x)=\frac{R^{2}-Q(x)}{\gamma}$. The function $T(x)$ possesses the following properties:

$$
\begin{gathered}
0<T(x) \leq \frac{R^{2}}{\gamma}, \quad \Delta_{L} T(x)=-1 \quad \text { if } \quad x \in \Omega \\
T(x)=0 \quad \text { if } \quad x \in \Gamma
\end{gathered}
$$

3. The equation $\frac{\partial U(t, x)}{\partial t}=f\left(\Delta_{L} U(t, x)\right)$

First we consider the nonlinear equation

$$
\frac{\partial U(t, x)}{\partial t}=f\left(\Delta_{L} U(t, x)\right)
$$

where $f(\zeta)$ is a given function of one argument.
3.1. Boundary problem. Consider the boundary value problem

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=f\left(\Delta_{L} U(t, x)\right) \quad(x \in \Omega), \tag{3}\\
U(t, x)=G(t, x) \quad(x \in \Gamma) \tag{4}
\end{gather*}
$$

where $f(\zeta)$ is a given function of one variable, $G(t, x)$ is a given function.
Theorem 1. We assume the following.
The function $f(\zeta)$ is a continuous function, twice differentiable in the domain $\left\{\Delta_{L} U(t, x)\right\} \subset R^{1}$. The equation $f(\zeta)=z$ has a solution $\zeta=\varphi(z)$.

The domain $\bar{\Omega}$ is fundamental.

In a some functional class \mathcal{F} there exists a solution $V(\tau, x)$ of the boundary value problem for the heat equation

$$
\begin{equation*}
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad(x \in \Omega),\left.\quad V(\tau, x)\right|_{\Gamma}=G(\tau, x) \tag{5}
\end{equation*}
$$

The equation

$$
\begin{equation*}
f^{\prime}\left(\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)\right)[t-X]-T(x)=0 \tag{6}
\end{equation*}
$$

has a solution $X=\chi(t, x)$ such that $\left.\chi(t, x)\right|_{\Gamma}=t$.
Then the solution of the boundary problem (3), (4) has the form

$$
\begin{equation*}
U(t, x)=f(\psi(\chi(t, x)))[t-\chi(t, x)]-\psi(\chi(t, x)) T(x)+V(\chi(t, x)+T(x), x) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(\chi(t, x))=\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right) \tag{8}
\end{equation*}
$$

$\left(\psi(z)\right.$ is a function on $\left.R^{1}\right)$.
Proof. From (7) we deduce

$$
\begin{aligned}
& \frac{\partial U(t, x)}{\partial t}=f(\psi(\chi(t, x)))-f(\psi(\chi(t, x))) \frac{\partial \chi(t, x)}{\partial t} \\
& \quad+f^{\prime}(\psi(\chi(t, x))) \psi_{z}^{\prime}(\chi(t, x)) \frac{\partial \chi(t, x)}{\partial t}[t-\chi(t, x)] \\
& \quad-\psi_{z}^{\prime}((\chi(t, x))) \frac{\partial \chi(t, x)}{\partial t} T(x)+\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)} \frac{\partial \chi(t, x)}{\partial t} \\
& \quad=f(\Psi(t, x))+\left\{f^{\prime}(\psi(\chi(t, x)))[t-\chi(t, x)]-T(x)\right\} \psi_{z}^{\prime}(\chi(t, x)) \frac{\partial \chi(t, x)}{\partial t} \\
& \quad-\left[f(\psi(\chi(t, x)))-\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right] \frac{\partial \chi(t, x)}{\partial t}
\end{aligned}
$$

Since $f=\varphi^{-1}$ we deduce from (8) that

$$
f(\psi(\chi(t, x)))=\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}
$$

and finally we get

$$
\begin{equation*}
\frac{\partial U(t, x)}{\partial t}=f(\psi(\chi(t, x))) \tag{9}
\end{equation*}
$$

as far as $\chi(t, x)$ satisfies (6).
Due to (2) we deduce from (7) that

$$
\begin{aligned}
& \Delta_{L} U(t, x)=-f(\psi(\chi(t, x))) \Delta_{L} \chi(t, x)+f^{\prime}(\psi(\chi(t, x))) \psi_{z}^{\prime}(\chi(t, x)) \Delta_{L} \chi(t, x)[t-\chi(t, x)] \\
& \quad-\psi(\chi(t, x)) \Delta_{L} T(x)-\psi_{z}^{\prime}(\chi(t, x)) \Delta_{L} \chi(t, x) T(x)+\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)} \Delta_{L} \chi(t, x) \\
& \quad+\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)} \Delta_{L} T(x)+\left.\Delta_{L} V(\tau, x)\right|_{\tau=\chi(t, x)+T(x)}
\end{aligned}
$$

Recall that $\Delta_{L} T(x)=-1$, hence

$$
\begin{aligned}
\Delta_{L} U(t, x) & =\psi(\chi(t, x))+\left\{f^{\prime}(\psi(\chi(t, x)))[t-\chi(t, x)]-T(x)\right\} \psi_{z}^{\prime}(\chi(t, x)) \Delta_{L} \chi(t, x) \\
& -\left[f(\psi(\chi(t, x)))-\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right] \Delta_{L} \chi(t, x) \\
& -\left.\left[\frac{\partial V(\tau, x)}{\partial \tau}-\Delta_{L} V(\tau, x)\right]\right|_{\tau=\chi(t, x)+T(x)}
\end{aligned}
$$

As far as due to (8) we have $f(\psi(\chi(t, x)))=\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}, \chi(t, x)$ satisfies (6) and due to (5) we have $\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x)$, then we deduce

$$
\begin{equation*}
\Delta_{L} U(t, x)=\psi(\chi(t, x)) \tag{10}
\end{equation*}
$$

Substituting (9) and (10) into (3) we obtain the identity.
At the surface Γ we have $T(x)=0$ and $\chi(t, x)=t$. Choosing $T(x)=0$ and $\chi(t, x)=t$ in (7) and taking into consideration that $\left.V(t, x)\right|_{\Gamma}=G(t, x)$ we have

$$
\left.U(t, x)\right|_{\Gamma}=\left.V(t, x)\right|_{\Gamma}=G(t, x)
$$

3.2. Initial-boundary value problem. Consider the initial-boundary value problem

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=f\left(\Delta_{L} U(t, x)\right) \quad(x \in \Omega, t \in(0, \mathcal{T}]) \tag{11}\\
U(0, x)=0 \tag{12}\\
U(t, x)=G(t, x) \quad(x \in \Gamma) \tag{13}
\end{gather*}
$$

where $f(\zeta)$ is a function on $R^{1}, G(t, x)$ is a given function.
We denote by $\mathfrak{M} \Phi$ a mean value of the function $\Phi(y)$ over the sphere $\|y\|_{H}^{2}=1$.
Theorem 2. We assume the following.
The function $f(\zeta)$ is a continuous twice differentiable function defined in $\left\{\Delta_{L} U(t, x)\right\} \subset$ R^{1}. There exists a solution $\zeta=\varphi(z)$ of the equation $f(\zeta)=z$ such that $\varphi(0)=0$.

The domain $\bar{\Omega}$ is fundamental.
In a some functional class \mathcal{F} there exists a solution $V(\tau, x)$ of the initial-boundary value problem for the heat equation

$$
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad(x \in \Omega, \tau \in(0, \mathcal{T}]), \quad V(0, x)=0,\left.\quad V(\tau, x)\right|_{\Gamma}=G(\tau, x)
$$

The function $G(t, x)$ is uniformly continuous in $\bar{\Omega}$ for each $t \in[0, \mathcal{T}]$, possesses a meal value $\mathfrak{M} G(t, x+\sqrt{2 T(x)} y) \forall t \in[0, \mathcal{T}]$ and besides $G(t, x)=0, G_{t}^{\prime}(t, x)=0$ if $t \leq r$ $(r>0)$.

The equation

$$
\begin{equation*}
f^{\prime}\left(\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)\right)[t-X]-T(x)=0 \tag{14}
\end{equation*}
$$

has a solution $X=\chi(t, x)$ such that $\left.\chi(t, x)\right|_{\Gamma}=t$ and $\chi(0, x)<r$.
Then the solution of the initial-boundary value problem (11)-(13) has the form

$$
\begin{equation*}
U(t, x)=f(\psi(\chi(t, x)))[t-\chi(t, x)]-\psi(\chi(t, x)) T(x)+V(\chi(t, x)+T(x), x) \tag{15}
\end{equation*}
$$

where $\psi(\chi(t, x))=\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right)$.
Proof. We prove that (15) satisfies the equation (11) in Ω and $U(t, x)=G(t, x)$ on the surface Γ in the same way as it has been done in the proof of theorem 1.

Let us show that $U(0, x)=0$.
To this end we check that if $G(\tau, x)=0$ for $\tau \leq 0$ then under the theorem conditions the solution $V(\tau, x)$ of the problem

$$
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad \text { in } \quad \Omega, \quad V(0, x)=0,\left.\quad V(\tau, x)\right|_{\Gamma}=G(\tau, x)
$$

with $G(\tau, x)=0$ for $\tau \leq 0$ can be written in the form

$$
\begin{equation*}
V(t, x)=\mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y) \tag{16}
\end{equation*}
$$

In fact at one hand

$$
\frac{\partial V(t, x)}{\partial t}=\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial t}
$$

At the other hand due to (2) we have

$$
\begin{aligned}
\Delta_{L} V(t, x) & =-\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial t} \Delta_{L} T \\
& +\left.\Delta_{L} \mathfrak{M} G(\tau, x+\sqrt{2 T(x)} y)\right|_{\tau=t-T(x)} \\
& =\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial t}+\left.\Delta_{L} \mathfrak{M} G(\tau, x+\sqrt{2 T(x)} y)\right|_{\tau=t-T(x)}
\end{aligned}
$$

since $\Delta_{L} T=-1$.
It is known that if a uniformly continuous in Ω function $F(x)$ possesses the mean value $\mathfrak{M} F(x+\sqrt{2 T(x)} y)$ then the function $\mathfrak{M} F(x+\sqrt{2 T(x)} y)$ is a harmonic function in Ω (see [5]), that is

$$
\Delta_{L} \mathfrak{M} F(x+\sqrt{2 T(x)} y)=0
$$

Hence,

$$
\Delta_{L} V(t, x)=\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial t}
$$

Substituting the above expressions for $\frac{\partial V(t, x)}{\partial t}$ and $\Delta_{L} V(t, x)$ into the heat equation $\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x)$ we obtain the identity

$$
\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial t}=\frac{\partial \mathfrak{M} G(t-T(x), x+\sqrt{2 T(x)} y)}{\partial t}
$$

Putting $t=0$ in (16) we get $V(0, x)=\mathfrak{M} G(-T(x), x+\sqrt{2 T(x)} y)=0$, since by theorem condition, $G(\tau, x)=0$ if $\tau \leq 0$.

At the surface $\Gamma T(x)=0$ and it yields from (16) that $\left.V(t, x)\right|_{\Gamma}=\mathfrak{M} G(t, x)=G(t, x)$.
By (16), we get

$$
V(\chi(t, x)+T(x), x)=\mathfrak{M} G(\chi(t, x), x+\sqrt{2 T(x)} y)
$$

and

$$
V(\chi(0, x)+T(x), x)=\mathfrak{M} G(\chi(0, x), x+\sqrt{2 T(x)} y)=0
$$

since by the theorem conditions $\chi(0, x)<r$, and $G(\tau, x)=0$ if $\tau \leq r$.
By theorem conditions and (16) we can check that

$$
\psi(\chi(t, x))=\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right)=\varphi\left(\mathfrak{M} G_{\tau}^{\prime}(\chi(t, x), x+\sqrt{2 T(x)} y)\right)
$$

and

$$
\begin{aligned}
f(\psi(\chi(t, x))) & =f\left(\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right)\right) \\
& =\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)} \\
& =G_{\tau}^{\prime}(\chi(t, x), x+\sqrt{2 T(x)} y)
\end{aligned}
$$

That is why

$$
\begin{gathered}
\psi(\chi(0, x))=\varphi\left(\mathfrak{M} G_{\tau}^{\prime}(\chi(0, x), x+\sqrt{2 T(x)} y)\right)=\varphi(0)=0 \\
f(\psi(\chi(0, x)))=G_{\tau}^{\prime}(\chi(0, x), x+\sqrt{2 T(x)} y)=0
\end{gathered}
$$

Here we have used the fact that by the theorem conditions $\chi(0, x)<r, G_{\tau}^{\prime}(\tau, x)=0$ for $\tau \leq r$ and $\varphi(0)=0$.

Choosing $t=0$ in (15) we obtain

$$
U(0, x)=-f(\psi(\chi(0, x)) \chi(0, x))-\psi(\chi(0, x)) T(x)+V(\chi(0, x)+T(x), x)=0
$$

4. The equation $\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right)$

Next we consider the nonlinear equation

$$
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right)
$$

where $f(t, \zeta)$ is a given function of two variables.
Consider the boundary value problem

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right) \quad(x \in \Omega) \tag{17}\\
U(t, x)=G(t, x) \quad(x \in \Gamma) \tag{18}
\end{gather*}
$$

where $f(t, \zeta)$ is a given function of two variables and $G(t, x)$ is given function.
Theorem 3. We assume the following.
The function $f(t, \zeta)$ is a continuous function, differentiable in t and twice differentiable in ζ. The equation $f(t, \zeta)=z$ can be solved with respect to $\zeta, \zeta=\varphi(t, z)$.

The domain $\bar{\Omega}$ is fundamental.
In a some functional class \mathcal{F} there exists a solution $V(\tau, x)$ of the boundary problem for the heat equation

$$
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad \text { in } \quad \Omega,\left.\quad V(\tau, x)\right|_{\Gamma}=G(\tau, x)
$$

The equation

$$
\int_{X}^{t} f_{\zeta}^{\prime}\left(s, \varphi\left(t,\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)\right) d s-T(x)=0
$$

has a solution $X=\chi(t, x)$, such that $\left.\chi(t, x)\right|_{\Gamma}=t$.
Then the solution of the boundary problem (17), (18) has the form

$$
\begin{equation*}
U(t, x)=\int_{\chi(t, x)}^{t} f(s, \psi(\chi(t, x))) d s-\psi(\chi(t, x)) T(x)+V(\chi(t, x)+T(x), x) \tag{19}
\end{equation*}
$$

where

$$
\psi(\chi(t, x))=\varphi\left(\chi(t, x),\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right)
$$

Consider the initial-boundary value problem

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=f\left(t, \Delta_{L} U(t, x)\right) \quad(x \in \Omega, t \in(0, \mathcal{T}]) \tag{20}\\
U(0, x)=0 \tag{21}\\
U(t, x)=G(t, x) \quad(x \in \Gamma) \tag{22}
\end{gather*}
$$

where $f(t, \zeta)$ is a given function of two variables and $G(t, x)$ is a given function.
Theorem 4. We assume the following.
The function $f(t, \zeta)$ is a continuous function differentiable in t and twice differentiable in ζ. The equation $f(t, \zeta)=z$ can by solved with respect to $\zeta, \zeta=\varphi(t, z)$, and $f(t, 0)=0$.

The domain $\bar{\Omega}$ is fundamental.

In a some functional class \mathcal{F} there exists a solution $V(\tau, x)$ of the initial-boundary problem for the heat equation

$$
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad(x \in \Omega, \tau \in(0, \mathcal{T}]), \quad V(0, x)=0,\left.\quad V(\tau, x)\right|_{\Gamma}=G(\tau, x)
$$

The function $G(t, x)$ is a uniformly continuous function in $\bar{\Omega}$ for each $t \in[0, \mathcal{T}]$, having a mean value $\mathfrak{M} G(t, x+\sqrt{2 T} y) \quad \forall t \in[0, \mathcal{T}]$ and $G(t, x)=0, G_{t}^{\prime}(t, x)=0$ for $t \leq r \quad(r>0) ;$

The equation

$$
\int_{X}^{t} f_{\zeta}^{\prime}\left(s, \varphi\left(t,\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)\right) d s-T(x)=0
$$

has a solution $X=\chi(t, x)$, such that $\left.\chi(t, x)\right|_{\Gamma}=t$ and $\chi(0, x)<r$.
Then the solution of the initial-boundary value problem (20)-(22) has the form

$$
\begin{equation*}
U(t, x)=\int_{\chi(t, x)}^{t} f(s, \psi(\chi(t, x))) d s-\psi(\chi(t, x)) T(x)+V(\chi(t, x)+T(x), x) \tag{23}
\end{equation*}
$$

where

$$
\psi(\chi(t, x))=\varphi\left(\chi(t, x),\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=\chi(t, x)+T(x)}\right)
$$

Proofs of Theorems 3, 4 are similar to the proofs of Theorems 1, 2.

5. Example

Let us construct a solution of the initial-boundary value problem in a ball of the Hilbert space $H \bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\sqrt{\Delta_{L} U(t, x)} \text { in } \Omega \tag{24}\\
U(0, x)=0 \tag{25}\\
\left.U(t, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(t-\frac{1}{2}\|x\|_{H}^{2}\right) \tag{26}
\end{gather*}
$$

where $g(\lambda)=\frac{1}{2} \lambda^{2}$ for $\lambda \geq 0, g(\lambda)=0$ for $\lambda \leq 0$.
Equation (24) corresponds to the case $f(\zeta)=\sqrt{\zeta}$ and hence, $\varphi(z)=z^{2}$.
For the ball $\|x\|_{H}^{2} \leq R^{2}$ the function $T(x)$ has the form $T(x)=\frac{R^{2}-\|x\|_{H}^{2}}{2}$.
The solution of the initial-boundary value problem for the heat equation

$$
\frac{\partial V(\tau, x)}{\partial \tau}=\Delta_{L} V(\tau, x) \quad \text { in } \Omega, \quad V(0, x)=0,\left.\quad V(\tau, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(\tau-\frac{1}{2}\|x\|_{H}^{2}\right)
$$

is given by

$$
V(\tau, x)=g\left(\tau+\frac{1}{2}\|x\|_{H}^{2}-R^{2}\right) .
$$

Hence

$$
\begin{aligned}
\psi(X) & =\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)=\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)^{2} \\
& =\left(g^{\prime}\left(X-\frac{R^{2}}{2}\right)\right)^{2}=\left(X-\frac{R^{2}}{2}\right)^{2}
\end{aligned}
$$

But $f^{\prime}(\zeta)=\frac{1}{2 \sqrt{\zeta}}$ that yields

$$
f^{\prime}\left(\varphi\left(\left.\frac{\partial V(\tau, x)}{\partial \tau}\right|_{\tau=X+T(x)}\right)\right)=\frac{1}{2\left(X-\frac{R^{2}}{2}\right)}
$$

and as the result (14) is reduced to

$$
\frac{1}{2\left(X-\frac{R^{2}}{2}\right)}[t-X]-T(x)=0
$$

Its solution is given by

$$
X=\chi(t, x)=\frac{t+T(x) R^{2}}{1+2 T(x)}
$$

where $\left.\chi(t, x)\right|_{\|x\|_{H}^{2}=R^{2}}=t$.
As far as

$$
\begin{gathered}
f(\chi(t, x))=\left(\chi(t, x)-\frac{R^{2}}{2}\right), \\
\psi(\chi(t, x))=\left(\chi(t, x)-\frac{R^{2}}{2}\right)^{2}, \\
\left.V(\tau, x)\right|_{\tau=\chi(t, x)+T(x)}=\frac{1}{2}\left(\chi(t, x)-\frac{R^{2}}{2}\right)^{2},
\end{gathered}
$$

we get according to (15) that the solution $U(t, x)$ of the problem (24)-(26) has the form

$$
U(t, x)=\frac{g\left(t-\frac{R^{2}}{2}\right)}{1+R^{2}-\|x\|_{H}^{2}} .
$$

References

1. M. N. Feller, Notes on infinite-dimensional nonlinear parabolic equations, Ukrain. Math. Zh. 52 (2000), no. 5, 690-701. (Russian)
2. M. N. Feller, The Lévy Laplacian, Cambridge University Press, Cambridge-New York-Melbourne-Madrid-Cape Town—Singapore-San Paulo, 2005.
3. P. Lévy, Problémes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951.
4. G. E. Shilov, On some problems of analysis in Hilbert spaces, I, Funktsional. Anal. i Prilozhen. 1 (1967), no. 2, 81-90. (Russian)
5. E. M. Polishchuk, Continual means and boundary value problems in function spaces, AcademieVerlag, Berlin, 1988.

UkrNiI "Resurs", 84 Bozhenko, Kyiv, 03150, Ukraine
E-mail address: feller@otblesk.com
National University of Life and Environmental Sciences of Ukraine, 15 Geroiv Oborony, Kyiv, 03041, Ukraine

E-mail address: ira@otblesk.com

[^0]: 2000 Mathematics Subject Classification. Primary 35R15, 45G05.
 Key words and phrases. Lévy Laplacian, nonlinear parabolic equations, boundary problems, initialboundary value problems.

