
Methods of Functional Analysis and Topology
Vol. 17 (2011), no. 2, pp. 118–125

BOUNDARY PROBLEMS AND INITIAL-BOUNDARY VALUE

PROBLEMS FOR ONE CLASS OF NONLINEAR PARABOLIC

EQUATIONS WITH LÉVY LAPLACIAN

M. N. FELLER AND I. I. KOVTUN

Abstract. We develop a method to construct a solution to a boundary problem

and an initial-boundary value problem in a fundamental domain of a Hilbert space

for a class of nonlinear parabolic equations not containing explicitly the unknown
function,

∂U(t, x)

∂t
= f(t,∆LU(t, x)),

where ∆L is the infinite dimensional Lévy Laplacian.

1. Introduction

In the paper by M. N. Feller [1] (see also [2]) we have constructed a solution of the
Cauchy problem for a nonlinear parabolic equations with the Lévy Laplacian ∆L,

∂U(t, x)

∂t
= f(t,∆LU(t, x)), U(0, x) = U0(x),

where f(t, ζ) is a function on R2.
The present paper is devoted to solution of the boundary value problem for a nonlinear

parabolic equations with the Lévy Laplacian,

∂U(t, x)

∂t
= f(t,∆LU(t, x)) in Ω, U(t, x) = G(t, x) on Γ,

and the initial-boundary value problem for a nonlinear parabolic equations with the Lévy
Laplacian,

∂U(t, x)

∂t
= f(t,∆LU(t, x)) in Ω,

U(0, x) = U0(x), U(t, x) = G(t, x) on Γ,

in a fundamental domain Ω ∪ Γ of a Hilbert space H.

2. Preliminaries

Let H be a separable real Hilbert space, F (x) be a scalar function defined on H, x ∈
H.

An infinite-dimensional Laplacian was introduced by P. Lévy [3]. For a function F (x)
twice strongly differentiable at the point x0 the Lévy Laplacian in this point is defined
(when it exists) by the formula

(1) ∆LF (x0) = lim
n→∞

1

n

n∑
k=1

(F ′′(x0)fk, fk)H ,

where F ′′(x) is the Hessian of the function F (x), {fk}∞1 is an orthonormal basis in H.
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In general, the Lévy Laplacian depends on the choice of the basis. However for specific
classes of functions F , the Lévy Laplacian often either does not depend on the choice of
a basis in H (for example, if F is the Shilov class of functions [4]). Otherwise it can be
independent of a basis from some set B of bases in H (for example, if H = L2(0, 1), F
is the class of functions whose second differential has the normal form, B is the set of
uniformly dense bases in L2(0, 1) [2], [3]).

In the sequel we will need a property of the Lévy Laplacian studied in [3] (see as well
[2]). Set

F (x) = f(U1(x), . . . , Um(x)),

where f(u1, . . . , um) is a twice continuously differentiable function with m arguments
defined on the domain {U1(x), . . . , Um(x)} ⊂ Rm, where (U1(x), . . . , Um(x)) is a vector
of values of the functions U1(x), . . . , Um(x). Assume that Uj(x) are uniformly continuous
in a bounded domain Ω ⊂ H and twice strongly differentiable functions and ∆LUj(x)
exist (j = 1, 2, . . . ,m). Then ∆LF (x) exists and

(2) ∆LF (x) =

m∑
j=1

∂f

∂uj

∣∣∣
uj=Uj(x)

∆LUj(x).

Let Ω be a bounded domain in H (that is a bounded open set in H), while Ω = Ω
⋃

Γ –
be a closed domain in H with the boundary Γ.

Define a domain Ω in H with a surface Γ as follows:

Ω = {x ∈ H : 0 ≤ Q(x) < R2}, Γ = {x ∈ H : Q(x) = R2},
where Q(x) is a twice continuously differentiable function such that ∆LQ(x) = γ and γ
is a strictly positive constant. A domain of this type is called a fundamental domain.

Let us give some examples of fundamental domains.
1) A ball Ω = {x ∈ H : ‖x‖2H ≤ R2}.
2) An ellipsoid Ω = {x ∈ H : (Bx, x)H ≤ R2}, where B = γE+S(x), E is an identity

operator, S(x) is a compact operator in H.

Introduce a function T (x) = R2−Q(x)
γ . The function T (x) possesses the following pro-

perties:

0 < T (x) ≤ R2

γ
, ∆LT (x) = −1 if x ∈ Ω,

T (x) = 0 if x ∈ Γ.

3. The equation ∂U(t,x)
∂t = f(∆LU(t, x))

First we consider the nonlinear equation

∂U(t, x)

∂t
= f(∆LU(t, x)),

where f(ζ) is a given function of one argument.

3.1. Boundary problem. Consider the boundary value problem

(3)
∂U(t, x)

∂t
= f(∆LU(t, x)) (x ∈ Ω),

(4) U(t, x) = G(t, x) (x ∈ Γ),

where f(ζ) is a given function of one variable, G(t, x) is a given function.

Theorem 1. We assume the following.
The function f(ζ) is a continuous function, twice differentiable in the domain

{∆LU(t, x)} ⊂ R1. The equation f(ζ) = z has a solution ζ = ϕ(z).
The domain Ω̄ is fundamental.
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In a some functional class F there exists a solution V (τ, x) of the boundary value
problem for the heat equation

(5)
∂V (τ, x)

∂τ
= ∆LV (τ, x) (x ∈ Ω), V (τ, x)|Γ = G(τ, x).

The equation

(6) f ′
(
ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

))
[t−X]− T (x) = 0

has a solution X = χ(t, x) such that χ(t, x)|Γ = t.
Then the solution of the boundary problem (3), (4) has the form

(7) U(t, x) = f(ψ(χ(t, x)))[t− χ(t, x)]− ψ(χ(t, x))T (x) + V (χ(t, x) + T (x), x),

where

(8) ψ(χ(t, x)) = ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

)
( ψ(z) is a function on R1).

Proof. From (7) we deduce

∂U(t, x)

∂t
= f(ψ(χ(t, x)))− f(ψ(χ(t, x)))

∂χ(t, x)

∂t

+ f ′(ψ(χ(t, x)))ψ′z(χ(t, x))
∂χ(t, x)

∂t
[t− χ(t, x)]

− ψ′z((χ(t, x)))
∂χ(t, x)

∂t
T (x) +

∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

∂χ(t, x)

∂t

= f(Ψ(t, x)) + {f ′(ψ(χ(t, x)))[t− χ(t, x)]− T (x)}ψ′z(χ(t, x))
∂χ(t, x)

∂t

−
[
f(ψ(χ(t, x)))− ∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

]∂χ(t, x)

∂t
.

Since f = ϕ−1 we deduce from (8) that

f(ψ(χ(t, x))) =
∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

and finally we get

(9)
∂U(t, x)

∂t
= f(ψ(χ(t, x)))

as far as χ(t, x) satisfies (6).
Due to (2) we deduce from (7) that

∆LU(t, x) = −f(ψ(χ(t, x)))∆Lχ(t, x) + f ′(ψ(χ(t, x)))ψ′z(χ(t, x))∆Lχ(t, x)[t− χ(t, x)]

− ψ(χ(t, x))∆LT (x)− ψ′z(χ(t, x))∆Lχ(t, x)T (x) +
∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

∆Lχ(t, x)

+
∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

∆LT (x) + ∆LV (τ, x)|τ=χ(t,x)+T (x).

Recall that ∆LT (x) = −1, hence

∆LU(t, x) = ψ(χ(t, x)) + {f ′(ψ(χ(t, x)))[t− χ(t, x)]− T (x)}ψ′z(χ(t, x))∆Lχ(t, x)

−
[
f(ψ(χ(t, x)))− ∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

]
∆Lχ(t, x)

−
[∂V (τ, x)

∂τ
−∆LV (τ, x)

]∣∣∣
τ=χ(t,x)+T (x)

.
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As far as due to (8) we have f(ψ(χ(t, x))) = ∂V (τ,x)
∂τ |τ=χ(t,x)+T (x), χ(t, x) satisfies (6)

and due to (5) we have ∂V (τ,x)
∂τ = ∆LV (τ, x), then we deduce

(10) ∆LU(t, x) = ψ(χ(t, x)).

Substituting (9) and (10) into (3) we obtain the identity.
At the surface Γ we have T (x) = 0 and χ(t, x) = t. Choosing T (x) = 0 and χ(t, x) = t

in (7) and taking into consideration that V (t, x)|Γ = G(t, x) we have

U(t, x)|Γ = V (t, x)|Γ = G(t, x).

�

3.2. Initial-boundary value problem. Consider the initial-boundary value problem

(11)
∂U(t, x)

∂t
= f(∆LU(t, x)) (x ∈ Ω, t ∈ (0, T ]),

(12) U(0, x) = 0,

(13) U(t, x) = G(t, x) (x ∈ Γ),

where f(ζ) is a function on R1, G(t, x) is a given function.
We denote by MΦ a mean value of the function Φ(y) over the sphere ‖y‖2H = 1.

Theorem 2. We assume the following.
The function f(ζ) is a continuous twice differentiable function defined in {∆LU(t, x)} ⊂

R1. There exists a solution ζ = ϕ(z) of the equation f(ζ) = z such that ϕ(0) = 0.
The domain Ω̄ is fundamental.
In a some functional class F there exists a solution V (τ, x) of the initial-boundary

value problem for the heat equation

∂V (τ, x)

∂τ
= ∆LV (τ, x) (x ∈ Ω, τ ∈ (0, T ]), V (0, x) = 0, V (τ, x)|Γ = G(τ, x).

The function G(t, x) is uniformly continuous in Ω̄ for each t ∈ [0, T ], possesses a meal

value MG(t, x +
√

2T (x)y) ∀t ∈ [0, T ] and besides G(t, x) = 0, G′t(t, x) = 0 if t ≤ r
(r > 0).

The equation

(14) f ′
(
ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

))
[t−X]− T (x) = 0

has a solution X = χ(t, x) such that χ(t, x)|Γ = t and χ(0, x) < r.
Then the solution of the initial-boundary value problem (11)–(13) has the form

(15) U(t, x) = f(ψ(χ(t, x)))[t− χ(t, x)]− ψ(χ(t, x))T (x) + V (χ(t, x) + T (x), x),

where ψ(χ(t, x)) = ϕ(∂V (τ,x)
∂τ |τ=χ(t,x)+T (x)).

Proof. We prove that (15) satisfies the equation (11) in Ω and U(t, x) = G(t, x) on the
surface Γ in the same way as it has been done in the proof of theorem 1.

Let us show that U(0, x) = 0.
To this end we check that if G(τ, x) = 0 for τ ≤ 0 then under the theorem conditions

the solution V (τ, x) of the problem

∂V (τ, x)

∂τ
= ∆LV (τ, x) in Ω, V (0, x) = 0, V (τ, x)

∣∣∣
Γ
= G(τ, x)

with G(τ, x) = 0 for τ ≤ 0 can be written in the form

(16) V (t, x) = MG(t− T (x), x+
√

2T (x)y).
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In fact at one hand

∂V (t, x)

∂t
=
∂MG(t− T (x), x+

√
2T (x)y)

∂t
.

At the other hand due to (2) we have

∆LV (t, x) = −
∂MG(t− T (x), x+

√
2T (x)y)

∂t
∆LT

+ ∆LMG(τ, x+
√

2T (x)y)|τ=t−T (x)

=
∂MG(t− T (x), x+

√
2T (x)y)

∂t
+ ∆LMG(τ, x+

√
2T (x)y)|τ=t−T (x)

since ∆LT = −1.
It is known that if a uniformly continuous in Ω function F (x) possesses the mean value

MF (x +
√

2T (x)y) then the function MF (x +
√

2T (x)y) is a harmonic function in Ω
(see [5]), that is

∆LMF (x+
√

2T (x)y) = 0.

Hence,

∆LV (t, x) =
∂MG(t− T (x), x+

√
2T (x)y)

∂t
.

Substituting the above expressions for ∂V (t,x)
∂t and ∆LV (t, x) into the heat equation

∂V (t,x)
∂t = ∆LV (t, x) we obtain the identity

∂MG(t− T (x), x+
√

2T (x)y)

∂t
=
∂MG(t− T (x), x+

√
2T (x)y)

∂t
.

Putting t = 0 in (16) we get V (0, x) = MG(−T (x), x +
√

2T (x)y) = 0, since by
theorem condition, G(τ, x) = 0 if τ ≤ 0.

At the surface Γ T (x) = 0 and it yields from (16) that V (t, x)
∣∣∣
Γ
= MG(t, x) = G(t, x).

By (16), we get

V (χ(t, x) + T (x), x) = MG(χ(t, x), x+
√

2T (x) y)

and
V (χ(0, x) + T (x), x) = MG(χ(0, x), x+

√
2T (x) y) = 0

since by the theorem conditions χ(0, x) < r, and G(τ, x) = 0 if τ ≤ r.
By theorem conditions and (16) we can check that

ψ(χ(t, x)) = ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

)
= ϕ

(
MG′τ (χ(t, x), x+

√
2T (x)y)

)
and

f(ψ(χ(t, x))) = f
(
ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

))
=
∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

= G′τ (χ(t, x), x+
√

2T (x)y).

That is why

ψ(χ(0, x)) = ϕ
(
MG′τ (χ(0, x), x+

√
2T (x)y)

)
= ϕ(0) = 0,

f(ψ(χ(0, x))) = G′τ (χ(0, x), x+
√

2T (x)y) = 0.

Here we have used the fact that by the theorem conditions χ(0, x) < r, G′τ (τ, x) = 0 for
τ ≤ r and ϕ(0) = 0.



BOUNDARY PROBLEMS AND INITIAL-BOUNDARY VALUE PROBLEMS . . . 123

Choosing t = 0 in (15) we obtain

U(0, x) = −f(ψ(χ(0, x))χ(0, x))− ψ(χ(0, x))T (x) + V (χ(0, x) + T (x), x) = 0.

�

4. The equation ∂U(t,x)
∂t = f(t,∆LU(t, x))

Next we consider the nonlinear equation

∂U(t, x)

∂t
= f(t,∆LU(t, x)),

where f(t, ζ) is a given function of two variables.
Consider the boundary value problem

(17)
∂U(t, x)

∂t
= f(t,∆LU(t, x)) (x ∈ Ω),

(18) U(t, x) = G(t, x) (x ∈ Γ),

where f(t, ζ) is a given function of two variables and G(t, x) is given function.

Theorem 3. We assume the following.
The function f(t, ζ) is a continuous function, differentiable in t and twice differentiable

in ζ. The equation f(t, ζ) = z can be solved with respect to ζ, ζ = ϕ(t, z).
The domain Ω is fundamental.
In a some functional class F there exists a solution V (τ, x) of the boundary problem

for the heat equation

∂V (τ, x)

∂τ
= ∆LV (τ, x) in Ω, V (τ, x)|Γ = G(τ, x).

The equation ∫ t

X

f ′ζ

(
s, ϕ
(
t,
∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

))
ds− T (x) = 0

has a solution X = χ(t, x), such that χ(t, x)|Γ = t.
Then the solution of the boundary problem (17), (18) has the form

(19) U(t, x) =

∫ t

χ(t,x)

f(s, ψ(χ(t, x))) ds− ψ(χ(t, x))T (x) + V (χ(t, x) + T (x), x),

where

ψ(χ(t, x)) = ϕ
(
χ(t, x),

∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

)
.

Consider the initial-boundary value problem

(20)
∂U(t, x)

∂t
= f(t,∆LU(t, x)) (x ∈ Ω, t ∈ (0, T ])

(21) U(0, x) = 0,

(22) U(t, x) = G(t, x) (x ∈ Γ),

where f(t, ζ) is a given function of two variables and G(t, x) is a given function.

Theorem 4. We assume the following.
The function f(t, ζ) is a continuous function differentiable in t and twice differentiable

in ζ. The equation f(t, ζ) = z can by solved with respect to ζ, ζ = ϕ(t, z), and f(t, 0) = 0.
The domain Ω is fundamental.
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In a some functional class F there exists a solution V (τ, x) of the initial-boundary
problem for the heat equation

∂V (τ, x)

∂τ
= ∆LV (τ, x) (x ∈ Ω, τ ∈ (0, T ]), V (0, x) = 0, V (τ, x)|Γ = G(τ, x).

The function G(t, x) is a uniformly continuous function in Ω for each t ∈ [0, T ],

having a mean value MG(t, x +
√

2Ty) ∀t ∈ [0, T ] and G(t, x) = 0, G′t(t, x) = 0 for
t ≤ r (r > 0);

The equation ∫ t

X

f ′ζ

(
s, ϕ
(
t,
∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

))
ds− T (x) = 0

has a solution X = χ(t, x), such that χ(t, x)|Γ = t and χ(0, x) < r.
Then the solution of the initial-boundary value problem (20)–(22) has the form

(23) U(t, x) =

∫ t

χ(t,x)

f(s, ψ(χ(t, x))) ds− ψ(χ(t, x))T (x) + V (χ(t, x) + T (x), x),

where

ψ(χ(t, x)) = ϕ
(
χ(t, x),

∂V (τ, x)

∂τ

∣∣∣
τ=χ(t,x)+T (x)

)
.

Proofs of Theorems 3, 4 are similar to the proofs of Theorems 1, 2.

5. Example

Let us construct a solution of the initial-boundary value problem in a ball of the
Hilbert space H Ω = {x ∈ H : ‖x‖2H ≤ R2}

(24)
∂U(t, x)

∂t
=
√

∆LU(t, x) in Ω,

(25) U(0, x) = 0,

(26) U(t, x)
∣∣∣
‖x‖2H=R2

= g
(
t− 1

2
‖x‖2H

)
,

where g(λ) = 1
2λ

2 for λ ≥ 0, g(λ) = 0 for λ ≤ 0.

Equation (24) corresponds to the case f(ζ) =
√
ζ and hence, ϕ(z) = z2.

For the ball ‖x‖2H ≤ R2 the function T (x) has the form T (x) =
R2−‖x‖2H

2 .
The solution of the initial-boundary value problem for the heat equation

∂V (τ, x)

∂τ
= ∆LV (τ, x) in Ω, V (0, x) = 0, V (τ, x)|‖x‖2H=R2 = g

(
τ − 1

2
‖x‖2H

)
is given by

V (τ, x) = g
(
τ +

1

2
‖x‖2H −R2

)
.

Hence

ψ(X) = ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

)
=
(∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

)2

=
(
g′
(
X − R2

2

))2

=
(
X − R2

2

)2

.

But f ′(ζ) = 1
2
√
ζ

that yields

f ′
(
ϕ
(∂V (τ, x)

∂τ

∣∣∣
τ=X+T (x)

))
=

1

2(X − R2

2 )
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and as the result (14) is reduced to

1

2
(
X − R2

2

) [t−X]− T (x) = 0.

Its solution is given by

X = χ(t, x) =
t+ T (x)R2

1 + 2T (x)
,

where χ(t, x)|‖x‖2H=R2 = t.

As far as

f(χ(t, x)) =
(
χ(t, x)− R2

2

)
,

ψ(χ(t, x)) =
(
χ(t, x)− R2

2

)2

,

V (τ, x)|τ=χ(t,x)+T (x) =
1

2

(
χ(t, x)− R2

2

)2

,

we get according to (15) that the solution U(t, x) of the problem (24)–(26) has the form

U(t, x) =
g(t− R2

2 )

1 +R2 − ‖x‖2H
.
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