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UNCONDITIONAL BASES OF DE BRANGES SPACES AND

INTERPOLATION PROBLEMS CORRESPONDING TO THEM

G. M. GUBREEV AND M. G. VOLKOVA

Abstract. In this paper the unconditional bases of de Branges spaces are con-
structed from the values of reproducing kernels. Appropriate problems of interpola-

tion by entire functions are also considered. The paper is a continuation of papers

[2, 3].

1. Let us recall a number of facts from the theory of de Branges spaces [1], which are
used in the course of the work.

In the sequel, C+ (C−) is an upper (lower) half-plane. A function f meromorphic in
C+ is called a function of bounded type if f(z) = f1(z)/f2(z), f1, f2 ∈ H∞+ . The mean
type of a function of bounded type is defined by the formula

h(f) = lim sup
y→+∞

y−1 log |f(iy)|.

For an arbitrary entire function F we use the following notation F ∗(z) = F (z̄). Let E
be an entire function that satisfies the condition

(1) |E∗(z)| < |E(z)|, z ∈ C+.

Let us denote by H(E) a linear space of entire functions F such that:
1) F (z)/E(z), F ∗(z)/E(z) are functions of bounded type and nonpositive mean type
in C+;
2)
∫
R
|F (x)/E(x)|2dx <∞.

The space H(E) is a Hilbert space with respect to the inner product

(F,G) :=

∫
R

F (x)G∗(x)/|E(x)|2dx.

Assumed that

a(z) =
1

2
(E∗(z) + E(z)), b(z) =

1

2i
(E∗(z)− E(z)),

we get the equality E(z) = a(z) − ib(z), where a, b are entire real functions (a = a∗,
b = b∗). The reproducing kernel of the space H(E) is expressed as

k(z, λ) := π−1
(
b(z)a(λ)− a(z)b(λ)

)
/(z − λ̄),

i.e., if F ∈ H(E), then

(F (x), k(x, λ)) = F (λ), λ ∈ C.
Then, an entire function S is called associated to de Branges space, if
a) S(z)/E(z), S∗(z)/E(z) are functions of bounded type and have nonpositive mean type
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in C+;
b) the following integral converges:∫

R

|S(x)/E(x)|2(1 + x2)−1dx.

LetH(E) be an arbitrary de Branges space, k(x, λ) its reproducing kernel, Λ an infinite
sequence of complex numbers with the unique limit point∞. The problem of description
of the unconditional bases in the spaces H(E) of the form

(2) {k(z, λk) : λk ∈ Λ}

was considered in [2, 3].
Unconditional bases from values of reproducing kernels are of interest in the theory

of de Branges spaces [1]. In addition to this, criteria for completeness and basis prop-
erty of the families (2) have an application to the theory of nonself-adjoint operators
with discrete spectrum [3, 4]. For example, such an approach is efficient while studying
boundary problems generated by canonic second-order differential systems of equations
on a finite interval.

Then, let us assume that Λ ∩ R = ∅, i.e., Λ = Λ+ ∪ Λ−, where Λ± = Λ ∩ C±. Recall
that [5] a sequence {µk}∞1 , µk ∈ C+ satisfies the Carleson condition if the following
holds:

inf
k

∏
j 6=k

∣∣∣∣µk − µjµk − µ̄j

∣∣∣∣ > 0.

Let us consider a sequence Λ̄− := {λ̄k, λk ∈ Λ−} in the upper half-plane. The following
result takes place.

Theorem. ([2, 3]). Let the sequence Λ = Λ+ ∪ Λ− and

(3) sup
λk∈Λ+

∣∣∣∣E∗(λk)

E(λk)

∣∣∣∣ < 1, sup
µk∈Λ̄−

∣∣∣∣E∗(µk)

E(µk)

∣∣∣∣ < 1.

For family (2) to be an unconditional basis in the space H(E) it is necessary and sufficient
that Λ coincide with the set of simple roots of a function S, associated to the space,
satisfying the following conditions:
1) h(S/E) = h(S∗/E) = 0;
2) the weight w2(x) := |S(x)/E(x)|2 satisfies the condition (A2) on R, i.e.,

sup
∆
{M(w2)M(w−2)} <∞, M(w±2) := |∆|−1

∫
∆

w±2(x)dx,

where ∆ is an arbitrary interval in R, |∆| its length;
3) the sequences Λ+, Λ̄− satisfy the Carleson condition.
Further, if only the conditions 1)–2) are fulfilled, then the family (2) is complete in the
space H(E).

Let us remark that we have from (1) the factorization

E∗(z)

E(z)
= ceiαzB(z), α > 0, |c| = 1, z ∈ C+,

where B is the Blaschke product in C+. Therefore the condition (3) puts constrains
on the behaviour of Λ near the real line. For example, if α > 0, then the condition
inf
λk∈Λ

|Imλk| > 0 ensures that the inequalities (3) are true.

There exist unconditional bases of de Branges spaces in the form (2) with real se-
quences Λ [1]. It is clear that the formulated theorem is inapplicable to such bases. The
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approach proposed in this paper removes this disadvantage in some way. The results ob-
tained here do not give a complete description of bases (2), though they have a significant
usage in applications.

2. If F ∈ H(E), then F/E belongs to a Hardy class H2
+ [1] and therefore∫

R+iε

∣∣∣∣F (z)

E(z)

∣∣∣∣2 dz ≤ ‖F‖2H(E), ε > 0,

where R + iε := {x + iε, x ∈ R}. The mentioned approach is based on the notion of an
isotropic space H(E).

Definition. The de Branges space is called isotropic, if for every ε > 0 there exists
δ(ε) > 0 such that

‖F‖2H(E) ≤ δ(ε)
∫

R+iε

∣∣∣∣F (z)

E(z)

∣∣∣∣ dz.
If a sequence of complex numbers, Λ, do not intersect some straight line R+ iε, ε > 0,

then we introduce the following notations:

Λε+ := {λk − iε, Imλk > ε, λk ∈ Λ}, Λε− := {λk − iε, Imλk < ε, λk ∈ Λ}.

Now let S be associated with the de Branges space H(E). Let us denote by Λ = {λk} the
set of roots of the function S, moreover, multiplicity of root λk is equal to mk. Let us
assume that the normalization condition E(0) = S(0) is fulfilled. Therefore the function

u(z) := z−1(E(z)− S(z))

belongs to the space H(E). The following theorem takes place.

Theorem 1. Let a function S be associated to the isotropic space H(E), and the set of
its roots, Λ, do not intersect some straight line R + iε, ε > 0.

The family of functions

(4) Sjk(z) :=
j!S(z)

(z − λk)j+1
, 0 ≤ j < mk, λk ∈ Λ,

forms an unconditional basis in the closure of its linear span in H(E) if the following
conditions are fulfilled:
1) h(S/E) = h(S∗/E) = 0;
2) the weight w2

ε(x) := |S(x+ iε)/E(x+ iε)|2 satisfies the condition (A2) on R;
3) the multiplicities mk satisfy the condition sup

k
mk <∞;

4) the sequences Λε+, Λε− satisfy the Carleson condition.
Conditions 1)–4) are necessary and sufficient for the family (4) to form an unconditional
base H(E), if the function u(z + iε)/S(z + iε) is a function of bounded type in half-
plane C−.

Let us point out the main steps of the proof of Theorem 1. First of all it follows from
the condition 2) that S has no roots on the straight line R + iε. Due to isotropy of the
space H(E), the operator

(VεF )(x) := F (x+ iε)/S(x+ iε), F ∈ H(E),

maps H(E) isomorphically on some subspace of the space L2 on R with a measure
w2
ε(x)dx, and functions of the family (4) transform into rational functions

(5) rjk(x) :=
j!

(x− µk)j+1
, 0 ≤ j < mk, µk := λk − iε, λk ∈ Λ.
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It is known [6] that the conditions 2)–4) guarantee the unconditional basis property of
the family (5) in closure of its linear span. Since Vε is an isomorphism, the family (4) is
also a basis in the closure of its linear span in the space H(E).

Secondly, applying the arguments used in the proof of Theorem 2.1 in [3], we can
conclude that completeness of the family (4) in H(E) is equivalent to the inclusion

(6) u ∈ closspan
H(E)

{Sjk : 0 ≤ j < mk , λk ∈ Λ}.

And finally it is proved that inclusion (6) is equivalent to the fact that the function
u(z+iε)/S(z+iε) is a function of bounded type in C−. Let us notice that the description
of a closed linear span of the family (5) in the space L2(R) with the measure w2

ε(x)dx
[6] is substantionally used while proving this fact.

Now let us consider the unconditional bases problem in form (2) for the space H(E).
Let us assume that the associated function S in Theorem 1 has only simple roots, i.e.,
mk = 1 for all λk ∈ Λ. Then the family of functions

Sk(z) :=
S(z)

(z − λk)S′(λk)
, λk ∈ Λ,

and also the family (2) are mutually biorthogonal. As a result they form unconditional
bases only at the same time. Thus, we have the following.

Theorem 2. Let S be associated with an isotropic de Branges space H(E), Λ the set of
its roots that are supposed to be simple. If for some ε > 0, the following conditions are
fulfilled:
1) h(S/E) = h(S∗/E) = 0,
2) the weight |S(x+ iε)/E(x+ iε)|2 satisfies the condition (A2) on R,
3) the sequences Λε+, Λε− satisfy the Carleson condition,
4) u(z + iε)/S(z + iε) is the function of bounded type in the half-plane C−,
then the family (2) forms an unconditional basis of the space H(E).

Thus, in case of the isotropic space H(E), the formulated theorem gives a basis prop-
erty criterion for functions of the form (2) without the rather restrictive assumption
Λ ∩ R = ∅.

3. In order to apply Theorems 1, 2, it is necessary to have simple criteria of isotropy of
the de Branges space H(E). In this section we will formulate two such results that will
allow us to know if isotropy of H(E) holds, using the properties of the function E.

Let us point out that due to (1) the roots of the function

(7) Sξ(z) := E∗(z)− ξE(z), |ξ| > 1

are located in the half-plane C−. Let us consider a complex number ξ+ which is calculated
by formula

(ξ+)−1 = lim
y→+∞

E∗(iy)

E(iy)
,

under the condition that this limit exists. If it is equal to 0, let us consider that ξ+ =∞
and assume the following in the formula (7):

S∞(z) = E(z).

Theorem 3. Let the sequence of roots, Λ, of the function Sξ(z) = E∗(z)−ξE(z) satisfy,
with some ξ 6= ξ+(|ξ| > 1), the following conditions:
1) the multiplicities of the roots mk of the function Sξ satisfy the condition sup

k
mk <∞,

2) the sequence {λ̄k : λk ∈ Λ} satisfies the Carleson condition,
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3) sup
λk∈Λ

Imλk < 0,

then the de Branges space H(E) is isotropic.

Let us point out that an analog of Theorem 3, in which functions in the form (7) are
present at |ξ| < 1, is true.

A disadvantage of the formulated theorem is that it is necessary to have an information
about the arrangement of the roots of functions Sξ. The next result is free from this
deficiency.

Theorem 4. Let E be an entire function of exponential type and the weight |E(x)|2
satisfy the condition (A2) on R. Then the corresponding space H(E) is isotropic.

If E satisfies the conditions of Theorem 4, then all elements of the space H(E) also
have the exponential type that does not exceed h(E) and belongs to the Cartright class
[7]. Indeed, since E2(x)(1 + x2)−1 is summable on R, E belongs to the Cartright class
and so [8] it is a function of bounded type in C+. If F ∈ H(E), then F/E, F ∗/E are
functions of bounded type in C+. Consequently, the functions F, F ∗ also belong to this
class. Under the Krein theorem [8], the function F has finite exponential type and
belongs to the Cartright class.

4. In this section we formulate an interpolation corollary from unconditional bases from
the values of reproducing kernels theorem (see p. 1). Let us point out that every theorem
concerning bases of the form (2) generates a solution of an appropriate interpolation
problem.

Let again, as in item 1, Λ∩R = ∅, Λ = Λ+ ∪Λ− and let us suppose that parts of Λ±
are numbered using subsets of the sets Z+ := {k ∈ Z , k > 0}, Z− := {k ∈ Z , k < 0}. Let
us remark that the cases where Λ+ or Λ− are empty sets are not eliminated. Though, Λ
is numbered using the set Z0 ⊆ Z+ ∪ Z−, which is naturally ordered.

Let us denote the weight space of all complex sequences c := {cj , j ∈ Z0} by l2(bj)
with the norm

‖c‖2 =
∑
j∈Z0

|cj |2bj , bj > 0.

Now let H(E) be an arbitrary de Branges space. Using the given sequence Λ let us
construct an interpolation operator JΛ that associates to every function F ∈ H(E) the
sequence

(8) JΛF := {F (λj) : j ∈ Z0}.

The problem of solvability of interpolation problems of the type

(9) F (λj) = cj , j ∈ Z0, F ∈ H(E),

we are interested in, will be formulated in the following way.
What kind of sequence should Λ and weight sequence {bj} be in order to make the

operator JΛ map the space H(E) on the weight space l2{bj} bijectively and bicontinu-
ously?

Let the sequence Λ be such that inequalities (3) hold. Let us call it interpolational if
it coincides with the set of simple roots of some function S associated to the space H(E)
satisfying the following conditions:
1) h(S/E) = h(S∗/E) = 0;
2) the weight |S(x)/E(x)|2 satisfies the condition (A2);
3) Λ+ and Λ̄− satisfy the Carleson condition.
In the sequel bijective and bicontinuous linear operators are called isomorphisms.
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Theorem 5. 1) If an operator JΛ, which is determined by formula (8), is an isomorphism
of H(E) on the space l2(bj), then the sequence {bj} satisfies the two-sided estimates

(10) bj � (Imλj)|E(λj)|−2, j ∈ Z+; bj � |Imλj ||E(λ̄j)|−2, j ∈ Z−.
2) Let the sequence {bj} satisfy the estimates (10). Then the operator JΛ is an isomor-
phism of H(E) on l2(bj) if and only if the sequence Λ is interpolational.

3) If the conditions of the previous statement are fulfilled, then a solution of the in-
terpolational problem (9) for every sequence {cij} from the space l2(bj) is given by the
series

(11) F (z) =
∑
λj∈Λ

cj
S(z)

S′(λi)(z − λj)
,

where the associated function S is a part of the definition of the interpolational sequence
Λ.

Let us give a sketch of the proof of Theorem 5. Denote by ek the sequence which for
k ∈ Z0 is equal to 1 and 0 for all other j ∈ Z0. If the operator JΛ is an isomorphism, then
the family of preimages Fk(z) := J−1

Λ ek, k ∈ Z0, forms an unconditional basis H(E).
Therefore, the biorthogonal family {k(z, λj) : λj ∈ Z0} also forms an unconditional
basis, and thus the sequence Λ is interpolational. From the definition of the function
Fk, it follows that ‖Fk‖2 � ‖ek‖2 = bk and, since ‖Fk‖2‖k(x, λk)‖2 = 1, we come to the
two-sided estimates bk � ‖k(x, λj)‖−2, j ∈ Z0. Since inequalities (3) take place, estimates
[3] are true,

‖k(x, λj)‖2 � (Imλj)
−1|E(λj)|2, λj ∈ Λ+,

‖k(x, λj)‖2 � |Imλj |−1|E(λ̄j)|2, λj ∈ Λ−.

Conditions (10) follow from these estimates.
Let us also remark that series (11) converges in the norm of the space H(E) and

uniformly on compacts of the complex plane.
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