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NOTES ON WICK CALCULUS ON PARAMETRIZED SPACES OF

TEST FUNCTIONS OF MEIXNER WHITE NOISE

N. A. KACHANOVSKY

Abstract. Using a general approach that covers the cases of Gaussian, Poissonian,

Gamma, Pascal and Meixner measures, we construct elements of a Wick calculus on
parametrized Kondratiev-type spaces of test functions; consider the interconnection

between the extended stochastic integration and the Wick calculus; and give an

example of a stochastic equation with a Wick-type nonlinearity. The main results
consist in studying properties of a Wick product and Wick versions of holomorphic

functions on the parametrized Kondratiev-type spaces of test functions. These results

are necessary, in particular, in order to describe properties of solutions of stochastic
equations with Wick type nonlinearities in the ”Meixner analysis”.

Introduction

A development of modern mathematical branches of science, in particular, mathemat-
ical physics, stochastic analysis, financial mathematics etc. requires to construct and
study the theory of test and generalized functions of infinitely many variables with dual
pairings generated by non-Gaussian measures. A class of such measures important for
applications is the so-called Meixner class of probability measures (see [41] for the one-
dimensional case, [39, 40, 48] for the infinite-dimensional case). This class contains, in
particular, the Gaussian, Poissonian, Gamma, Pascal, and Meixner measures. During
recent years an analysis connected with measures from the Meixner class became an
object of investigation for many authors. In particular, in [1] Lévy processes on the Lie
algebra sl(2,R) were investigated, components of these processes are classical Lévy pro-
cesses on R corresponding to Meixner classes; in [4] a stochastic integral was introduced
and studied for a wide class of stochastic processes and in [2] it was proved that the
results of [4] can be applied in the ”Meixner analysis”; in [20, 21] a stochastic integration
theory with applications was constructed for Meixner processes and its generalizations;
in [16, 17, 18], in particular, a stochastic integration theory and elements of a Wick calcu-
lus with applications to financial mathematics were developed; in [5] all Meixner classes
within a quantum white noise context were considered from a general point of view.
In the papers [39, 40] E. W. Lytvynov proposed a natural generalization of the results
[41] to the infinite-dimensional case and gave some applications to stochastic analysis.
His approach is based on the so-called Jacobi fields theory (e.g., [9]). In the paper [48]
I. V. Rodionova constructed an infinite-dimensional ”Meixner analysis” that is based on
generalization of results in [40], considering the Gaussian, Poissonian, Gamma, Pascal
and Meixner measures as a one probability measure, the so-called generalized Meixner
measure. It is worth noticing that the white noise in [48] is not a Lévy one, generally
speaking (it is not time homogeneous). In the investigations of [39, 40, 48] an important
role belongs to the so-called extended Fock space [33, 10], this space naturally arises in
the ”Meixner analysis” and, in fact, constitutes the interacting Fock space [3, 23].
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On the other hand, many specialists study a (non-Gaussian, generally speaking) ana-
lysis on the so-called Hida (e.g., [22, 18, 16]), Kondratiev (e.g., [35, 7, 6, 36, 28, 8, 29,
34, 11, 50]) and another similar spaces of test and generalized functions (and on the
corresponding weighted Fock spaces). Such an analysis includes a stochastic integration
theory, a Wick calculus and different applications (including a theory of normally ordered
white noise equations or, in another terminology, stochastic equations with Wick-type
nonlinearities). Thereupon we refer, in particular, to the papers [35, 7, 46, 14, 13, 37,
45, 47, 44, 43, 15, 24, 18, 16, 25]. One of tasks in these investigations consists in a
study of properties of different operators (including stochastic integrals and stochastic
derivatives) and operations (e.g., of a Wick multiplication) subject to the particular
spaces under consideration. For example, in [18, 16, 17] stochastic integrals with respect
to a wide class of Lévy processes on Hida spaces are studied and the corresponding Wick
calculus is developed; the constructions in these works are based on the so-called power
jump processes [42].

In the papers [32, 27] the author investigated the extended stochastic integral and
elements of the Wick calculus on the Kondratiev spaces in the so-called Gamma-analysis
(i.e., in the analysis connected with the Gamma-measure, — a particular case of the
generalized Meixner measure [48]); the constructions of these papers are based on the
structure of (the Gamma-version of) the extended Fock space. In the paper [31] the
author introduced and studied the extended stochastic integral and elements of the Wick
calculus on the ”classical” Kondratiev-type spaces in the ”Meixner analysis”, this paper
can be considered as an enhanced generalization of [32, 27]. In [26] the results of [31] are
transferred to the case of parametrized Kondratiev-type spaces. In particular, the Wick
calculus on the parametrized spaces of regular generalized functions is developed. The
main aim of this paper is to study elements of the Wick calculus (properties of the Wick
product and of Wick versions of holomorphic functions) on the parametrized spaces of
test functions of Meixner white noise. These results are necessary, in particular, in order
to describe properties of solutions of stochastic equations with Wick-type nonlinearities.
Note that equations of this type were studied in different situations by many specialists
(see, e.g., [38, 46, 45, 47, 44, 15, 24, 25]); but, as far as it is known to the author, in the
present paper we first propose to consider such equations on parametrized spaces of test
functions that are concerned with the structure of the extended Fock space.

Finally we remark that in [37] a wide class of Kondratiev-type spaces (including para-
metrized ones) was studied. But the authors in [37] considered nonregular spaces that
can be associated with weighted symmetric Fock spaces; whereas we consider in the
present paper regular spaces that can be associated with weighted extended Fock spaces.
Therefore our results cannot be obtained from results of [37]. Moreover, in [37] Wick
versions of holomorphic functions (the most non-trivial objects in the Wick calculus!)
are not considered.

The paper is organized in the following manner. In the first section we recall necessary
definitions and results: the generalized Meixner measure, the corresponding orthogonal
polynomials, the extended stochastic integral, the parametrized spaces of test and gene-
ralized functions, elements of the Wick calculus on the parametrized spaces of generalized
functions. The second section is devoted to the Wick calculus on the parametrized spaces
of test functions.

1. Preliminaries

By D denote the set of all real-valued infinite differentiable functions on R+ = [0,+∞)
with compact supports. This set can be naturally endowed with a (projective limit)
topology of a nuclear space (e.g., [12]): D = pr lim

τ∈T
Hτ , where T is the set of all pairs
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τ = (τ1, τ2), τ1 ∈ N, τ2 is an infinite differentiable function on R+ such that τ2(t) ≥ 1 for
all t ∈ R+; Hτ = H(τ1,τ2) is the Sobolev space of order τ1 weighted by the function τ2,
i.e., the scalar product in Hτ is given by the formula

(f, g)τ := (f, g)Hτ =

∫
R+

(
f(t)g(t) +

τ1∑
k=1

f (k)(t)g(k)(t)
)
τ2(t)dt.

Hence in what follows, we understand D as the corresponding topological space.
Let us consider the (nuclear) chain (the rigging of L2(R+) – the space of square

integrable with respect to the Lebesgue measure real-valued functions on R+)

(1.1) D′ = ind lim
τ ′∈T

H−τ ′ ⊃ H−τ ⊃ L2(R+) =: H ⊃ Hτ ⊃ pr lim
τ ′∈T

Hτ ′ = D,

where H−τ , D′ are the dual of Hτ , D with respect to H spaces correspondingly. Let
〈·, ·〉 be the dual pairing between elements of D′ and D (and also H−τ and Hτ ) that is
generated by the scalar product in H, this notation will be preserved for tensor powers
and complexifications of spaces.

Remark 1.1. Note that in this paper by the term ”scalar product” we understand real
scalar products or, by another words, bilinear forms. So, a scalar product (·, ·) on a
complex space is a bilinear form that is connected with the norm ‖ · ‖ in this space by

the formula ‖ · ‖ =
√

(·, ·).

Remark 1.2. One can use a ”base chain” that is more general than chain (1.1). For
example, instead of L2(R+) one can use the space L2(R+, σ), where σ is a measure on
(R+,B(R+)) (here and below B denotes the Borel σ-algebra) satisfying some assumptions
(e.g., [31, 26]); but such a generalization is not essential in this paper.

Let α, γ : R+ → C be smooth functions such that

θ
def
= α− γ : R+ → R, η

def
= αγ : R+ → R+

and, moreover, θ and η are bounded on R+. Further, let for each u ∈ R+ vα(u),γ(u)(ds)
be a probability measure on (R,B(R)) that is defined by its Fourier transform∫

R
eiλsvα(u),γ(u)(ds) = exp

{
− iλ(α(u) + γ(u))

+ 2

∞∑
m=1

(α(u)γ(u))m

m

[ ∞∑
n=2

(−iλ)n

n!

(
γn−2(u) + γn−3(u)α(u) + · · ·+ αn−2(u)

)]m}
.

Definition 1.1. ([48]). A probability measure µ on the measurable space (D′,F(D′))
(here F is the σ-algebra on D′ generated by cylinder sets) with the Fourier transform∫

D′
ei〈x,ξ〉µ(dx) = exp

{∫
R+

du

∫
R
vα(u),γ(u)(ds)

1

s2
(
eisξ(u) − 1− isξ(u)

)}
(here ξ ∈ D) is called the generalized Meixner measure.

Let us denote by a subindex C complexifications of spaces.

Theorem 1.1. ([48]). The generalized Meixner measure µ is a generalized stochastic
process with independent values in the sense of [19]. The Laplace transform of µ is a
holomorphic at 0 ∈ DC function.

Remark 1.3. Let α and γ be constants. Accordingly to the classical classification [41]
(see also [40, 48]) for α = γ = 0 µ is the Gaussian measure; for α 6= 0, γ = 0 µ is
the centered Poissonian measure; for α = γ 6= 0 µ is the centered Gamma-measure; for
α 6= γ, αγ 6= 0, α, γ : R+ → R µ is the centered Pascal measure; for α = γ, Im(α) 6= 0 µ
is the centered Meixner measure.



NOTES ON WICK CALCULUS . . . 153

It was established in [31] that there exists τ̃ ∈ T such that the generalized Meixner
measure is concentrated on H−τ̃ , i.e., µ(H−τ̃ ) = 1.

Now by (L2) = L2(D′, µ) denote the space of square integrable with respect to µ
complex-valued functions on D′. Let us construct orthogonal polynomials on (L2). De-
note by 〈〈·, ·〉〉 the scalar product in (L2), this notation will be preserved for dual pairings
that are generated by 〈〈·, ·〉〉. For n ∈ N denote by Pn the closure in (L2) of the set of all
continuous polynomials on D′ of degree ≤ n, P0 := C, let also (L2

n) := Pn 	Pn−1 – the
orthogonal difference in (L2), (L2

0) := C. Since µ has a holomorphic at zero Laplace
transform, the set of continuous polynomials on D′ is dense in (L2) [49], therefore

(L2) =
∞
⊕
n=0

(L2
n).

Denote by ⊗̂ the symmetric tensor product. For each f (n) ∈ D⊗̂nC , n ∈ Z+, we define

: 〈x⊗n, f (n)〉 : as the orthogonal projection of 〈x⊗n, f (n)〉 onto (L2
n). It follows from

results of [48] that : 〈x⊗n, f (n)〉 : = 〈Pn(x), f (n)〉, where Pn(x) ∈ D′C
⊗̂n

(n ∈ Z+) are
the kernels of generalized Appell polynomials that are associated with the generalized
Meixner measure (see the detailed description in [48]).

Definition 1.2. We say that the polynomials {〈Pn, f (n)〉, f (n) ∈ D⊗̂nC , n ∈ Z+} are
called the generalized Meixner polynomials.

Let us define a scalar product 〈·, ·〉ext on D⊗̂nC , n ∈ Z+, by setting for f (n), g(n) ∈ D⊗̂nC

〈f (n), g(n)〉ext :=
1

n!

∫
D′
〈Pn, f (n)〉〈Pn, g(n)〉µ(dx).

It follows from results of [48] that

〈f (n), g(n)〉ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!

ls11 . . . lskk s1! . . . sk!

×
∫
Rs1+···+sk

+

f (n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk , . . . , us1+···+sk︸ ︷︷ ︸
lk

)

× g(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk , . . . , us1+···+sk︸ ︷︷ ︸
lk

)

× ηl1−1(u1) . . . ηl1−1(us1)

× ηl2−1(us1+1) . . . ηl2−1(us1+s2) . . . ηlk−1(us1+···+sk−1+1) . . . ηlk−1(us1+···+sk)

× du1 . . . dus1+···+sk .

Let | · |ext denote the norm generated by the scalar product 〈·, ·〉ext, i.e., |f (n)|ext :=√
〈f (n), f (n)〉ext. Denote by H(n)

ext the closure of D⊗̂nC with respect to | · |ext. The space

H(n)
ext can be understood as an extension of H⊗̂nC in a generalized sense: let F (n) ∈ H⊗̂nC ,

Ḟ (n) ∈ F (n) be a representative (a function) from the equivalence class F (n) with a ”zero

diagonal”, i.e., Ḟ (n)(u1, . . . , un) = 0 if there exist i, j ∈ {1, . . . , n} such that i 6= j but

ui = uj . The function Ḟ (n) generates an equivalence class in H(n)
ext that can be identified

with F (n) [31].

For F (n) ∈ H(n)
ext , n ∈ Z+, we define 〈Pn, F (n)〉 ∈ (L2) as an (L2)-limit

〈Pn, F (n)〉 := lim
k→∞

〈Pn, f (n)k 〉,

where D⊗̂nC 3 f (n)k → F (n) in H(n)
ext as k →∞. The forthcoming statement easily follows

from the construction of polynomials 〈Pn, F (n)〉 (see also [48]).
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Theorem 1.2. A function F ∈ (L2) if and only if there exists a sequence of kernels

(1.2)
(
F (n) ∈ H(n)

ext

)∞
n=0

such that F can be presented in the form

(1.3) F =

∞∑
n=0

〈Pn, F (n)〉,

where the series converges in (L2), i.e., the (L2)-norm of F

‖F‖2(L2) =

∞∑
n=0

n!|F (n)|2ext <∞.

Moreover, the system {〈Pn, F (n)〉, F (n) ∈ H(n)
ext, n ∈ Z+} is an orthogonal basis in (L2)

in the sense that for F,G ∈ (L2) of form (1.3)

〈〈F,G〉〉 =

∞∑
n=0

n!〈F (n), G(n)〉ext.

Let us recall briefly the construction of an extended stochastic integral in the ”Meixner
analysis” (see [31] for details). By analogy with the Gaussian analysis, on the probability
triplet (D′,F(D′), µ) we define the Meixner random process M by setting for each u ∈ R+

Mu := 〈P1, 1[0,u)〉 ∈ (L2) (here and below 1A(t) denotes the indicator of {t ∈ A}). Using
results of [48] one can show that M is a locally square integrable normal martingale (with
respect to the flow of σ-algebras generated by M) with orthogonal independent increments,
therefore the Itô integral with respect to M is well-definite. Note that M is not a Lévy
process, generally speaking (not time-homogeneous). Let F ∈ (L2)⊗HC. It follows from
Theorem 1.2 that F can be presented in the form

(1.4) F (·) =

∞∑
n=0

〈Pn, F (n)
· 〉, F

(n)
· ∈ H(n)

ext ⊗HC,

with

‖F‖2(L2)⊗HC
=

∞∑
n=0

n!|F (n)
· |2H(n)

ext⊗HC
<∞.

If in addition F is such that the kernels F
(n)
· belong to H⊗̂nC ⊗ HC ⊂ H(n)

ext ⊗ HC (the
embedding in the generalized sense described above) then one can show [31] that F can
be presented in the form

F (·) =

∞∑
n=0

n!

∫ ∞
0

∫ un

0

. . .

∫ u2

0

F
(n)
· (u1, . . . , un) dMu1 . . . dMun ,

i.e., as a series of repeated Itô stochastic integrals with respect to the Meixner process.
In this case for arbitrary t1, t2 ∈ [0,+∞], t1 < t2, and under an additional condition

(1.5)

∞∑
n=0

(n+ 1)!|F̂ (n)
[t1,t2)

|2ext <∞,

where F̂
(n)
[t1,t2)

∈ H⊗̂n+1
C ⊂ H(n+1)

ext is the projection of F
(n)
· 1[t1,t2)(·) onto H⊗̂n+1

C , one can

define the extended stochastic integral of F with respect to M on [t1, t2) as∫ t2

t1

F (u) d̂Mu :=

∞∑
n=0

(n+ 1)!

∫ ∞
0

∫ u

0

. . .

∫ u2

0

F̂
(n)
[t1,t2)

(u1, . . . , un, u) dMu1
. . . dMundMu

=

∞∑
n=0

〈Pn+1, F̂
(n)
[t1,t2)

〉 ∈ (L2).
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In a general case such a definition cannot be accepted because it is impossible to project

elements of H(n)
ext ⊗ HC onto H(n+1)

ext , generally speaking. Nevertheless, the following
generalization is possible.

Lemma. ([31]). For given F
(n)
· ∈ H(n)

ext ⊗HC, n ∈ Z+, and t1, t2 ∈ [0,+∞], t1 < t2, we

construct the element F̂
(n)
[t1,t2)

∈ H(n+1)
ext by the following way. Let Ḟ

(n)
· ∈ F (n)

· be some

representative (a function) from the equivalence class F
(n)
· . We set

˜̇F (n)

[t1,t2)(u1, . . . , un, u) :=

{
Ḟ

(n)
u (u1, . . . , un)1[t1,t2)(u), if u 6= u1, . . . , u 6= un,

0, in other cases
,

̂̇F (n)

[t1,t2) := Pr ˜̇F (n)

[t1,t2), where Pr is the symmetrization operator. Let F̂
(n)
[t1,t2)

∈ H(n+1)
ext be

the equivalence class in H(n+1)
ext that is generated by ̂̇F (n)

[t1,t2). This class is well-defined,

does not depend on the representative Ḟ
(n)
· , and

|F̂ (n)
[t1,t2)

|ext ≤ |F (n)
· 1[t1,t2)(·)|H(n)

ext⊗HC
≤ |F (n)

· |H(n)
ext⊗HC

.

Definition 1.3. ([31]). For F ∈ (L2) ⊗ HC of form (1.4) such that (1.5) is fulfilled,
and t1, t2 ∈ [0,+∞], t1 < t2, we define the extended stochastic integral on [t1, t2) with
respect to M by setting∫ t2

t1

F (u) d̂Mu :=

∞∑
n=0

〈Pn+1, F̂
(n)
[t1,t2)

〉 ∈ (L2).

Theorem 1.3. ([31]). Let F ∈ (L2)⊗HC be integrable on R+ by Itô with respect to M
(i.e., be adapted with respect to the generated by M flow of σ-algebras). Then for any
t1, t2 ∈ [0,+∞], t1 < t2, F is integrable on [t1, t2) by Itô and in the extended sense, and∫ t2
t1
F (u) d̂Mu =

∫ t2
t1
F (u) dMu (the last integral is the Itô one).

One of the main lacks of the extended stochastic integral consists in the dependence
of its domain on the integration interval. In order to overcome this problem, one can
use a rigging of (L2) by some suitable spaces. Now we describe one possible rigging (the
so-called regular parametrized rigging).

Let

P(D′) =
{ N∑
n=0

〈x⊗n, g(n)〉 : x ∈ D′, g(n) ∈ D⊗̂nC , N ∈ Z+

}
be the set of continuous polynomials on D′. One can show (e.g., [28]) that any element
of P(D′) can be presented in the form

(1.6) f =

Nf∑
n=0

〈Pn, f (n)〉, f (n) ∈ D⊗̂nC , Nf ∈ Z+.

Now we introduce a family of Hilbert norms ‖ · ‖q,β , q ∈ Z+, β ∈ [0, 1] (in what follows,
we accept these conditions on default), by setting for f of form (1.6)

(1.7) ‖f‖2q,β :=

Nf∑
n=0

(n!)1+β2qn|f (n)|2ext.

By (L2)βq denote a Hilbert space that is the closure of P(D′) with respect to norm (1.7).

Let also (L2)β := pr lim
q∈Z+

(L2)βq .

Definition 1.4. The spaces (L2)βq , (L2)β are called the parametrized Kondratiev-type
spaces of test functions.
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It is easy to see that f ∈ (L2)βq if and only if f can be presented in the form

(1.8) f =

∞∑
n=0

〈Pn, f (n)〉, f (n) ∈ H(n)
ext ,

with

(1.9) ‖f‖2q,β := ‖f‖2
(L2)βq

=

∞∑
n=0

(n!)1+β2qn|f (n)|2ext <∞.

It is easy to show [31] that for arbitrary q ∈ Z+ and β ∈ [0, 1] the space (L2)βq is densely

and continuously embedded into (L2), therefore one can consider the chain

(L2)−β = ind lim
q′∈Z+

(L2)−β−q′ ⊃ (L2)−β−q ⊃ (L2) ⊃ (L2)βq ⊃ (L2)β ,

where (L2)−β−q , (L2)−β are the spaces dual of (L2)βq , (L2)β with respect to (L2) corres-
pondingly.

Definition 1.5. The spaces (L2)−β−q , (L2)−β are called the parametrized Kondratiev-type
spaces of (regular) generalized functions.

Note that for β = q = 0 (L2)00 = (L2)−0−0 = (L2).

Since the generalized Meixner polynomials are orthogonal in (L2), these polynomials

form orthogonal bases in (L2)−β−q . More exactly, a function F ∈ (L2)−β−q if and only if
there exists sequence (1.2) such that F can be presented in form (1.3) with

‖F‖2−q,−β := ‖F‖2
(L2)−β−q

=

∞∑
n=0

(n!)1−β2−qn|F (n)|2ext <∞.

The extended stochastic integral on the spaces (L2)−β−q ⊗HC, (L2)−β⊗HC is described

in [26], on the spaces (L2)βq ⊗HC, (L2)β ⊗HC – in [30]. Here we note only that∫ t2

t1

◦(u) d̂Mu : (L2)βq+1 ⊗HC → (L2)βq ,∫ t2

t1

◦(u) d̂Mu : (L2)β ⊗HC → (L2)β

are linear continuous operators, whereas∫ t2

t1

◦(u) d̂Mu : (L2)βq ⊗HC → (L2)βq

is a linear closed operator with the domain{
f ∈ (L2)βq ⊗HC :

∞∑
n=0

(
(n+ 1)!

)1+β
2q(n+1)|f̂ (n)[t1,t2)

|2ext <∞
}

(all these integrals are restrictions of the integral from Definition 1.3 on the corresponding
spaces).

On the space (L2)−β there is a natural multiplication that is closely connected with the
extended stochastic integration and is convenient for different applications – the so-called
Wick multiplication. Let us describe briefly this multiplication and the corresponding
(Wick) calculus (more detailed information is given in [26], see also [31]).

Let at first β = 1.
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Definition 1.6. For F ∈ (L2)−1 we define an S-transform as a formal series

(SF )(λ) =

∞∑
n=0

〈F (n), λ⊗n〉ext,

where F (n) ∈ H(n)
ext (n ∈ Z+) are the kernels from decomposition (1.3) for F . In particular,

(SF )(0) = F (0), S1 ≡ 1.

Definition 1.7. For F,G ∈ (L2)−1 and a holomorphic at (SF )(0) function h : C → C
we define the Wick product F♦G ∈ (L2)−1 and the Wick version of h h♦(F ) ∈ (L2)−1

by setting
F♦G := S−1(SF · SG), h♦(F ) := S−1h(SF ).

The correctness of this definition and, moreover, the fact that the Wick multiplication
is continuous in the topology of (L2)−1 are proved in [31].

Remark 1.4. It is easy to see that the Wick multiplication ♦ is commutative, associative
and distributive (over the field C). Further, if h from Definition 1.7 is presented in the
form

(1.10) h(u) =

∞∑
m=0

hm(u− (SF )(0))m

then h♦(F ) =
∑∞
m=0 hm(F − (SF )(0))♦m, where F♦m := F♦ . . .♦F︸ ︷︷ ︸

m times

.

Let us write out the ”coordinate form” of F♦G and h♦(F ).

Lemma 1.1. ([31]). Let F (n) ∈ H(n)
ext, G

(m) ∈ H(m)
ext , n,m ∈ Z+. We define the element

F (n) �G(m) ∈ H(n+m)
ext as follows. Let Ḟ (n) ∈ F (n), Ġ(m) ∈ G(m) be some representatives

(functions) from the equivalence classes F (n), G(m). Set

(
˜̇

F (n)G(m))(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
Ḟ (n)(t1, . . . , tn)Ġ(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj ,

0, in other cases

̂̇
F (n)G(m) := Pr

˜̇
F (n)G(m), where Pr is the symmetrization operator. Then F (n) �G(m) is

the equivalence class in H(n+m)
ext that is generated by

̂̇
F (n)G(m), this class is well-defined

and does not depend on a choice of the representatives Ḟ (n), Ġ(m). Moreover,

(1.11) |F (n) �G(m)|ext ≤ |F (n)|ext|G(m)|ext.

Remark 1.5. Note that, non-strictly speaking, F (n) �G(m) is the symmetrization of the
”function”

˜F (n)G(m)(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
F (n)(t1, . . . , tn)G(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj ,

0, in other cases

with respect to n+m ”variables”.

It is obvious that the ”multiplication” � is commutative, associative and distributive
(over the field C).

Remark 1.6. Note that for η = 0 (the Gaussian and Poissonian cases) F (n) �G(m) =

F (n)⊗̂G(m) (we recall that in this case H(n)
ext = H⊗̂nC for each n ∈ Z+).
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Proposition 1.1. ([31]). For F,G ∈ (L2)−1 and a holomorphic at (SF )(0) function
h : C→ C

(1.12) F♦G =

∞∑
n=0

〈
Pn,

n∑
k=0

F (k) �G(n−k)
〉
,

(1.13) h♦(F ) = h0 +

∞∑
n=1

〈
Pn,

n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

F (k1) � · · · � F (km)
〉
,

where F (k), G(k) ∈ H(k)
ext are the kernels from decompositions (1.3) for F and G corres-

pondingly, hm ∈ C (m ∈ Z+) are the coefficients from decomposition (1.10) for h.

Remark 1.7. It follows from (1.12) that, in particular,

〈Pn, F (n)〉♦〈Pm, G(m)〉 = 〈Pn+m, F (n) �G(m)〉,

F♦〈Pm, G(m)〉 =
∞∑
n=0

〈Pn+m, F (n) �G(m)〉.

The first formula can be used in order to define the Wick product and the Wick version
of a holomorphic function (as a series) without the S-transform. Formulas (1.12) and
(1.13) can also be used as definitions. Finally we note that for F1, . . . , Fm ∈ (L2)−1

(1.14) F1♦ . . .♦Fm =

∞∑
n=0

〈
Pn,

∑
k1,...,km∈Z+,k1+···+km=n

F
(k1)
1 � · · · � F (km)

m

〉
,

where F
(kj)
j ∈ H(kj)

ext (j ∈ {1, . . . ,m}, kj ∈ Z+) are the kernels from decompositions (1.3)
for Fj .

In the case β < 1 properties of the Wick product are analogous to the corresponding
properties for the case β = 1; but, unfortunately, one cannot say the same about proper-
ties of Wick versions of holomorphic functions. More exactly, the following statement is
fulfilled.

Theorem 1.4. ([26]).
1. Let F,G ∈ (L2)−β. Then the Wick product F♦G ∈ (L2)−β. Moreover, the Wick

multiplication is continuous in the topology of (L2)−β: for F1, . . . , Fm ∈ (L2)−β, m ∈ N,
there exist q, q′ ∈ N and c > 0 such that

‖F1♦ . . .♦Fm‖−q,−β ≤ c‖F1‖−q′,−β . . . ‖Fm‖−q′,−β .
2. Let h : C → C be a holomorphic at u0 ∈ C not polynomial function such that all

coefficients hm, m ∈ Z+, from the decomposition h(u) =
∑∞
m=0 hm(u− u0)m are non-

negative. Then for each β ∈ [0, 1) there exists F ∈ (L2)−β such that (SF )(0) = u0 and
h♦(F ) 6∈ (L2)−β.

3. Let F =
∑N
k=0〈Pk, F (k)〉 ∈ P and h(u) =

∑∞
m=0 hm(u − F (0))m be such that

∃K > 0: ∀m ∈ N

(1.15) |hm| ≤
Km

mmN 1−β
2

.

Then h♦(F ) ∈ (L2)−β.
4. Let 0 ≤ β1 < β2 ≤ 1, F ∈ (L2)−β1 , h : C → C be a holomorphic at (SF )(0)

function. If there exists K > 0 such that for each m ∈ Z+

|hm| ≤
Km

max
n∈N: n≥m

[
mn

1−β2
2

([ nm ]!)m
β2−β1

2

] ,
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where hm (m ∈ Z+) are the coefficients from decomposition (1.10) for h, then h♦(F ) ∈
(L2)−β2 .

The interconnection between the Wick calculus and the extended stochastic integra-
tion can be described as follows. Denote by M ′ the Meixner white noise (the generalized
stochastic process from Theorem 1.1). Formally M ′· = 〈P1, δ·〉, where δ· is the Dirac
delta-function (see [31] for more details).

Theorem 1.5. ([26]). For any t1, t2 ∈ [0,+∞], t1 < t2, and F ∈ (L2)−β ⊗HC formally

defined
∫ t2
t1
F (s)♦M ′sds generates a linear continuous functional on (L2)β that coincides

with
∫ t2
t1
F (s) d̂Ms, i.e.,

(1.16)

∫ t2

t1

F (s)♦M ′sds =

∫ t2

t1

F (s) d̂Ms ∈ (L2)−β .

By analogy with the ”classical” Gaussian analysis one can apply mentioned results in
order to study so-called stochastic equations with Wick-type nonlinearities.

Example 1.1. Let

(1.17) Xt = X0 +

∫ t

0

Xs♦Fds+

∫ t

0

Xs♦G d̂Ms,

where X0, F,G ∈ (L2)−β . Applying the S-transform (taking into consideration (1.16)),
solving the obtained not stochastic integral equation and applying the inverse S-transform
we obtain the solution [31]

Xt = X0♦ exp♦
{
Ft+G♦Mt

}
∈ (L2)−1.

In order to have Xt ∈ (L2)−β (β < 1) we must impose some addition conditions. For
example, let F and G be polynomials and N := max [powF,powG + 1], where ”pow”
denotes the power of a polynomial. It was shown in [26] that if N ≤ 2

1−β then Xt ∈
(L2)−β .

Unfortunately, the space of square integrable functions (L2) is not invariant with
respect to the Wick product. Nevertheless, it is natural to raise the question about
properties of the Wick product and Wick versions of holomorphic functions on the spaces
of test functions (for example, if in equation (1.17) X0 ∈ (L2)β ⊂ (L2)−1, what can we
say about properties of Xt?). In the next section we try to give a detailed answer on this
question.

2. Wick calculus on spaces of test functions

We begin from the analog of the first statement of Theorem 1.4 on the space of test
functions (L2)β .

Theorem 2.1. Let f, g ∈ (L2)β. Then the Wick product f♦g ∈ (L2)β. Moreover,
the Wick multiplication is continuous in the topology of (L2)β: for f1, . . . , fm ∈ (L2)β,
m ∈ N, and any q ∈ Z+

(2.1) ‖f1♦ . . .♦fm‖q,β ≤ c(m− 1)‖f1‖q′,β . . . ‖fm‖q′,β ,

where q′ ≥ q + (1 + β) log2m+ 1 and c(m− 1) :=
√

maxn∈Z+
[2−n(n+ 1)m−1].

Proof. It is clear that it is sufficient to prove estimate (2.1). Using (1.8), (1.14), (1.9),
(1.11) and well-known estimates∣∣ p∑

l=1

al
∣∣2 ≤ p p∑

l=1

|al|2,
n!

k1! . . . km−1!(n− k1 − · · · − km−1)!
≤ mn,
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we obtain

‖f1♦ . . .♦fm‖2q,β =

∞∑
n=0

(n!)1+β2qn
∣∣∣ ∑
k1,...,km∈Z+,
k1+···+km=n

f
(k1)
1 � · · · � f (km)

m

∣∣∣2
ext

=

∞∑
n=0

(n!)1+β2qn

×
∣∣∣ n∑
k1=0

n−k1∑
k2=0

· · ·
n−k1−···−km−2∑

km−1=0

f
(k1)
1 � · · · � f (km−1)

m−1 � f (n−k1−···−km−1)
m

∣∣∣2
ext

≤
∞∑
n=0

(n!)1+β2qn(n+ 1)

×
n∑

k1=0

∣∣∣ n−k1∑
k2=0

· · ·
n−k1−···−km−2∑

km−1=0

f
(k1)
1 � · · · � f (km−1)

m−1 � f (n−k1−···−km−1)
m

∣∣∣2
ext

≤ · · · ≤
∞∑
n=0

(n!)1+β2qn(n+ 1)m−1

×
n∑

k1=0

n−k1∑
k2=0

· · ·
n−k1−···−km−2∑

km−1=0

|f (k1)1 � · · · � f (km−1)
m−1 � f (n−k1−···−km−1)

m |2ext

≤
∞∑
n=0

[2−n(n+ 1)m−1]m(1+β)n2(q+1)n(k1!)1+β . . . ((n− k1 − · · · − km−1)!)1+β

×
n∑

k1=0

n−k1∑
k2=0

· · ·
n−k1−···−km−2∑

km−1=0

|f (k1)1 |2ext . . . |f
(km−1)
m−1 |2ext|f (n−k1−···−km−1)

m |2ext

≤
(
c(m− 1)

)2 ∞∑
k1=0

(k1!)1+β2q
′k1 |f (k1)1 |2ext

×
∞∑

n=k1

n−k1∑
k2=0

· · ·
n−k1−···−km−2∑

km−1=0

(k2!)1+β2q
′k2 |f (k2)2 |2ext

. . . ((n− k1 − · · · − km−1)!)1+β2q
′(n−k1−···−km−1)|f (n−k1−···−km−1)

m |2ext

=
(
c(m− 1)

)2‖f1‖2q′,β ∞∑
n=0

n∑
k2=0

· · ·
n−k2−···−km−2∑

km−1=0

(k2!)1+β2q
′k2 |f (k2)2 |2ext

. . . ((n− k2 − · · · − km−1)!)1+β2q
′(n−k2−···−km−1)|f (n−k2−···−km−1)

m |2ext
= · · · =

(
c(m− 1)

)2‖f1‖2q′,β . . . ‖fm‖2q′,β .
�

In particular, it follows from the proved theorem that for a polynomial h and a test
function f ∈ (L2)β we have h♦(f) ∈ (L2)β . Unfortunately, a general (holomorphic
at (Sf)(0)) function h : C → C has no such a property. More exactly, the following
statements are fulfilled.

Proposition 2.1. Let h : C → C be a holomorphic at u0 ∈ C function such that all
coefficients hn from the decomposition

(2.2) h(u) =

∞∑
n=0

hn(u− u0)n



NOTES ON WICK CALCULUS . . . 161

are non-negative and for some K > 0 the series
∑∞
n=1(n!)1+βh2nK

n diverges. Then

there exists f ∈ (L2)β with (Sf)(0) = u0 such that h♦(f) 6∈ (L2)β0 (and, consequently,
h♦(f) 6∈ (L2)β).

Proof. Let

f = u0 +

∞∑
n=1

〈Pn,
ϕ�n

(n!)
2+β
2

〉, 0 6= ϕ ∈ HC.

Then for each q ∈ Z+ (see (1.9))

‖f‖2q,β = |u0|2 +

∞∑
n=1

(n!)1+β2qn
|ϕ|2next

(n!)2+β
<∞,

therefore f ∈ (L2)β . It is clear that (Sf)(0) = u0. Further (see (1.9), (1.13)),

‖h♦(f)‖20,β = |h0|2 +

∞∑
n=1

(n!)1+β
∣∣∣ n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

ϕ�k1

(k1!)
2+β
2

� · · · � ϕ�km

(km!)
2+β
2

∣∣∣2
ext

= |h0|2 +

∞∑
n=1

(n!)1+β
∣∣∣ n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

1

(k1! . . . km!)
2+β
2

∣∣∣2|ϕ|2next
≥ |h0|2 +

∞∑
n=1

(n!)1+βh2n|ϕ|2next = +∞,

if |ϕ|ext is sufficiently large. �

Proposition 2.2. Let h : C → C be a holomorphic at u0 ∈ C not polynomial function
such that all coefficients hn from decomposition (2.2) are non-negative. Then for each

q ∈ Z+ there exists f ∈ (L2)βq with (Sf)(0) = u0 such that h♦(f) 6∈ (L2)β0 .

Proof. Let us fix arbitrary q ∈ Z+ and set

f = u0 +

∞∑
n=1

〈Pn,
ϕ�n

(n!)
1+β
2 Kn/2

〉,

where 0 6= ϕ ∈ HC, K > 2q|ϕ|2ext. Then (see (1.9))

‖f‖2q,β = |u0|2 +

∞∑
n=1

(n!)1+β2qn
|ϕ|2next

(n!)1+βKn
<∞,

therefore f ∈ (L2)βq and (Sf)(0) = u0. Further (see (1.16), (1.13)),

‖h♦(f)‖20,β = |h0|2 +

∞∑
n=1

(n!)1+β
∣∣∣ n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

ϕ�n

(k1! . . . km!)
1+β
2 Kn/2

∣∣∣2
ext

= |h0|2 +

∞∑
n=1

|ϕ|2next
Kn

( n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

( n!

k1! . . . km!

) 1+β
2

)2
.

If the last series converges then for all sufficiently large n

(2.3)

n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

( n!

k1! . . . km!

) 1+β
2 < Cn,
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where C := K1/2

|ϕ|ext . Inequality (2.3) can be rewritten in the form

(2.4)

n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

( n!

k1! . . . km!C
2n
1+β

) 1+β
2 < 1.

Denote c := C
2

1+β and consider the ratio n!
k1!...km!cn . Let n = lm, wherem ∈ N is such that

hm > 0 and m > c. Denote al := (lm)!
(l!cl)m

(this corresponds to the case k1 = · · · = km = l).

Now lim
l→∞

al+1

al
=
(
m
c

)m
> 1, therefore lim

l→∞
al = +∞. But in this case

lim
n→∞

n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

( n!

k1! . . . km!C
2n
1+β

) 1+β
2 = +∞,

i.e., (2.4) is not fulfilled. �

Proposition 2.3. Let f ∈ (L2)β. Then for each q ∈ Z+ there exists a holomorphic at
(Sf)(0) not polynomial function h : C→ C such that h♦(f) ∈ (L2)βq .

Proof. Let f =
∑∞
n=0〈Pn, f (n)〉 ∈ (L2)β , then for each q ∈ Z+ there exists a sequence of

non-negative numbers (αn)∞n=0 such that for each n ∈ Z+

|f (n)|ext ≤
αn

(n!)
1+β
2 2

q+3
2 n

and for each K > 0 lim
n→∞

αnK
n = 0. Let h be presented in the form

(2.5) h(u) =

∞∑
m=0

hm(u− (Sf)(0))m.

Then using (1.9), (1.13), (1.11) and the equality

(2.6)
∑

k1,...,km∈N,
k1+···+km=n

1 = Cm−1n−1

we obtain

‖h♦(f)‖2q,β = |h0|2 +

∞∑
n=1

(n!)1+β2qn
∣∣∣ n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

f (k1) � · · · � f (km)
∣∣∣2
ext

≤ |h0|2 +

∞∑
n=1

(n!)1+β2qn
( n∑
m=1

|hm|
∑

k1,...,km∈N,
k1+···+km=n

αk1 . . . αkm

(k1! . . . km!)
1+β
2 2

q+3
2 n

)2

= |h0|2 +

∞∑
n=1

2−3n
( n∑
m=1

|hm|
∑

k1,...,km∈N,
k1+···+km=n

( n!

k1! . . . km!

) 1+β
2 αk1 . . . αkm

)2

≤ |h0|2 +

∞∑
n=1

2−n−2 <∞,

if

(2.7) |hm| ≤
1

max
n≥m,k1,...,km∈N,

k1+···+km=n

[(
n!

k1!...km!

) 1+β
2 αk1 . . . αkm

] .
�
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Proposition 2.4. Let f =
∑N
n=0〈Pn, f (n)〉, f (n) ∈ H

(n)
ext, and coefficients hm from the

decomposition h(u) =
∑∞
m=0 hm(u−f (0))m for a holomorphic at f (0) function h : C→ C

satisfy estimates

(2.8) |hm| ≤
Km min

n∈{m,...,Nm}
αn(

(Nm)!
) 1+β

2

with some K > 0, where (αn > 0)∞n=0—a numerical sequence such that for each C > 0∑∞
n=0 C

nαn <∞. Then h♦(f) ∈ (L2)β.

Proof. The case N = 0 is trivial, therefore we consider the case N ∈ N only. Let
C := max{|f (1)|ext, . . . , |f (N)|ext}. Using (1.9), (1.13), (1.11) and (2.6), for each q ∈ Z+

we obtain

‖h♦(f)‖2q,β = |h0|2 +

∞∑
n=1

(n!)1+β2qn
∣∣∣ n∑
m={ nN }

hm
∑

k1,...,km∈N,
k1+···+km=n

f (k1) � · · · � f (km)
∣∣∣2
ext

≤ |h0|2 +

∞∑
n=1

(n!)1+β2qn
( n∑
m={ nN }

|hm|Cm2n−1
)2

≤ |h0|2 +

∞∑
n=1

2(q+2)n−2α2
n

( n∑
m={ nN }

|hm|
Cm
(
(Nm)!

) 1+β
2

αn

)2
<∞,

here { nN } = n
N if n

N ∈ N, and { nN } = [ nN ] + 1 if n
N 6∈ N, [·] denotes the entire part of a

number (note that by construction m ≤ n ≤ Nm). �

Remark 2.1. As an example of a sequence (αn)∞n=0 from Proposition 2.4 one can consider
αn = 1

(n!)ε , ε > 0. In this case formula (2.8) has a form

(2.9) |hm| ≤
Km(

(Nm)!
) 1+β

2 +ε
.

Example 2.1. Let h(u) = exp(u), i.e., for each m ∈ Z+ hm = 1
m! . We clarify, under

which conditions exp♦(f) ∈ (L2)β , where f =
∑N
n=0〈Pn, f (n)〉, f (n) ∈ H

(n)
ext . For αn =

1
(n!)ε estimate (2.8) has a form (see (2.9))

(2.10)

(
(Nm)!

) 1+β
2 +ε

m!Km
≤ 1

for each m ∈ Z+ with some K > 0. Set am :=

(
(Nm)!

) 1+β
2

+ε

m!Km , then

am+1

am
=

[(Nm+ 1) . . . (Nm+N)]
1+β
2 +ε

(m+ 1)K
.

It follows from here that (2.10) is fulfilled if

(2.11) N
(1 + β

2
+ ε
)
≤ 1,

i.e., exp♦(f) ∈ (L2)β if β < 1 and N ≤ 1.
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Remark 2.2. Estimate (2.11) is not rough. In fact, let f = 〈PN , f (N)〉, f (N) ∈ H(N)
ext .

Then (see (1.13), (1.9), (1.11))

h♦(f) = h0 +

∞∑
m=1

〈PNm, hmf (N)�m〉,

‖h♦(f)‖2q,β ≤ |h0|2 +

∞∑
m=1

(
(Nm)!

)1+β
2qNm|hm|2|f (N)|2mext.

The last series converges for each q ∈ Z+ if for each m ∈ N

(2.12) |hm| ≤
Kmαm(

(Nm)!
) 1+β

2

,

where K > 0 and the numerical sequence (αm)∞m=1 as in Proposition 2.4. In the case
hm = 1

m! and N ≥ 2 estimate (2.12) is not fulfilled.

Proposition 2.5. Let 0 ≤ β1 < β2 ≤ 1, f ∈ (L2)β2 and a holomorphic at (Sf)(0)
function h : C → C be such that coefficients hm (m ∈ N) from decomposition (2.5)
satisfy estimates (2.7) with β = β1. Then h♦(f) ∈ (L2)β1 .

Proof. This result follows from the proof of Proposition 2.3 and embedding (L2)β2

0 ⊂
(L2)β1 . �

Proposition 2.6. Let 0 ≤ β1 < β2 ≤ 1, f ∈ (L2)β2 , h : C → C be a holomorphic
at (Sf)(0) function such that coefficients hm (m ∈ N) from decomposition (2.5) satisfy
estimates

(2.13) |hm| ≤
1

cm max
n≥m,k1,...,km∈N,

k1+···+km=n

[
(n!)

1+β3
2 2n(1+ε)

(k1!...km!)
1+β2

2

] ,
where β3 ∈ (β1, β2), ε > 0, c ≥ ‖f‖0,β2 . Then h♦(f) ∈ (L2)β3

0 ⊂ (L2)β1 .

Proof. Since (see (1.9)) for each n ∈ N |f (n)|ext ≤ c

(n!)
1+β2

2

, we have (see (1.13), (1.9),

(1.11), (2.6))

‖h♦(f)‖20,β3
= |h0|2 +

∞∑
n=1

(n!)1+β3

∣∣∣ n∑
m=1

hm
∑

k1,...,km∈N,
k1+···+km=n

f (k1) � · · · � f (km)
∣∣∣2
ext

≤ |h0|2 +

∞∑
n=1

(n!)1+β3

( n∑
m=1

|hm|
∑

k1,...,km∈N,
k1+···+km=n

cm

(k1! . . . km!)
1+β2

2

)2

= |h0|2 +

∞∑
n=1

2−2n(1+ε)
( n∑
m=1

|hm|
∑

k1,...,km∈N,
k1+···+km=n

(n!)
1+β3

2 cm2n(1+ε)

(k1! . . . km!)
1+β2

2

)2

≤ |h0|2 +

∞∑
n=1

2−2n(1+ε)
( n∑
m=1

Cm−1n−1

)2
= |h0|2 +

∞∑
n=1

2−2nε−2 <∞. �

Remark 2.3. One can replace estimates (2.13) by the slightly more rough estimates

|hm| ≤
1

cm max
n≥m

[
(n!)

1+β3
2 2n(1+ε)(

[ nm ]!
) 1+β2

2
m

] ,
where [·] denotes the entire part of a number.
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Finally, let us consider an example of a stochastic equation with Wick-type nonline-
arities.

Example 2.2. (a linear equation).
Let

Xt = X0 +

∫ t

0

Xu♦Fdu+ g

∫ t

0

Xud̂Mu,

where X0 ∈ (L2)β , f =
∑N
n=0〈Pn, f (n)〉, f (n) ∈ H

(n)
ext , g ∈ C. It was shown in [31] that

the solution of this equation is

Xt = X0♦ exp♦{Ft+ gMt} ∈ (L2)−1.

But if N ≤ 1 and β ∈ [0, 1) then we can conclude that Xt ∈ (L2)β , this result from
estimate (2.11) and Theorem 2.1 follows.

Remark 2.4. It is easy to see that in the Gaussian and Poissonian analysis all results of
this section can be naturally transferred to the spaces of test functions of the so-called
nonregular rigging of (L2) (this rigging is described in, e.g., [31]).
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Itô formulae for Lévy processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005),
no. 2, 235–258.

17. G. Di Nunno, B. Oksendal, F. Proske, Malliavin Calculus for Lévi Processes with Applications
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