ON (\land, μ) -CLOSED SETS IN GENERALIZED TOPOLOGICAL SPACES #### BISHWAMBHAR ROY AND ERDAL EKICI ABSTRACT. In this paper, we introduce and study (Λ, μ) -open sets and (Λ, μ) -closed sets via μ -open and μ -closed sets in generalized topological spaces. Moreover, we introduce some generalized separation axioms in generalized topological spaces. #### 1. Introduction In the past few years, different forms of open sets have been studied. Recently, a significant contribution to the theory of generalized open sets, was extended by A. Császár. Especially, the author defined some basic operators on generalized topological spaces. It is observed that a large number of papers is devoted to the study of generalized open like sets of a topological space, containing the class of open sets and possessing properties more or less similar to those of open sets. We recall some notions defined in [1]. Let X be a non-empty set, $\exp X$ denotes the power set of X. We call a class $\mu \subseteq \exp X$ a generalized topology [1], (briefly, GT) if $\emptyset \in \mu$ and union of elements of μ belongs to μ . A set X with a GT μ on it is said to be a generalized topological space (briefly, GTS) and is denoted by (X, μ) . For a GTS (X, μ) , the elements of μ are called μ -open sets and the complement of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A; and by $i_{\mu}(A)$ the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A (see [1, 2]). It is easy to observe that i_{μ} and c_{μ} are idempotent and monotonic, where $\gamma: expX \to$ expX is said to be idempotent if $A\subseteq X$ implies $\gamma(\gamma(A))=\gamma(A)$ and monotonic if $A \subseteq B \subseteq X$ implies $\gamma(A) \subseteq \gamma(B)$. It is also well known from [2, 3] that if μ is a GT on $X, x \in X$ and $A \subseteq X$, then $x \in c_{\mu}(A)$ iff for $x \in M \in \mu$, $M \cap A \neq \emptyset$ and $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A).$ 2. \bigwedge_{μ} -sets, (\bigwedge, μ) -closed sets and some separation axioms **Definition 2.1.** [4]. Let (X, μ) be a GTS and $A \subseteq X$. Then the subset $\bigwedge_{\mu}(A)$ is defined **Proposition 2.2.** [4]. Let A, B and $\{B_{\alpha} : \alpha \in \Omega\}$ be subsets of a GTS (X, μ) . Then the following properties hold: - (a) $B \subseteq \bigwedge_{\mu}(B)$; - (b) If $A \subseteq B$, then $\bigwedge_{\mu}(A) \subseteq \bigwedge_{\mu}(B)$; (c) $\bigwedge_{\mu}(\bigwedge_{\mu}(B)) = \bigwedge_{\mu}(B)$; ²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54C08. Key words and phrases. μ -open set, \bigwedge_{μ} -set, (\bigwedge, μ) -closed set, \bigwedge_{μ} -D set. The author B.R. acknowledges support from UGC, New Delhi. - (d) If $A \in \mu$, then $A = \bigwedge_{\mu} (A)$; - (e) $\bigwedge_{\mu} \left[\bigcup_{\alpha \in \Omega} B_{\alpha} \right] = \bigcup_{\alpha \in \Omega} \left[\bigwedge_{\mu} (B_{\alpha}) \right];$ - (f) $\bigwedge_{\mu} [\bigcap_{\alpha \in \Omega} B_{\alpha}] \subseteq \bigcap_{\alpha \in \Omega} [\bigwedge_{\mu} (B_{\alpha})].$ **Definition 2.3.** [4]. In a GTS (X, μ) a subset B is called a \bigwedge_{μ} -set if $B = \bigwedge_{\mu}(B)$. It follows from Proposition 2.2 and Definition 2.3 that **Observation 2.4.** For subsets A and A_{α} ($\alpha \in \Omega$) of a GTS (X, μ) , the followings hold: - (i) $\bigwedge_{\mu}(A)$ is a \bigwedge_{μ} -set. - (ii) If $A \in \mu$, then A is a \bigwedge_{μ} -set. - (iii) If A_{α} is a \bigwedge_{μ} -set for each $\alpha \in \Omega$, then $\bigcap_{\alpha \in \Omega} A_{\alpha}$ is a \bigwedge_{μ} -set. (iv) If A_{α} is a \bigwedge_{μ} -set for each $\alpha \in \Omega$, then $\bigcup_{\alpha \in \Omega} A_{\alpha}$ is a \bigwedge_{μ} -set. **Definition 2.5.** A subset A of a GTS (X,μ) is said to be (\bigwedge,μ) -closed if $A=T\cap C$, where T is a \bigwedge_{μ} -set and C is a μ -closed set. The complement of a (\bigwedge, μ) -closed set is called a (Λ, μ) -open set. We shall denote the collection of all (Λ, μ) -open sets (resp. (Λ, μ) -closed sets) in a GTS (X, μ) by $\bigwedge_{\mu} -O(X, \mu)$ (resp. $\bigwedge_{\mu} -C(X, \mu)$). **Theorem 2.6.** Let A be a subset of a GTS (X, μ) . Then the followings are equivalent: (i) A is (\bigwedge, μ) -closed; - (ii) $A = T \cap c_{\mu}(A)$, where T is a \bigwedge_{μ} -set; - (iii) $A = \bigwedge_{\mu}(A) \cap c_{\mu}(A)$. - *Proof.* (i) \Rightarrow (ii): Let $A = T \cap F$, where T is a \bigwedge_{μ} -set and F is a μ -closed set in (X, μ) . Since $A \subseteq F$, $c_{\mu}(A) \subseteq c_{\mu}(F) = F$. Thus $A = T \cap F \supseteq T \cap c_{\mu}(A) \supseteq A$. Therefore we have $A = T \cap c_{\mu}(A)$. - (ii) \Rightarrow (iii): Let $A = T \cap c_{\mu}(A)$, where T is a \bigwedge_{μ} -set. Since $A \subseteq T$, then we have $\bigwedge_{\mu}(A) \subseteq \bigwedge_{\mu}(T) = T$ and hence $A \subseteq \bigwedge_{\mu}(A) \cap c_{\mu}(A) \subseteq T \cap c_{\mu}(A) = A$. Therefore $A = \bigwedge_{\mu}(A) \cap c_{\mu}(A).$ - (iii) \Rightarrow (i) : By Observation 2.4(i), $\bigwedge_{\mu}(A)$ is a \bigwedge_{μ} -set and $c_{\mu}(A)$ is μ -closed. By (iii), $A = \bigwedge_{\mu}(A) \cap c_{\mu}(A)$ and hence by Definition 2.5, A is a (\bigwedge, μ) -closed set. It thus follows from Theorem 2.6 that ### **Observation 2.7.** For a GTS (X, μ) - (i) every \bigwedge_{μ} -set (every μ -closed set) is a (\bigwedge, μ) -closed set. - (ii) $\bigwedge_{\mu} -C(X,\mu)$ (resp. $\bigwedge_{\mu} -O(X,\mu)$) is closed under arbitrary intersection (resp. union). # Example 2.8. - (a) Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{a, b\}\}, \{a, b, c\}\}$. Then (X, μ) is a GTS. It is easy to see that $\{b,c\}$ is a (Λ,μ) -closed but neither μ -closed nor Λ_{μ} -set. - (b) Consider $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{a, c\}\}$. Then (X, μ) is a GTS. In view of Theorem 2.6, it is easy to see that $A = \{a\}$ and $B = \{b\}$ are two (\bigwedge, μ) -closed subsets of (X, μ) but $A \cup B = \{a, b\}$ is not a (\bigwedge, μ) -closed sets in (X, μ) . #### **Definition 2.9.** A GTS (X, μ) is said to be - (a) μ - T_0 [6] if for any pair of distinct points in X there exists a μ -open set containing one of the points but not the other. - (b) μ - $T_{1/2}$ [4, 6] if for each $x \in X$, $\{x\}$ is either μ -open or μ -closed. - (c) μ - T_1 [6] if for each pair of distinct points x and y of X, there exist a μ -open set U_x containing x but not y and a μ -open set U_y containing y but not x. (d) μ - R_0 [5] if for each μ -open set U and each $x \in U$, $c_{\mu}(\{x\}) \subseteq U$. **Theorem 2.10.** For a GTS (X, μ) the following conditions are equivalent: - (a) X is a μ - T_0 space. - (b) Every singleton is (Λ, μ) -closed. - *Proof.* (a) \Rightarrow (b): Let $x \in X$. Since X is μ - T_0 , then for every point $x \neq y$ there exists a set A_y containing x and is disjoint from $\{y\}$ such that A_y is either μ -open or μ -closed. Let L be the intersection of all μ -open sets A_y and F be the intersection of all μ -closed sets A_y . Clearly L is a \bigwedge_{μ} -set and F is μ -closed. Note that $\{x\} = L \cap F$. This shows that $\{x\}$ is (\bigwedge, μ) -closed. - (b) \Rightarrow (a): Let x and y be two different points of X. Then by (ii), $\{x\} = L \cap F$, where L is a \bigwedge_{μ} -set and F is μ -closed. If F does not contain y, then $X \setminus F$ is a μ -open set containing y and we are done. If F contains y, then $y \notin L$ and thus for some μ -open set U containing L, we have $y \notin U$. Hence X is μ - T_0 . **Theorem 2.11.** For a GTS (X, μ) the following conditions are equivalent: - (a) X is a μ - $T_{1/2}$. - (b) Every subset of X is (Λ, μ) -closed. *Proof.* (a) \Rightarrow (b): Let $A \subseteq X$. Let A_1 be the set of all μ -open singletons of $X \setminus A$ and $A_2 = X \setminus (A \cup A_1)$. Set $F = \bigcap_{x \in A_1} (X \setminus \{x\})$ and $L = \bigcap_{x \in A_2} (X \setminus \{x\})$. Note that F is μ -closed and L is \bigwedge_{μ} -set. Moreover, $A = F \cap L$. Thus A is (\bigwedge, μ) -closed. (b) \Rightarrow (a): Let $x \in X$. Assume that $\{x\}$ is not μ -open. Then $A = X \setminus \{x\}$ is not μ -closed and since A is a (\bigwedge, μ) -closed $A = T \cap F$, where T is a \bigwedge_{μ} -set and F is μ -closed. Then the only possibility for F = X and $T = X \setminus \{x\}$, then A is \bigwedge_{μ} -set, i.e., $A = \bigwedge_{\mu}(A)$. Since X is the only superset of A, then A is μ -open. Hence $\{x\}$ is μ -closed. **Definition 2.12.** A GTS (X, μ) is said to be weak μ - R_0 if every (\bigwedge, μ) -closed singleton is a \bigwedge_{μ} -set. **Theorem 2.13.** Every μ - R_0 GTS (X, μ) is a weak μ - R_0 space. *Proof.* Suppose that (X, μ) is a μ - R_0 GTS. Let $x \in X$ with $\{x\} = L \cap F$, where L is a \bigwedge_{μ} -set and F is μ -closed. Let $y \in \bigwedge_{\mu}(\{x\})$ be such that $y \neq x$. Then clearly $y \in L$. Thus $y \notin F$ and since X is μ - R_0 , then $c_{\mu}(\{y\}) \subseteq X \setminus F$. This shows that $x \notin c_{\mu}(\{y\})$. Thus there exists a μ -open set containing x and disjoint from y. Thus $y \notin \bigwedge_{\mu}(\{x\})$ and this is a contradiction. Hence, (X, μ) is a weak μ - R_0 space. **Example 2.14.** Consider $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. Then (X, μ) is a GTS which is weak μ - R_0 space but not μ - R_0 . **Theorem 2.15.** For a GTS (X, μ) the following conditions are equivalent: - (a) X is μ - T_1 . - (b) X is μ - T_0 and μ - R_0 . - (c) X is μ - T_0 and weak μ - R_0 . *Proof.* (a) \Rightarrow (b): If X is μ - T_1 then it is μ - T_0 . Let U be a μ -open set such that $x \in U$. Let $y \notin U$. Then x and y are distinct points of X. So by (i), there exist a μ -open set G such that $y \in G$ but $x \notin G$ and so $y \notin c_{\mu}(\{x\})$. Thus, (X, μ) is μ - R_0 . - (b) \Rightarrow (c) : Follows from Theorem 2.13. - (c) \Rightarrow (a): In view of Theorem 2.10 and Definition 2.12 it follows that every singleton subset of X is a \bigwedge_{u} -set and the rest follows from Definition 2.1. 3. $$\bigwedge_{\mu}$$ -D sets **Definition 3.1.** A subset A of a GTS (X, μ) is called a \bigwedge_{μ} -D set if there are two (\bigwedge, μ) -open sets U and V in X such that $U \neq X$ and $A = U \setminus V$. **Definition 3.2.** A GTS (X, μ) is called - (i) $\bigwedge_{\mu} -D_0$ if for any distinct pair of points x and y of X there exists a $\bigwedge_{\mu} -D$ set of X containing x but not y or a $\bigwedge_{\mu} -D$ set of X containing y but not x. - (ii) $\bigwedge_{\mu} -D_1$ if for any distinct pair of points x and y of X there exist a $\bigwedge_{\mu} -D$ set of X containing x but not y and a $\bigwedge_{\mu} -D$ set of X containing y but not x. - (iii) $\bigwedge_{\mu} -D_2$ if for any distinct pair of points x and y of X there exist disjoint $\bigwedge_{\mu} -D$ sets G and H of X containing x and y respectively. A GTS (X, μ) satisfies (\bigwedge, μ) -property if for any distinct pair of points x and y of X there exist disjoint (\bigwedge, μ) -open sets containing one but not the other. Remark 3.3. The following hold for a GTS (X, μ) : - (i) If (X, μ) satisfies (Λ, μ) -property, then it is Λ_{μ} - D_0 . - (ii) If (X, μ) is $\bigwedge_{\mu} -D_i$, then it is $\bigwedge_{\mu} -D_{i-1}$, i = 1, 2. **Theorem 3.4.** A GTS (X, μ) is - (i) \bigwedge_{μ} - D_0 if and only if it satisfies (\bigwedge, μ) -property. - (ii) (X, μ) is $\bigwedge_{\mu} -D_1$ if and only if $\bigwedge_{\mu} -D_2$. - Proof. (i) By Remark 3.3, one part is trivial. Let (X,μ) be \bigwedge_{μ} - D_0 . So for any pair of distinct points x and y of X at least one belongs to a \bigwedge_{μ} -D set U. Suppose $U = P \setminus Q$ for which $P \neq X$ and P and Q are (\bigwedge, μ) -open sets in X. Without loss of generality let $x \in U$ and $y \notin U$. This implies that $x \in P$. For the case $y \notin U$ we have (i) $y \notin P$ (ii) $y \in P$ and $y \in Q$. For (i), the space X satisfies the (\bigwedge, μ) -property since $x \in P$ and $y \notin P$. For (ii), the space X also satisfies (\bigwedge, μ) -property since $y \in Q$, but $x \notin Q$. - (ii) One part is trivial from Remark 3.3. Suppose X is $\bigwedge_{\mu} -D_1$. It follows from the definition that for any two distinct points x and y in X there exist $\bigwedge_{\mu} -D$ sets G and H such that $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$. Let $G = U \setminus V$ and $H = W \setminus D$, where U, V, W and D are (\bigwedge, μ) -open sets in X. By the fact that $x \notin H$, we have two cases, i.e., either $x \notin W$ or both W and D contains x. If $x \notin W$, then from $y \notin G$ either (i) $y \notin U$ or (ii) $y \in U$ and $y \in V$. If (i) is the case, then it follows from $x \in U \setminus V$ that $x \in U \setminus V \cup W$ and also it follows from $y \in W \setminus D$ that $y \in W \setminus U \cup D$. Thus we have $U \setminus V \cup W$ and $W \setminus U \cup D$ are disjoint. If (ii) is the case, it follows that $x \in U \setminus V$, $y \in V$ and $(U \setminus V) \cap V = \emptyset$. If $x \in W$ and $x \in D$ we have $y \in W \setminus D$, $x \in D$ and $(W \setminus D) \cap D = \emptyset$. Thus X is $\bigwedge_{\mu} -D_2$. **Definition 3.5.** Let (X, μ) be a GTS. A point $x \in X$ is said to be a \bigwedge_{μ} -neat point if there does not exist any (\bigwedge, μ) -open set containing x other than X. **Theorem 3.6.** For a GTS (X, μ) that satisfies (\bigwedge, μ) -property the followings are equivalent: - (i) (X, μ) is $\bigwedge_{\mu} -D_1$; - (ii) (X, μ) has no \bigwedge_{μ} -neat point. - *Proof.* (i) \Rightarrow (ii) : Since (X, μ) is $\bigwedge_{\mu} -D_1$, so each point x of X is contained in a $\bigwedge_{\mu} -D$ set $O = U \setminus V$ and thus $x \in U$. By definition $U \neq X$ and U is (\bigwedge, μ) -open. This implies that x is not a \bigwedge_{μ} -neat point. - (ii) \Rightarrow (i): Since (X, μ) satisfies (\bigwedge, μ) -property, then for each distinct pair of points $x, y \in X$, at least one of them, choose x for example is contained in a (\bigwedge, μ) -open set U not containing the point y. Thus U is a \bigwedge_{μ} -D set different from X (as every (\bigwedge, μ) -open set is a \bigwedge_{μ} -D set). Since by (ii) X has no \bigwedge_{μ} -neat point, then y is not a \bigwedge_{μ} -neat point. So there exist a (\bigwedge, μ) -open set $V \neq X$ containing y. Thus $y \in V \setminus U$ but $x \notin V \setminus U$ and $V \setminus U$ is a $\bigwedge_{\mu} -D$ set. Hence X is $\bigwedge_{\mu} -D_1$. Remark 3.7. It is clear that a GTS (X, μ) that satisfies (Λ, μ) -property is not Λ_{μ} - D_1 if and only if there is a unique \bigwedge_{u} -neat point in X. It is unique because if x and y are both \bigwedge_{u} -neat point in X, then at least one of them say x is contained in a (\bigwedge, μ) -open set U but not y. But this is a contradiction as $U \neq X$. **Definition 3.8.** Let (X, μ) be a GTS. A point $x \in X$ is called a (Λ, μ) -cluster point of A if for every (\bigwedge, μ) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, μ) -cluster points of A is called the (Λ, μ) -closure of A and is denoted by $A^{(\Lambda, \mu)}$. **Definition 3.9.** A GTS (X, μ) is called (\bigwedge, μ) -symmetric if for x and y in $X, x \in \{y\}^{(\bigwedge, \mu)}$ implies $y \in \{x\}^{(\Lambda,\mu)}$. **Lemma 3.10.** Let (X, μ) be a GTS. Then the following properties hold: - (i) $A \subseteq A^{(\wedge,\mu)}$; - (ii) $A \subseteq I$, $A \subseteq F$ and $A \subseteq I$ is $A \subseteq I$ and $A \subseteq I$ and $A \subseteq I$ is $A \subseteq I$. - (iv) A is (\bigwedge, μ) -closed iff $A = A^{(\bigwedge, \mu)}$; (v) $A^{(\bigwedge, \mu)}$ is (\bigwedge, μ) -closed. **Theorem 3.11.** A GTS (X, μ) is (\bigwedge, μ) -symmetric if and only if for $x \in X$, $\{x\}^{(\bigwedge, \mu)} \subseteq E$ whenever $x \in E$ and E is (\bigwedge, μ) -open in (X, μ) . *Proof.* Assume that $x \in \{y\}^{(\Lambda,\mu)}$ but $y \notin \{x\}^{(\Lambda,\mu)}$. This means that the complement of $\{x\}^{(\hat{\Lambda},\mu)}$ contains y. Now $\{y\}$ is a subset of the complement of $\{x\}^{(\hat{\Lambda},\mu)}$. This implies that $\{y\}^{(\hat{\Lambda},\mu)}$ is a subset of the complement of $\{x\}^{(\hat{\Lambda},\mu)}$. Now the complement of $\{x\}^{(\hat{\Lambda},\mu)}$ contains x which is a contradiction. Conversely, suppose that $\{x\} \subseteq E$ and E is (\bigwedge, μ) -open in (X, μ) but $\{x\}^{(\bigwedge, \mu)} \nsubseteq E$. Then $\{x\}^{(\wedge,\mu)}$ intersects the complement of E. Let y be a member of this intersection. Now we have $x \in \{y\}^{(\wedge,\mu)}$ which is a subset of the complement of E and hence $x \notin E$. But this is a contradiction. **Theorem 3.12.** For a (\bigwedge, μ) -symmetric GTS (X, μ) the following are equivalent: - (a) (X, μ) satisfies the (Λ, μ) -property; - (b) (X, μ) is $\bigwedge_{\mu} D_0$; - (c) (X, μ) is $\bigwedge_{\mu} -D_1$. *Proof.* (a) \Leftrightarrow (b) : Follows from Theorem 3.4. - (c) \Rightarrow (b) : Follows from Remark 3.3. - (a) \Rightarrow (c): Let $x \neq y$ and by (a), we may assume that $x \in E \subseteq X \setminus \{y\}$ for some (\bigwedge, μ) open set E in (X, μ) . Then $x \notin \{y\}^{(\Lambda, \mu)}$ and $y \notin \{x\}^{(\Lambda, \mu)}$. Hence there exist (Λ, μ) -open sets G and H such that $y \in G \subseteq \{x\}^c$ and $x \in H \subseteq \{y\}^c$. Since every (\bigwedge, μ) -open set is a \bigwedge_{μ} -D set, we have that (X, μ) is a \bigwedge_{μ} -D₁ space. ## References - 1. Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351- - 2. Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), - 3. Á. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar. 120 (2008), 275-279. - 4. E. Ekici and B. Roy, New generalized topologies on generalized topological spaces due to $Cs\acute{a}sz\acute{a}r$, Acta Math. Hungar., in press. - 5. B. Roy, On generalization of R_0 and R_1 spaces, Acta Math. Hungar. 127 (2010), 291–300. - 6. B. Roy, $On\ a\ type\ of\ generalized\ open\ sets,$ submitted. Department of Mathematics, Women's Christian College, 6, Greek Church Row, Kolkata, 700026, India $E\text{-}mail\ address: \verb|bishwambhar_roy@yahoo.co.in||$ Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020, Canakkale, Turkey $E\text{-}mail\ address: \verb"eekici@comu.edu.tr"$ Received 08/10/2010