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FACTOR REPRESENTATIONS OF INFINITE SEMI-DIRECT

PRODUCTS

R. ZEKRI

Abstract. In this article, we propose a new method to study unitary representations

of inductive limits of locally compact groups. For the group of infinite upper trian-

gular matrices, we construct a family of type III factorial representations. These
results are complements to previous results of A. V. Kosyak, and Albeverio and

Kosyak [1, 5].

1. Introduction and notations

In recent works [1, 5] a class of unitary representations of the group of upper triangular
real matrices BN

0 of arbitrarily large size have been defined and studied. The space of
representations is an inductive limit of Hilbert spaces, which can be described as an
infinite tensor product along a vector Ω. It is shown that, under reasonable conditions,
the von Neumann algebra of BN

0 is a type III factor. In this paper, we propose a new
method to study these representations. Although our results have some overlap with
Kosyak’s conditions, our approach is completely different, and we hope, will be useful to
study infinite semi direct products of a large class of groups. Our conditions are different,
and are, in some sense, complements to conditions from [5]. The paper is organized
as follows. In Section 2, we study inductive limit representations, and establish some
properties that will be used in the sequel. In Section 3, we give a short argument to prove
that our representations are factorial. In Section 4, we compute the spectrum of the von
Neumann algebraM, generated by the representations introduced in Section 2. Using a
result of G. K. Pedersen, the problem boils down to constructing operators X inM, and
Y , in M′, fulfilling suitable approximate commutation relations. The real Heisenberg
group, H3(R), embeds into BN

0 in a natural way. We construct such operators, associated
to every copy of H3(R) contained in BN

0 . This gives us operators associated to finite
dimensional subgroups of BN

0 . We finally show that, for the representations introduced
in Section 2, we can extend our construction to the whole inductive limit, and fulfill
Pedersen’s conditions. The algebra M is a factor of type III1.

Let us now fix notations: We shall denote by {ei,j} the usual matrix units, and by 1
the identity matrix.

For any 1 ≤ i < j, we let Gi,j be the subgroup 1 + Rei,j .
For any strictly positive integer n, we shall denote by Gn the subgroup generated by

{Gi,n, 1 ≤ i < n}.
We define inductively the groups (Gn)n>0 as follows: G1 = {e} is the trivial group.

For any n ≥ 1, we set Gn+1 = Gn nGn+1. The group Gn acts on Gn+1 through matrix
multiplication.
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In the rest of the paper, we suppose that a unit vector ω ∈ L2(R) is chosen, and a set

{bi,j , 1 ≤ i < j} of strictly positive integers is given. We define Ωi,j(x) = b
1/4
i,j ω(x

√
bi,j).

We define the functions:
Ωn = ⊗n−1i=1 Ωi,n, n > 1, Ωn = ⊗nk=2Ωk, n > 1,
Hn = L2(Gn), n ≥ 2 (with the Haar measure),
Hi,j = L2(Ri,j), 1 ≤ i < j,
Hn = ⊗nj=2Hj ' L2(Gn),
Ω = ⊗∞n=2Ωn.
We shall also use Fourier transform on the spaces Hi,j .The Fourier transform of a

function ξ ∈ Hi,j will be denoted by Fi,j(ξ) ∈ Ĥi,j , or, simply, by ξ̂. In these notations,

Fi1,j1 ⊗ Fi2,j2 ⊗ · · · ⊗ Fin,jn is an isometry of H onto Ĥi1,j1 ⊗ Ĥi2,j2 ⊗ · · · ⊗ Ĥin,jn ⊗⊗
(a,b)6∈{(i1,j1),...,(in,jn)}Ha,b. If no confusion can arise, we shall keep the same symbols

to denote operators, representations, etc... on H, and on the partial Fourier transformed

space. Explicitly, the operator T ∈ L(H), and the operator Fi,jTF∗i,j on the space Ĥ
will be denoted by the same symbol T . The same conventions apply to representations
of groups, algebras, etc...

For each integer n > 1, the isometry ξ → ξ⊗Ωn+1, from Hn to Hn+1 will be denoted
by vn. Given m > n, the composition vm−1vm−2 . . . vn : Hn ↪→ Hm is denoted by vmn .

The Hilbert space inductive limit of the system (Hn, vn)n∈N is the infinite tensor
product of the spaces Hn along the vector Ω. It will be denoted by H =

⊗∞
n=2(Hn,Ωn).

2. Operators on inductive limit spaces

In this section, we recall some known facts about infinite tensor products that will be
needed in the sequel.

We shall denote by H the infinite tensor product of the Hilbert spaces (Hn)n>1, along
the vector Ω =

⊗∞
n=2 Ωn. The space H is the inductive limit of an increasing sequence of

subspaces (Hn)n∈N, as in section 1. Any operator T ∈ L(Hn) has a canonical extension
(amplification) T ⊗ Id to H.

2.1. Infinite tensor product of representations. We now suppose that a unitary,
strongly continuous representation, u(n) : R → L(Hn) is given for each integer n > 1.

For any s ∈ R, the unitary u(n)(s) will be denoted by u
(n)
s .

Lemma 2.1. Let H =
⊗∞

n=2(Hn,Ωn). Assume that the scalar products {(u(n)s Ωn|Ωn),
n > 1, s ∈ R} are reals. Suppose that, for each n > 1, there exists a positive constant

Cn, such that 1− (u
(n)
s Ωn|Ωn) ≤ Cn|s|, for any real s. If

∑∞
n=2 Cn <∞, then, for any

real s, the sequence (
⊗n

k=2 u
(k)
s ⊗ Id)n∈N converges strongly in L(H) to a unitary us.

Moreover, the map s→ us is a strongly continuous unitary representation of R in L(H).

Proof. Let ξ = ξ0 ⊗ (
⊗∞

k=n+1 Ωk), with ξ0 ∈ Hn. Let q > p > n, and s ∈ R. We

have: ‖(
⊗p

k=2 u
(k)
s ⊗ Id−

⊗q
k=2 u

(k)
s ⊗ Id)ξ‖2 = ‖ξ0‖2‖

⊗q
k=p+1 Ωk−

⊗q
k=p+1 u

(k)
s Ωk‖2 =

2‖ξ0‖2(1−
∏q
k=p+1(u

(k)
s Ωk|Ωk)) = 2‖ξ0‖2(1−

∏q
k=p+1(1− (1− (u

(k)
s Ωk|Ωk))). Moreover,

for every sequence of positive reals (ak)k∈N, such that
∑∞
k=1 ak < 1/2, we have:

∏∞
k=1(1−

ak) ≥ 1 − 2
∑∞
k=1 ak. With ak = 1 − (u

(k)
s Ωk|Ωk), we obtain: ‖(

⊗p
k=2 u

(k)
s ⊗ Id −⊗q

k=2 u
(k)
s ⊗ Id)ξ‖2 ≤ 4‖ξ0‖2

∑q
k=p+1(1 − (Ωk|u(k)s Ωk)) ≤ 4|s|‖ξ0‖2

∑q
k=p+1 Ck, for all

sufficiently large p. It follows that the sequence (
⊗n

k=2 u
(k)
s ⊗ Id)n∈N converges strongly

to a unitary us. Let us now show the strong continuity of the representation. It suffices
to evaluate ‖us(ξ) − ξ‖, for sufficiently small |s|. Let ε > 0 be given. It follows from

the above that there exists p ∈ N, such that ‖us(ξ) −
⊗p

k=2 u
(k)
s ξ ⊗

⊗∞
l=p+1 Ωl‖ < ε,
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for every s such that |s| < 1. Since the representations u(k) are supposed to be strongly
continuous, the result follows. �

2.2. The left and right regular representations.

2.2.1. Existence of the left representation. In this section, we shall give a sufficient
condition for the existence of analogs of the left regular representation of the group
G = ∪1≤i<jGi,j , with Gi,j as in section 1. (Note that the condition we shall be using
(B1) is more restrictive than the criteria established in [4].) The space H of these regular
representations is an inductive limit of the spaces Hn ' L2(Gn) =

⊗
1≤i<j≤nHi,j along

the vectors Ωi,j , as described in section 1. The right regular representation is always well
defined. For every triple of integers i < j < k, the group Gi,j ' 1+Rei,j acts from the left
on Hi,k⊗Hj,k ' L2(R2) through the unitaries (ui,j(s)ξ)(x, y) = ξ(x−sy, y), s, x, y ∈ R.
The existence of a left action of Gi,j on the whole space H amounts to the existence
of an infinite tensor product of such unitaries. We shall study the convergence of these
unitaries, acting on the infinite tensor product

⊗
k≥j(Hi,k ⊗ Hj,k), along the vectors

Ωi,k ⊗ Ωj,k. Our vectors Ωi,j are the composition of a fixed function ω ∈ L2(R) with
a linear transformation of the real line. With a view to using the conditions of 2.1, we
shall make the following assumptions on ω.

Assumptions on ω:

(1) ω is a unit vector in L2(R).
(2) ω is a real valued, positive function.
(3) There exists a constant Cω > 0, such that: for any s ∈ R,
‖ω(x+ sy)ω(y)− ω(x)ω(y)‖2 = 2|1− (ω(x+ sy)ω(y)|ω(x)ω(y))| ≤ Cω|s|.

(These requirements are fulfilled by the standard Gaussian function ω(x) = π−1/4e−x
2/2

considered by Kosyak.)

Definition 2.2. Suppose we are given, for each pair of integers (i, j), with 0 < i < j, a
strictly positive real number bi,j . Let ω ∈ L2(R) be a unit vector, fulfiling assumptions 1
and 2 above.

(1) Define, for each pair (i, j), the function Ωi,j(x) = b
1/4
i,j ω(x

√
bi,j), x ∈ R.

We define H as the infinite tensor product
⊗

0<i<j Hi,j , along the vector Ω =⊗
0<i<j Ωi,j , with Hi,j = L2(R), for every pair (i, j).

(2) For each integer n ≥ 2, set Ωn =
⊗

0<i<n Ωi,n, and Ωn =
⊗

1<l≤n Ωl. The

spaces Hn =
⊗

1≤i<nHi,n, with Hi,n ' L2(R), and Hn =
⊗

2≤l≤nHl are
defined accordingly.

(3) We shall say that condition B1 is fulfilled, if and only if, for any pair of integers

(i, j), with 0 < i < j, we have :
∑
{k/ j<k}

√
bi,k
bj,k

< ∞. We shall say that

condition B2 is fulfilled, if and only if,
∑
{i,j,k/ 0<i<j<k}

√
bi,k

bi,jbj,k
<∞.

(Note that condition B2 is stronger than condition B1.)

Definition 2.3. For every integer n > 1, we shall denote by λ(n) the left regular repre-
sentation of Gn on Hn ' L2(Gn), and by λ(n)⊗ 1, the amplification of λ(n) to the space
H. (Explicitly, λ(n) ⊗ 1(g) = λ(n)(g)⊗ Id, for every g ∈ Gn.)

Lemma 2.4. If condition B1 is fulfilled (see definition 2.2) , then, for every g ∈
⋃
l>1G

l,

the sequence (λ(n)⊗1(g))n converges strongly in L(H). We shall denote by λ(g) the strong
limit of this sequence.

Proof. It suffices to show the strong convergence of the sequence (λ(n)⊗1(1+sei,j))n≥j ,

for every 0 < i < j, and every s ∈ R. We have (λ(n) ⊗ 1(1 + sei,j)) = λ(j)(1 +



INFINITE SEMI-DIRECT PRODUCTS 183

sei,j)⊗
⊗

j<k≤n u
(k)
s ⊗ Id, with u

(k)
s ∈ L(Hk). It follows from our assumptions on ω, that

1− (u
(k)
s Ωk|Ωk) < |s|Cω

√
bi,k
bj,k

. We conclude using lemma 2.1. �

Definition 2.5. Let G be endowed with the inductive limit topology. With ω and H as
above, we shall denote by λ the weakly continuous unitary representation of G in L(H),
described in lemma 2.4. We shall call λ the left regular representation of G on H, relative
to Ω. For every integer n > 1, let ρ(n) be the right regular representation of Gn on Hn.
We define the right regular representation, ρ, of G on H, by ρ(g)(ξ ⊗ η) = ρ(n)(g)ξ ⊗ η,
for every g ∈ Gn, ξ ∈ Hn, and η ∈

⊗
k>nHk. (See also [5].) We set M = λ(G)′′, and

N = ρ(G)′′.

When no confusion can arise, we shall abbreviate notations, and call λ simply the left
regular representation of G.

2.2.2. Cuts of the left regular representation.

Note 2.6. We use the notations of [6]. Given a locally compact group Γ, and a Hilbert
space H, we shall denote by L2(Γ, H) the Hilbert space of square integrable functions on
Γ, with values in H. This space is isometric to the completed tensor product of Hilbert
spaces L2(Γ)⊗H.

In this section, we give an equivalent construction of the left regular representation of
the group G. This is based on the absorption property of the regular representation of
locally compact groups. Although this is standard material, we recall the proof for the
convenience of the reader. Given a locally compact group Γ, and a unitary representation,
π, of Γ on a separable Hilbert space H, there exists a unitary intertwining λ ⊗ π, and
λ⊗1. (Details can be found in [3].) Here, λ denotes the regular representation of Γ, and
1 denotes the trivial representation. Explicitly, define V on L2(Γ, H), such that (V(ξ ⊗
η))(g) = ξ(g)π(g)η, for every ξ ∈ L2(Γ), η ∈ H,g ∈ Γ. It is easily checked that V, defined
that way, extends to a unitary on L2(Γ, H), given by Vζ(g) = π(g)ζ(g), ζ ∈ L2(Γ, H), g ∈
Γ. Let ζ ∈ L2(Γ, H), γ ∈ Γ, and g ∈ Γ be given. We compute : (V∗λ ⊗ π(γ)Vζ)(g) =
π(g−1)[(λ ⊗ π(γ)Vζ)(g)] = π(g−1)π(γ)[Vζ(γ−1g)] = π(g−1γ)[π(γ−1g)ζ(γ−1g)] = [λ ⊗
1(γ)ζ](g).

Since our group G is the inductive limit of the locally compact groups Gn, we get, for
each n, a unitary intertwining the regular representation of Gn, and the restriction to Gn

of the regular representation of G. The study of this sequence of unitaries will lead to an
alternate definition of the left regular representation of G. The following decomposition
pf V will be used :

Definition 2.7. (1) Let k ≥ n > 1 be integers. For every h ∈ Gn, we define the
k−rest of (λ(h)) as the unitary (λ(k)⊗1(h))−1λ(h). We shall denote by λ(k) the

k−rest of (λ(h)), so that λ(h) = λ(k)(h)⊗ λ(k)(h), on H ' L2(Gk)⊗
⊗

p>kHp.
(2) Let n ≥ i > 1 be a pair of integers. We decompose H as H = L2(Gn,

⊗
p>nHp).

Each g, element of Gn can be written uniquely as g = gngn−1 . . . g2, with gj ∈ Gj ,
for 2 ≤ j ≤ n. (Recall that in our notations, G1 = G1 is the trivial group.) We
define the unitary Vi,n, on H, by

Vi,n :


Vi,n : L2(Gn,

⊗
p>nHp)→ L2(Gn,

⊗
p>nHp),

(Vi,nξ)(gngn−1 . . . g2) = [λ(n)(gi))](ξ(gngn−1 . . . g2)).

Lemma 2.8. Set, for every integer n > 0, V(n) = Vn,nVn−1,n . . .V2,n. We have

V(n)∗λ(γ)V(n) = λ(n)(γ)⊗ 1, for every γ ∈ Gn.
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Proof. This follows from the above discussion, with V = V(n),Γ = Gn, H =
⊗

p>nHp,
π = λ(n). �

Definition 2.9. For every T ∈ M, and n ∈ N, we shall denote by n−cut(T ) the
operator Vn∗TVn.

Lemma 2.10. If condition B2 is fulfilled (see definition 2.2), the sequence (V(n))n∈N
converges strongly to the identity operator on H, as n goes to infinity.

Proof. Let ξ ∈ H. We may assume that ξ = η⊗
⊗

p>n Ωp, with η a unit vector in Hn. It

suffices to evaluate
∑p
j=2 ‖Vj,p(ξ)−ξ‖, for any integer p > n. Write

∑p
j=2 ‖Vj,p(ξ)−ξ‖ =∑n

j=2 ‖Vj,p(ξ)− ξ‖+
∑p
j=n+1 ‖Vj,p(ξ)− ξ‖. For j ≤ n, we have: ‖Vj,p(ξ)− ξ‖2 ≤∫

gn...gj ...g2∈Gn |η(gn . . . gj . . . g2)|2 ‖[λ(p+1)(gj)]Ω− Ω‖2d(gn . . . gj . . . g2).

Since ‖[p+ 1−rest(λ(gj))]Ω−Ω‖ tends to 0 when p goes to infinity, the first term of
the sum tends to 0, when p goes to infinity. Assume now that j > n.

We have

‖Vj,p(ξ)− ξ‖2 ≤
∫
gj∈Gj

|Ωj(gj)|2 ‖[λ(p+1)(gj)]Ω− Ω‖2dgj ≤ Cω
∑

1≤i<j

∑
k>p

√
bi,k

bi,jbj,k
.

Thus, the second term of the sum is less or equal to
∑p
j=n+1(

∑
1≤i<j, k>p

√
bi,k

bi,jbj,k
). It

follows from condition B2 that this last quantity tends to 0, when p goes to infinity. �

2.2.3. Cut of the right regular representation, and the Heisenberg group H3. We shall
denote by H3 the real Heisenberg group of dimension 3. For each integer k ≥ 3, the
subgroup of G generated by {1 + e1,k−1, 1 + e1,k, 1 + ek−1,k} is a copy of H3, which
we shall denote by H3(k). There is a Hilbert space H′(k), and a decomposition H '
L2(H3(k),H′(k)). The Hilbert space H′(k) is endowed with a unitary representation
γ → uγ , of H3(k), such that, for every ξ ∈ L2(H3(k),H′(k)), and h ∈ H3(k), we have:

(ρ(γ)ξ)(h) = uγ(ξ(hγ)). Hence, there exists a canonical unitary W(k), on H, such that

Wkξ(γ) = u∗γξ(γ), and : (W(k)∗ρ(γ)W(k)ξ)(h) = ξ(hγ), for every ξ ∈ L2(H3(k),H′(k)),
and γ, h ∈ H3(k).

Lemma 2.11. If condition B2 is fulfilled, the sequence (W(k))k∈N converges strongly to
the identity, when k goes to infinity.

Proof. We remark that W(k) is of the form 1 ⊗ wk ⊗ 1, in the decomposition H =
(Hk−2) ⊗ (Hk−1 ⊗ Hk) ⊗

⊗
p>kHp, with wk a unitary on Hk−1 ⊗ Hk. The proof is

similar to the proof of lemma 2.10. �

Definition 2.12. For every k ≥ 3, and every T ∈ ρ(H3(k))′′ ⊂ N , we set cut(T ) =

W(k)∗TW(k).

3. Factorial representations

In this section, we shall prove that the representations introduced in section 2 are
factorial. We first study the case of the finite dimensional groups G2n, generated by
the unit matrix {1 + ei,j , 1 ≤ i < j ≤ 2n}. Let G2n

1 be the subgroup generated by
{1+ei,j , 1 ≤ i < j ≤ n}, G2n

2 be the subgroup generated by {1+ei,j , n+1 ≤ i < j ≤ 2n},
and A2n be the subgroup generated by {1 + ei,j , 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n}. We
have a decomposition G2n ' (G2n

1 × G2n
2 ) n A2n. The group G2n

1 (resp. G2n
2 ) acts by

matrix multiplication from the left (resp from the right) on A2n. We denote by L2n the
von Neumann algebra generated by the left regular representation of G2n, and by A2n

the subalgebra of L2n generated by A2n. We have the following:
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Lemma 3.1. The action of G2n
1 × G2n

2 on A2n is free, in the sense that the stabilizer

of almost every point â, in the spectrum Â2n of A2n, is trivial. (See [7], section 2, for
details.)

Proof. Under Fourier transform, A2n is isomorphic to L∞(R̂n2

). We shall denote by Â2n

this algebra, and by Â2n the space Rn2

. The groups G2n
1 and G2n

2 are both isomorphic

to the matrix group Gn. Under this isomorphism, G2n
1 and G2n

2 act on Â2n by left and
right multiplication with transposed matrices. Explicitly, let (tM) denote the transposed

matrix of a matrixM . Let â ∈ Â2n. A matrixM ∈ Gn ' G2n
1 sends â to (tM)â. A matrix

N ∈ Gn ' G2n
2 sends â to â(tN). It follows that the study of the stabilizers of a point

â ∈ Â2n amounts to finding two matrices M , and N , in Gn, such that (tM)â = â(tN−1).
Replacing â by tâ, the problem boils down to the following : Given an n × n matrix â,
find two matrices in Gn, that we shall still denote by M and N , such that Mâ = âN . We

shall proceed by induction. Assume that the equality M ′b̂ = b̂N ′, with M ′, N ′ ∈ Gn−1
implies M ′ = N ′ = 1, for almost every (n − 1) × (n − 1) matrix b̂ (this assumption is

trivial for n− 1 = 1). Suppose we are given an n× n matrix â. Let b̂ be the submatrix
of â, obtained by removing the first line and the last column of â. The set of equations

Mâ = âN , with M, N ∈ Gn contains the equation M ′b̂ = b̂N ′, where M ′, and N ′ are
submatrices of M and N , respectively. It follows from our induction hypothesis, that M
is of the form M = 1+

∑
2≤j≤nM1,je1,j , and N =

∑
1≤i≤n−1 1+Ni,nei,n. Moreover, the

vector (M1,j)2≤j≤n has to be orthogonal to every column of the submatrix b̂. This shows
that, for almost every â, we have M = 1. A similar argument shows that N = 1. �

We shall also need the following lemma:

Lemma 3.2. Let H = ⊗∞n=2Hn be an infinite tensor product of Hilbert spaces, along a
vector Ω = ⊗∞n=2Ωn. Then ∩n>1(1Hn ⊗ L(

⊗
p>nHp)) = C.1.

Proof. Denote by K(H) (resp. K(Hn)) the C∗-algebra of compact operators on H (resp.
on Hn). For any integer n > 1, let Πn ∈ L(⊗∞p=n+1Hp) be the (rank one) projection on
C.(⊗∞p=n+1Ωp). Then K(H) is the norm closure of ∪n≥2(K(Hn) ⊗ Πn). It follows that
L(H) is the strong closure of ∪n≥2(L(Hn) ⊗ Πn). Now, one checks easily that this is
equal to the strong closure of ∪n≥2(L(Hn) ⊗ 1). The proof is completed by computing
the commutant of ∩n>1(1Hn ⊗ L(

⊗
p>nHp)). �

Corollary 3.3. Under the assumptions of lemma 2.4, M is a factor.

Proof. Let B be a central element of M. Let n > 0 be an integer. Let V(2n) be the

unitary defined in 2.8. Then V(2n)∗BV(2n) is in the commutant of V(2n)∗λ(G2n)V(2n) =
λ(2n)(G2n)⊗1. (In the last equality, we use the decompositionH'L2(G2n)⊗(

⊗
p>2nHp).)

Moreover, V(2n)∗BV(2n) commutes with V(2n)∗ρ(G2n)′′V(2n) = ρ(G2n)′′. Denote by Zn
the center of ρ(G2n)′′. It follows from lemma 3.1, and from lemma 2.4 of [7], that

Zn ⊂ ρ(A2n)”. Hence, V(2n)∗BV(2n) ∈ 1Hn⊗L(
⊗

p>nHp). Since the unitaries (V2n)n≥1
converge to the identity, B is in ∩n>0(1Hn ⊗ L(

⊗
p>nHp)) = C.1. �

4. Computing Γ(M)

In this section, we prove thatM is of type III1. We shall use the following characteriza-
tion of the Connes spectrum:

Theorem 4.1. ([6], Theorem 8.15.9, p. 389). Let M be a σ-finite von Neumann algebra
on a Hilbert space H. Then Γ(M) consists of those real numbers s such that, for each
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unit vector ξ ∈ H, and every α > 0, there are elements x ∈ M, and y ∈ M′ with
‖xξ‖ > 1, and

‖xξ − yξ‖ < α, ‖x∗ξ − esy∗ξ‖ < α.

4.1. The algebra Aµ. Let H3 be the real Heisenberg group of dimension 3. Since H3

can be decomposed as a semi-direct product RnR2 of amenable groups, H3 is amenable,
hence, the full and reduced group C∗−algebras of H3 coincide. For each integer k ≥ 3,
the subgroup of G generated by {1 + e1,k−1, 1 + e1,k, 1 + ek−1,k} is a copy of H3, which
we shall denote by H3(k). For the sake of simplicity, we shall denote in the same way a
subset of H3, and its identical image in H3(k). In particular, H3(3) is identical to G3.
Under this identification, the space L2(H3) is isometric to L2(R1,2)⊗L2(R1,3)⊗L2(R2,3).
Desintegrating C∗(H3) amounts to compose the regular representation λ of H3, with the
Fourier transformation F , on R1,2 and R1,3. In the definition below, the variable µ
parametrizes the center of C∗(H3), and is dual to t1,3. The variable ν is dual to t1,2, and
the variable t2,3 is simply denoted by t. The C∗−algebra Fλ(C∗(H3))F∗ is a continuous
field of C∗−algebras. We write C∗(H3) = (Aµ)µ∈R the desintegration of C∗(H3) over
its center. We shall determine, for each ε > 0, s ∈ R, and η = (ξµ)µ, a real number
µ0 > 0, depending on ε, s, and η such that there are operators fulfilling the conditions
of theorem 4.1, provided that the support of η is contained in [−µ0, µ0]. Then, we shall
see that these operators ”almost extend” to operators on H, belonging to M, and N
respectively. This will allow to compute Γ(M). We start by describing the algebras Aµ.

Definition 4.2. Let µ be a real number. The C∗− algebra Aµis the C∗− crossed product

C0(R̂)oR, where R̂ acts on C0(R) through the automorphisms (αµs (f))(t) = f(t−µs),
for any reals t, s.

Definition 4.3. Let µ be a real number. Define, for every f ∈ C0(R), s, t ∈ R, ν ∈
R̂, and ξ ∈ L2(R̂)⊗ L2(R) :

πµL :

 πµL(f)ξ(ν, t) = f(ν + µt)ξ(ν, t),

πµL(s)ξ(ν, t) = ξ(ν, t− s),
and

πµR :

 πµR(f)ξ(ν, t) = f(ν)ξ(ν, t),

πµR(s)ξ(ν, t) = ξ(ν + µs, t− s).

The maps πµL (resp. πµR) define commuting representation (resp. anti-representation)

of Aµ on L2(R̂) ⊗ L2(R). We shall denote by Kµ the Hilbert space L2(R̂) ⊗ L2(R),
endowed with the left and right representations πµL, πµR, of Aµ. The C∗-algebra C∗(H3) is
(non spatially) isomorphic to sections of the continuous field (πµL(Aµ))µ∈R. The maps πµL,

πµR extend to normal representations of the von Neumann crossed product L∞(R̂) o R.

We denote by Lµ (resp. Rµ) the von Neumann algebra of πµL(L∞(R̂) o R) (resp. of

πµR(L∞(R̂) o R)).

4.2. The operators X and Y . We shall now prove the following proposition:

Proposition 4.4. Let µ ∈ R, ξ = ξ1⊗ξ2 ∈ Kµ be an elementary tensor, and ε > 0, λ > 0
be given. There exists C > 0, and µ0 > 0, such that, if 0 < |µ| < µ0, there are elements
Xµ ∈ Lµ, and Yµ ∈ Rµ, with

(C1) : ‖
√
λXµξ − Y ∗µ ξ‖ < ε‖Xµξ‖,

and
(C2) : ‖X∗µξ −

√
λYµξ‖ < ε‖Xµξ‖.
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Moreover, ‖Xµ‖, and ‖Yµ‖ are less or equal to C, and ‖Xµξ‖ ≥ ‖ξ‖/2.

We may assume that ‖ξ‖ = 1. The above operators Xµ and Yµ fulfill the conditions of

theorem 4.1, with λ = es, x = 2Xµ/‖Xµξ‖, y = 2Y ∗µ /
√
λ‖Xµξ‖, and α = 2ε(1 + 1/

√
λ).

4.2.1. Definition of X and Y for ξ, an elementary tensor, nowhere vanishing function.
We first assume that ξ is an elementary tensor, ξ(ν, t) = ξ1(ν)ξ2(t), with ξ1 a (nowhere
vanishing) continuous, real-valued function, tending to 0 at infinity. Choose two reals,

ν1, ans ν2, such that ξ1(ν1) =
√
λξ1(ν2) 6= 0. Choose a sufficiently small real ρ0, such

that

(A1) : ∀ν ∈ R, |ν − ν1| < ρ0 ⇒ |ξ1(ν)− ξ1(ν1)| < ε|ξ1(ν)|/4(1 + ε)

and

(A2) : ∀ν ∈ R, |ν − ν1| < ρ0 ⇒ |ξ1(ν + ν2 − ν1)− ξ1(ν2)| < ε|ξ1(ν)|/4(1 + ε).

Definition 4.5. Let y be the characteristic function of the interval [ν1−ρ0, ν1 +ρ0]. Set
κ = µ−1(ν1 − ν2). We define

Xµ = πµL(−κ)πµL(y), Yµ = πµR(y)πµR(κ).

We have

Proposition 4.6. Given an elementary tensor ξ ∈ Kµ, and a real ε > 0 as above, the
operators Xµ and Yµ, defined in 4.5, fulfill conditions C1 and C2, provided that |µ| is
sufficiently small.

Proof. (1) On computes
Xµξ(ν, t) = y(ν + µ(t+ κ))ξ(ν, t+ κ),

Y ∗µ ξ(ν, t) = y(ν)ξ(ν − µκ, t+ κ)

and 
X∗µξ(ν, t) = y(ν + µt)ξ(ν, t− κ),

Yµξ(ν, t) = y(ν + µκ)ξ(ν + µκ, t− κ).

(2) Consider the approximate vector (Xµξ)app(ν, t) = y(ν)ξ(ν, t + κ). Then
‖(Xµξ)app‖2 = ‖ξ2‖2

∫
|y(ν)ξ1(ν)|2dν is strictly positive, and does not depend

on µ. Set (X∗µξ)app(ν, t) = y(ν + µκ)ξ(ν, t − κ). Observe that ‖(X∗µξ)app −√
λYµξ‖ = ‖Y ∗µ ξ −

√
λ(Xµξ)app‖, since the first quantity is obtained from the

second through a translation of µκ in the first variable, and of 2κ in the second
variable. It will be sufficient to check the following condition Capp, and evaluate
‖Xµξ − (Xµξ)app‖, ‖X∗µξ − (X∗µξ)app‖ :

(Capp) ‖
√
λ(Xµξ)app − Y ∗µ ξ‖ < ε‖(Xµξ)app‖/2(1 + ε).

(3) It follows from assumptions A1, and A2, that, for every reals ν, and t, with
y(ν)ξ2(t) 6= 0, the following hold:

(A′1) : |y(ν)(ξ1(ν)− ξ1(ν1))ξ2(t)| < ε|y(ν)ξ1(ν)ξ2(t)|/4(1 + ε),

and

(A′2) : |y(ν)(ξ1(ν + ν2 − ν1)− ξ1(ν2))ξ2(t)| < ε|y(ν)ξ1(ν)ξ2(t)|/4(1 + ε).

Assumptions A′1 and A′2 show that Capp is fulfilled (recall that ξ1(ν1) =√
λξ2(ν2).)
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(4) We have: ‖Xµξ − (Xµξ)app‖ = ‖(y(ν + µt) − y(ν))ξ(ν, t)‖. Since ‖(Xµξ)app‖
is strictly positive, and independent of µ, there is a real µ1 > 0, such that
‖Xµξ − (Xµξ)app‖ < ε‖Xµξapp‖/2(1 + ε), for every |µ| < µ1. Using the change
of variables t → t + κ, and ν → ν − µκ, we obtain: ‖X∗µξ − (X∗µξ)app‖ =
‖(y(ν + µt) − y(ν))ξ(ν − ν2 − ν1, t)‖. Hence, there is a real µ2 > 0, such that
‖X∗µξ − (X∗µξ)app‖ < ε‖(Xµξ)app‖/2(1 + ε), for every |µ| < µ2. We let µ0 be the
minimum of {µ1, µ2}.

(5) Let µ be a real, with |µ| < µ0. Since ‖Xµξ− (Xµξ)app‖ < ε‖Xµξapp‖/2(1 + ε), it
follows from the triangle inequality that ‖Xµξapp‖ < (1 + ε)‖Xµξ‖. The results
in 2 and 4 show that C1, and C2 are fulfilled.

This finishes the proof. �

Remarks 4.7. i) Condition Capp is fulfilled for every µ. The choice of µ0 insures that
the approximate vector (Xµξ)app is sufficiently close to the actual vector Xµξ.
ii) The hypothesis that ξ1 is real-valued is not essential. Dropping this assumption, we

may still find two points ν1, and ν2, and a real θ ∈ [0, 2π[, with ξ1(ν1) = eiθ
√
λξ2(ν2). It

suffices to replace Xµ with e−iθXµ.

4.2.2. Removing the ”nowhere vanishing” assumption. We want to extend the result of
4.2.1 to arbitrary elementary tensors ξ in the unit ball of H. We shall construct, for
every ξ in some dense subset S of the unit ball of H, the operators Xµ, Yµ, in such a way
that ‖Xµξ‖ remains sufficiently close to 1. It follows that there is some α > 0, such that
conditions C1 and C2 are fulfilled (with the same operators Xµ, Yµ, and a slightly larger
ε), for every vector in the open ball of radius α around each of the vectors ξ ∈ S. We
shall cut the support of ξ into suitable parts, and construct from 4.2.1 partial operators
Xµ and Yµ corresponding to each of these parts. Our operators will be a combination of
these partial operators, using a partition of unity.

We now assume that a unit vector ξ = ξ1 ⊗ ξ2 ∈ Kµ and a real ε > 0 are given.
The vector ξ1 is supposed to be a smooth function of rapid decrease, whose zeroes are
isolated. We choose a function ξc1, such that

• ‖ξ1 − ξc1‖ < ε.
• The support of ξc1 is a finite union of compact intervals.
• For any element ν of the support of ξc1, ξc1(ν) 6= 0.
• For any element ν of the support of ξc1, ξc1(ν) = ξ1(ν).

Such a function ξc1 is obtained by cutting the support of ξ1 near infinity, and removing
(small) open intervals around each of the zeroes of ξ1. We shall call parts of ξc1, the
restriction of ξc1 to each of the components of its support. We denote these parts by

ξc;j1 , with j running from 1 to some integer n. We denote by Ij the smallest open

interval containing the support of ξc;j1 , such that ξ1 vanishes at the boundary of Ij . Let

j ∈ {1, 2, . . . , n} be given. For each point νj1 , of the support of ξc;j1 , there exists a point

νj2(νj1) ∈ Ij , and a strictly positive real ρ(νj1), such that conditions A1, and A2 in 4.2.1 are

fulfilled, with ν ranging in the support of ξc;j1 . We now choose a chain of open intervals

C = {]νj1;l−ρ(νj1;l), ν
j
1;l+ρ(νj1;l)[, l = 1, 2, . . . , l(j)}, covering the support of ξc;j1 , and call

Uj the union of these open intervals. To summarize, we have: Support (ξc1;j) ⊂ Uj ⊂ Ij .

We now choose a partition of unity {yj;11 , yj;21 , . . . , y
j;l(j)
1 }, subject to the cover C, such

that each of the functions yj;l1 is the characteristic function of some interval. Hence,

the yj;l1 ’s are pairwise orthogonal. Given a real number µ > 0, we repeat the same
construction for each j ∈ {1, 2, . . . , n}, and define Xj;l

µ , Y j;lµ , (Xj;l
µ ξ)app, (X∗j;lµ ξ)app as

in 4.5, with (j, l) ∈ {(j, 1), (j, 2), . . . , (j, l(j))}, and j ∈ {1, 2, . . . , n}. For each pair (j, l),
the operators Xj;l

µ , Y j;lµ fulfill condition Capp. Set
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Xµ =

n∑
j=1

l(j)∑
l=1

Xj;l
µ , Yµ =

n∑
j=1

l(j)∑
l=1

Y j;lµ .

Observe (Xµξ)app, and Y ∗µ ξ are sums of pairwise orthogonal vectors, indexed by the
couples (j, l). Since Capp is fulfilled for each (j, l), it follows that Xµ and Yµ fulfill Capp.
Now, since there are finitely many indices (j, l), we may find a µ0 > 0, such that Xµ and
Yµ fulfill C1, and C2, for every |µ| < |µ0|. We summarize these results in the following
lemma:

Lemma 4.8. Let µ be a non zero real number. Let η = η1 ⊗ η2 be a unit vector in Kµ,
with η1 a smooth function of rapid decrease, and isolated zeroes. Let ε > 0, and λ > 0 be
given. There exists a constant C > 0, depending only on η, and ε, such that:

(1) There exist operators Xµ, and Yµ, whose norm is less or equal to C, such that:
‖(Xµη)app‖ > ‖η‖ − ε, and Capp is fulfilled.

(2) There exists µ0 > 0, such that, if |µ| < |µ0|, there are operators Xµ, and Yµ,
whose norm is less or equal to C, such that: ‖(Xµη)‖ > ‖η‖− ε, and C1 and C2
are fulfilled.

4.2.3. Proof of proposition 4.4. Proposition 4.4 follows from the remark:

Lemma 4.9. Let K be a Hilbert space. Let ε > 0, C > 0, and λ > 0 be given. Suppose
we are given a unit vector ξ0 ∈ K, and operators A ∈ L(K), B ∈ L(K), such that

(1) ‖A‖ ≤ C, and ‖B‖ ≤ C.
(2) ‖Aξ0‖ > 1/2.

(3) ‖
√
λAξ0 −Bξ0‖ < ε‖Aξ0‖, and ‖A∗ξ0 −

√
λB∗ξ0‖ < ε‖Aξ0‖.

There exists α > 0, which depends only on ε and λ, such that, for every ξ ∈ K, with
‖ξ − ξ0‖ < α/C, we have ‖

√
λAξ −Bξ‖ < 2ε‖Aξ‖, and ‖A∗ξ −

√
λB∗ξ‖ < 2ε‖Aξ‖.

Proof. The triangle inequality shows that: ‖
√
λAξ − Bξ‖ < ε‖Aξ0‖ + α(1 +

√
λ) <

ε‖Aξ‖+α(ε+ 1 +
√
λ). We may assume that α < 1/4, hence, ‖Aξ‖ > 1/4, and ‖

√
λAξ−

Bξ‖ < ‖Aξ‖(ε+ 4α(ε+ 1 +
√
λ)). The proof of the second inequality is the same. �

Lemma 4.9 shows that, given ε, and λ, to prove the existence of the operators Xµ, and
Yµ for every vector in some subset S of H, it suffices to construct Xµ and Yµ for every
vector in some dense subset of S. In particular, lemma 4.8 extends to any elementary

tensor, ξ = ξ1 ⊗ ξ2, with ξ1 ∈ L2(R̂), ξ2 ∈ L2(R).

4.3. Computing the Connes spectrum ofM. In this section, we adapt the construc-
tion of the preceding section to the algebras M and its commutant N . The vector ξµ of

proposition 4.4 will be replaced by Ω̂1,k−1 ⊗Ωk−1,k, with k ranging in the set of strictly
positive integers. For each k, the operators Xµ, and Yµ are obtained from a generic
construction, using a simple change of variables (see definition 4.14). Since any vector in
H can be approximated by some vector of the form η

⊗
⊗j≥kΩj , we can use an argument

similar to lemma 4.9, and extend our results to the whole of H. The difference is that
we shall need some analog of proposition 4.4 to hold globally, for sections of the field
(Kµ)µ. The set of admissible values for µ will be altered during the change of variables.
So, we shall also need to check the change of the support of (Xµ)µ, with respect to k .
This will, of course, depend on the coefficients bj,k. Finally, for each sufficiently large k,
using results from section 2.2.2, we shall find in M and N , two operators, close enough
(in some sense that will be made precise) to (Xµ)µ, and (Yµ)µ, to fulfill conditions C1
and C2. We begin with some definitions.
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4.3.1. Change of variables.

Definition 4.10. Given a function y on the reals, and µ, ν1, ν2, ∈ R, denote by Xµ[y; ν1,
ν2] the operator constructed as in 4.5, and 4.2.2. Similar notation is used for X∗µ, Yµ,

Y ∗µ . Let α > 0, λ > 0, and ξ ∈ L2(R̂)⊗ L2(R) be given. We shall say that (y; ν1, ν2) is
α−convenient for (ξ, µ0, λ), if the operators Xµ[y; ν1, ν2] and Yµ[y; ν1, ν2] fulfill conditions
C1 and C2 in proposition 4.4, for every 0 < |µ| < µ0 . We denote by µ0(ξ, α, λ) the
greatest real such that there exists an α−convenient triple for (ξ, µ0(ξ, α, λ), λ).

Definition 4.11. Let k > 0, be given. We define the unitary
U(k) : L2(R̂)⊗ L2(R)→ L2(R̂)⊗ L2(R)(
U(k)ξ)(ν, t) = b

−1/4
1,k−1b

1/4
k−1,kξ(νb

−1/2
1,k−1, tb

1/2
k−1,k

)
.

Lemma 4.12. For every integer k > 0, and every real α > 0, we have: µ0(U(k)ξ, α, λ) ≥
(b1,k−1bk−1,k)1/2µ0(ξ, α, λ).

Proof. We have: U(k)Xµ[y(ν); ν1, ν2]U(k)∗ = Xµ′ [y(b
−1/2
1,k−1ν); ν1

√
b1,k−1, ν2

√
b1,k−1],

with µ′ = µ(b1,k−1bk−1,k)1/2, and similar result for Yµ. It follows that there is an α−
convenient triple for (U(k)ξ, µ′, λ), provided that |µ′| < µ0(ξ, α, λ)(b1,k−1bk−1,k)1/2. �

Definition 4.13. Set b(k) = (b1,k−1bk−1,k)1/2. In view of lemma 4.12, it is natural
to define, for each µ, the unitary Uµ(k), from Kµ to Kµb(k), with the same formula as
in 4.11.

4.3.2. Operators on Ĥ1,k−1⊗Hk−1,k⊗Ĥ1,k. We now consider the space Ĥ1,k−1⊗Hk−1,k⊗
Ĥ1,k as the field of Hilbert spaces ((Ĥ1,k−1 ⊗ Hk−1,k)µ)µ∈R, with parameter µ. We
denote by Γω the constant cross-section µ → ω̂ ⊗ ω. The fiber over µ is isomorphic, as
an Aµ-bimodule, to Kµ. The vector Ω1,k−1 ⊗ Ωk−1,k ⊗ Ω1,k is the cross-section ξµb(k) =
Ω1,k(µ(b(k))Uµ(k)(Γω).

Definition 4.14. (1) Let ε > 0 be given. Choose an ε− convenient triple (y; ν1, ν2)
for (ω̂ ⊗ ω, µ0(ω̂ ⊗ ω, ε, λ), λ). Set Xµ = X[y; ν1, ν2], Yµ = Y [y; ν1, ν2], if 0 <
|µ| < µ0(ω̂ ⊗ ω, ε, λ), and Xµ = Yµ = 0 otherwise. Define, on the space Kµb(k),
the operators Xµ(k) = U(k)X(µ/b(k))U

∗(k), and Yµ(k) = U(k)Y(µ/b(k))U
∗(k).

(2) With Xµ(k) as in 1, we shall denote by X(k) the operator on Ĥ1,k−1⊗Hk−1,1⊗
Ĥ1,k, defined by [X(k)(ξ1 ⊗ ξ2 ⊗ η)](µ) = η(µ)Xµ(k)(ξ1 ⊗ ξ2). We define the
operator Y (k) similarly.

Proposition 4.15. Let ε > 0, and k > 1 be given. For every real µ, with µ0

√
b1,k <

|µ| < µ0(ω̂ ⊗ ω, ε, λ)b(k), the operators Xµ(k), and Yµ(k), defined in 4.14, fulfill inequa-

lities C1 and C2 in 4.4, with ξµ = (Ω̂1,k−1 ⊗ Ωk−1,k). Moreover, we may choose y such
that, for every sufficiently large k, ‖X(k)(Ω1,k−1 ⊗ Ωk−1,k ⊗ Ω1,k)‖ ≥ 1− 2ε.

Proof. The first assertion follows from lemma 4.12. Recall that we may choose the
function y such that ‖Xµ(k)(Ω1,k−1⊗Ωk−1,k)‖ > 1− ε, for every µ in the support of Xµ

(see lemma 4.8). The second assertion then follows from the limit:∫
|µ|<µ0b(k)

|Ω̂1,k(µ)|2dµ → 1,

when k goes to infinity. �

It will be convenient to restrict the support of our fields of operators X(k), Y (k) to
the set {µ0

√
b1,k < |µ| < µ0b(k)}. The conclusions of proposition 4.15 remain valid
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provided that µ0 is chosen to be sufficiently small. To summarize, the parameters for
Xµ(k), and Yµ(k), are: y(ν/

√
b1,k−1), κ = µ−1(ν1 − ν2)

√
b1,k−1, µ0

√
b1,k < |µ| <

µ0

√
b1,k−1

√
bk−1,k.

4.4. Approximating operators in M and N . We now need to replace our operators

X(k), and Y (k) of the preceding section by operators X̃(k) in M, and Ỹ (k) in N , and
check that the hypothesis of theorem 4.1 are fulfilled, for every unit vector ξ ∈ H.

Definition 4.16. (1) Let k > 2 be given. Let H3(k) be the subgroup of G generated
by {1 + e1,k−1, 1 + e1,k, 1 + ek−1,k}. The left and right regular representations

of G restrict to unitary representations of H3(k) on H. We shall denote by π̃µ,kL ,

and π̃µ,kR the corresponding representations of Aµ.
(2) Given ε > 0, choose k, X(k), Y (k), as in proposition 4.15, with defining function

y. We define X̃(k) (resp. Ỹ (k)) as the field with the same support as X(k), with

X̃µ(k) = π̃µ,kL (y) (resp. Ỹµ(k) = π̃µ,kR (y)).

(3) We shall denote in the same way the operator X(k) ∈ L(Ĥ1,k−1⊗Hk−1,1⊗Ĥ1,k),
and its amplification, X(k)⊗ Id ∈ L(H). The same holds for Y (k).

Proposition 4.17. The operators: X(k)− X̃(k), Y (k)− Ỹ (k), X∗(k)− X̃∗(k), Y ∗(k)−
Ỹ ∗(k) converge weakly to 0, in L(H), when k goes to infinity.

Proof. This follows from lemmas 2.10 and 2.11, and the observation that πµL is the k−cut
of π̃µ,kL , and πµR is the cut of π̃µ,kR (under the identification L2(R̂) ⊗ L2(R) ' Ĥ1,k−1 ⊗
Hk−1,k). �

Corollary 4.18. There is an integer k0, such that the assumptions of lemma 4.9 are

fulfilled, with ξ0 = Ω, A = X̃(k), B = Ỹ ∗(k) , for every k ≥ k0.

Proof. Using the bounds on µ, and an argument similar to the proof of lemma 2.10, one
can check that ‖(X(k)−Vk+1∗X(k))Ω‖ converge to 0, when k goes to infinity. Since the

Vk’s converge strongly to 1, when k goes to infinity, the sequence ((X(k)− X̃(k))Ω)k∈N
is norm convergent to 0. The same holds for Y (k), and Ỹ (k). Using proposition 4.15, we
find an integer k′0, such that the assumptions of lemma 4.9 are fulfilled, with ξ0 = Ω, A =
X(k), B = Y ∗(k), for every k ≥ k′0. The existence of k0 follows from proposition 4.17. �

Now, suppose we are given ξ ∈ H, with ‖ξ‖ = 1, ε > 0, α > 0, and λ > 0. Choose an
integer kα, such that there exists a unit vector η ∈ Hkα−1, with ‖ξ−η⊗

⊗∞
k=kα

Ωk‖ < α.

We shall denote by ξα the vector η⊗
⊗∞

k=kα+1 Ωk. Construct the operators X(kα), Y (kα),

X̃(kα), Ỹ (kα) as in proposition 4.15, and definition 4.16. We may assume that kα is
greater than the integer k0 of corollary 4.18. Since all our operators are in IdHkα−1 ⊗
L(
⊗

k≥kα Hk), the assumptions of lemma 4.9 remain true with ξ0 = ξα. So, we have
proved:

Theorem 4.19. (See also [5]). If Ω fulfills condition B2 of section 2, then

Γ(M) = (R).

It follows that M is isomorphic to R∞, the Araki-Wood factor of type III1([2]).
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localement compact, Bulletin de la S. M. F. 105 (1977), 349–368.
8. M. Takesaki, Theory of Operators Algebras, Vols. I,II,III, Encyclopaedia of Mathematical Sci-

ences, Springer, Berlin, 2001.
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