ON GENERALIZED SELFADJOINT OPERATORS ON SCALES OF HILBERT SPACES

YU. M. BEREZANSKY, J. BRASCHE, AND L. P. NIZHNIK

ABSTRACT. We consider examples of generalized selfadjoint operators that act from a positive Hilbert space to a negative space. Such operators were introduced and studied in [1]. We give examples of selfadjoint operators on the principal Hilbert space H_0 that, being considered as operators from the positive space $H_+ \subset H_0$ into the negative space $H_- \supset H_0$, are not essentially selfadjoint in the generalized sense.

1. INTRODUCTION

Let us first give a definition of a generalized selfadjoint operator and some results from [1]. Consider a chain of Hilbert spaces (rigging)

(1) $H_{-} \supset H_{0} \supset H_{+}, \quad || \cdot ||_{H_{-}} \le || \cdot ||_{H_{0}} \le || \cdot ||_{H_{+}}.$

We will assume that the positive Hilbert space H_+ is dense in the principal space H_0 . The space H_- is negative and consists of antilinear functionals defined on H_+ . Here, the scalar product $(\cdot, \cdot)_{H_0}$ on H_0 is a continuous sesquilinear form on $H_- \times H_+$ that, being extended, defines a pairing $\langle \cdot, \cdot \rangle$ between elements of H_- and H_+ [2, 3],

(2)
$$\langle \alpha, \varphi \rangle = \overline{\langle \varphi, \alpha \rangle}, \quad \alpha \in H_-, \quad \varphi \in H_+$$

There is a standard procedure [2, 3] that relates chain (1) to an operator $\mathbb{I}: H_- \to H_+$ that is an isometry from H_- onto H_+ ,

(3)
$$\forall \alpha, \beta \in H_{-} \quad (\alpha, \beta)_{H_{-}} = <\alpha, \mathbb{I}\beta > = <\mathbb{I}\alpha, \beta > .$$

Let A be an operator that acts from H_+ into H_- with dense domain $\mathfrak{D}(A)$ in H_+ . The operator A^+ that acts from H_+ into H_- is called adjoint to the operator A in the generalized sense (in the sense of chain (1)) if its domain $\mathfrak{D}(A^+)$ consists of all elements $\psi \in H_+$ such that there exists $\psi_- \in H_-$ satisfying $\langle A\varphi, \psi \rangle = \langle \varphi, \psi_- \rangle$ $\forall \varphi \in \mathfrak{D}(A)$ and $A^+\psi = \psi_-$ [1].

In the case when $H_+ = H_0 = H_-$, this definition coincides with the usual definition of an adjoint operator on a Hilbert space [4, 3]. By using the operator I defined in (3), it is easy to see that IA acts from H_+ into H_+ and its adjoint on H_+ is $(IA)^*$ that coincides with IA^+ .

If the operator A^+ coincides with A, then such an operator will be called generalized selfadjoint [1]. In this case, the operator $A_+ = \mathbb{I}A$ is selfadjoint on the space H_+ . Conversely, every operator A_+ that is selfadjoint on the space H_+ gives rise to a generalized selfadjoint operator, $A = (\mathbb{I})^{-1}A_+$, from the space H_+ into the space H_- . Note that there is a number of problems in physics connected with selfadjoint operators on the Sobolev spaces $W_2^s(\mathbb{R}^n)$ [5, 6].

If $\langle A\varphi, \psi \rangle = \langle \varphi, A\psi \rangle$ for all $\varphi, \psi \in \mathfrak{D}(A) \subset H_+$, then the operator A is called generalized Hermitian. The closure \overline{A} of a generalized Hermitian operator A always exists and is a generalized Hermitian operator. If the closure \overline{A} of an operator A that

¹⁹⁹¹ Mathematics Subject Classification. 47B25, 47A70.

Key words and phrases. Selfadjoint operators, generalized selfadjoint operators, Hilbert space rigging.

acts from H_+ into H_- is generalized selfadjoint, $\bar{A}^+ = \bar{A}$, then the operator A is called generalized essentially selfadjoint. It is clear that a bounded generalized Hermitian operator A acting from H_+ into H_- and having dense domain $\mathfrak{D}(A)$ in H_+ is essentially selfadjoint. Hence, it is also true that a generalized Hermitian operator defined on the whole space H_+ is a bounded selfadjoint operator acting from H_+ into H_- .

2. Selfadjoint differential operators with constant coefficients

Consider rigging (1), where $H_+ = W_2^s(\mathbb{R}^n)$ is the Sobolev space of functions $\varphi(x)$ defined on $x \in \mathbb{R}^n$ by the following norm for the integer s:

(4)
$$||\varphi||_{W_2^s(\mathbb{R}^n)}^2 = \sum_{|\alpha| \le s} \int_{\mathbb{R}^n} |\varphi^{(\alpha)}(x)|^2 \, dx, \quad \varphi^{(\alpha)}(x) = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} \varphi(x).$$

The principal space H_0 is the space $L_2(\mathbb{R}^n)$. The Fourier transform of a function φ

(5)
$$\tilde{\varphi}(\xi) = \int e^{i\xi \cdot x} \varphi(x) \, dx$$

belongs to the space $L_2(\mathbb{R}^n, \rho_s(\xi))$, where the weight is $\rho_s(\xi) = (1 + |\xi|^2)^s$ and the norm is defined by

(6)
$$||\tilde{\varphi}||^2_{L_2(\mathbb{R}^n,\rho_s(\xi))} = \int_{\mathbb{R}^n} |\tilde{\varphi}(\xi)(x)|^2 \rho_s(\xi) \, d\xi.$$

By the Parceval identity, the W_2^s -norm of functions φ is equivalent to the $L_2(\mathbb{R}^n, \rho_s(\xi))$ norm of $\tilde{\varphi}$, the Fourier transform of the functions φ . This permits to define the Sobolev spaces $W_2^s(\mathbb{R}^n)$ for arbitrary real s. Note that, for s > 0, $W_2^{-s}(\mathbb{R}^n)$ is a negative space relatively to the positive space $W_2^s(\mathbb{R}^n)$ and the space $H_0 = L(\mathbb{R}^n)$.

Consider a differential expression with constant coefficients,

(7)
$$\mathcal{P}(\mathcal{D}) = \sum_{|\alpha| \le m} a_{\alpha} \mathcal{D}^{\alpha},$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is an integer multi-index, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\mathcal{D}^{\alpha} = \mathcal{D}_1^{\alpha_1} \ldots \mathcal{D}_n^{\alpha_n}$, $\mathcal{D}_k = \frac{1}{i} \frac{\partial}{\partial x_k}$, and a_{α} are constant complex coefficients. Restricted to compactly supported infinitely differentiable functions in $C_0^{\infty}(\mathbb{R}^n)$, the differential expression $\mathcal{P}(\mathcal{D})$ defines a minimal operator $P, P\varphi = \mathcal{P}(\mathcal{D})\varphi(x)$, on the space $L_2(\mathbb{R}^n)$. The operator P is Hermitian if and only if all the coefficients a_{α} in the differential expression (7) are real.

Theorem 1. Let $\mathcal{P}(\xi) = \sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}$ be a polynomial of n variables $\xi = (\xi_1, \ldots, \xi_n)$ with real coefficients. Then the minimal operator P defined on $C_0^{\infty}(\mathbb{R}^n)$ by the differential expression $\mathcal{P}(\mathcal{D}) = \sum_{|\alpha| \le m} a_{\alpha} \mathcal{D}^{\alpha}$ is a generalized essentially selfadjoint operator from the

Sobolev space $W_2^s(\mathbb{R}^n)$ into $W_2^{-s}(\mathbb{R}^n)$ for arbitrary $s \ge 0$.

Proof. Passing to the Fourier transform, we need to prove that the operator of multiplication by the polynomial $\mathcal{P}(\xi)$ is generalized essentially selfadjoint acting from the space $L_2(\mathbb{R}^n, \rho_s)$ to the space $L_2(\mathbb{R}^n, \rho_{-s})$. Since the multiplication operator commutes with a weight, the claim follows, because the operator of multiplication by $\mathcal{P}(\xi)$ in the space $L_2(\mathbb{R}^n)$ is essentially selfadjoint if its domain is \mathfrak{D} , the space of all functions that are images of the Fourier transforms of functions in $C_0^{\infty}(\mathbb{R}^n)$, and the set \mathfrak{D} is dense in $L_2(\mathbb{R}^n)$.

Remark 1. Theorem 1 shows that example 3.4 in [1] is erroneous (the error of this example was indicated by the authors of [1] earlier).

194

Remark 2. If $s \geq \frac{m}{2}$, where *m* is the order of the differential operator, then the closure of the differential operator *P* is defined on the whole space $W_2^s(\mathbb{R}^n)$, and is a bounded selfadjoint operator from $W_2^s(\mathbb{R}^n)$ into $W_2^{-s}(\mathbb{R}^n)$.

Remark 3. If $\mathcal{P}(\mathcal{D})$ is an elliptic differential expression, then the closure \bar{P} of the differential operator from $W_2^s(\mathbb{R}^n)$ into $W_2^{-s}(\mathbb{R}^n)$ is a generalized essentially selfadjoint operator with the domain $\mathfrak{D}(\bar{P}) = W_2^{m-s}$ for $s \leq \frac{m}{2}$.

3. A multiplication operator in a chain of Sobolev spaces

If an operator A acts on a space H_0 , then it can be considered, with respect to scale (1), as an operator \hat{A} from the space H_+ into H_- by setting $\mathfrak{D}(\hat{A}) = \mathfrak{D}(A) \cap H_+$ and $\hat{A}\varphi = A\varphi \in H_0 \subset H_-$.

It was claimed in [1] that an operator A, which is selfadjoint on H_0 , being considered as an operator from H_+ into H_- , i.e., the operator \hat{A} , may or may not be essentially selfadjoint. Consider an example.

Example 1. Let $H_0 = L_2(\mathbb{R}^1)$, $H_+ = W_2^1(\mathbb{R}^1)$, $H_- = W_2^{-1}(\mathbb{R}^1)$. The operator A of multiplication by the function $\frac{1}{x}$ will be selfadjoint on $L_2(\mathbb{R}^1)$, with the domain $\mathfrak{D}(A) = \{u : u \in L_2, \frac{1}{x}u(x) \in L_2\}$. It is easy to see that domain of the operator \hat{A} is

(8)
$$\mathfrak{D}(\hat{A}) = \mathfrak{D}(A) \cap W_2^1(\mathbb{R}^1) = \{ u : u \in W_2^1(\mathbb{R}^1), u(0) = 0 \}$$

The set $\mathfrak{D}(\hat{A})$ is not dense in the space $W_2^1(\mathbb{R}^1)$. Indeed, we fix $\varphi_0 = \frac{1}{2}e^{-|x|} \in W_2^1(\mathbb{R}^1)$ and $(u, \varphi_0)_{W_2^1(\mathbb{R}^1)} = u(0), \forall u \in W_2^1(\mathbb{R}^1)$. Hence, φ_0 is orthogonal to $\mathfrak{D}(\hat{A})$ in the space $W_2^1(\mathbb{R}^1)$. Since $\mathfrak{D}(\hat{A})$ is not dense in the space $H_+ = W_2^1(\mathbb{R}^1)$, the operator \hat{A} can not be selfadjoint, if considered as an operator from H_+ into H_- .

Theorem 2. An operator \hat{A} defined by $\hat{A}u = \frac{1}{x}u(x)$ on functions $u \in W_2^1(\mathbb{R}^1)$ such that u(0) = 0 is a generalized Hermitian operator from $H_+ = W_2^1(\mathbb{R}^1)$ into $H_- = W_2^{-1}(\mathbb{R}^1)$ and admits a selfadjoint extension \tilde{A} to the whole space $H_+ = W_2^1(\mathbb{R}^1)$,

(9)
$$\tilde{A}u(x) = (\mathcal{P})\frac{u(x)}{x}$$

where the functional $(\mathcal{P})\frac{u(x)}{x} \in H_{-} = W_2^{-1}(\mathbb{R}^1)$ is the Cauchy principal value, that is,

(10)
$$<(\mathcal{P})\frac{u(x)}{x},\varphi(x)>=(\mathcal{P})\int \frac{u(x)\overline{\varphi(x)}}{x}\,dx = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^1 \setminus [-\varepsilon,\varepsilon]} \frac{u(x)\overline{\varphi(x)}}{x}\,dx$$
$$= \int_{\mathbb{R}^1 \setminus [-1,1]} \frac{u(x)\overline{\varphi(x)}}{x}\,dx + \int_{-1}^1 \frac{u(x)\overline{\varphi(x)} - u(0)\overline{\varphi(0)}}{x}\,dx, \quad \varphi \in W_2^1(\mathbb{R}^1).$$

All the generalized selfadjoint extensions of the operator \hat{A} , which act from $W_2^1(\mathbb{R}^1)$ into $W_2^{-1}(\mathbb{R}^1)$ are given by the identity

(11)
$$\tilde{A}_{\varepsilon} = \tilde{A} + \varepsilon \delta < \cdot, \delta \rangle = \tilde{A} + \varepsilon \delta(\cdot, \varphi_0)_{W_2^1(\mathbb{R}^1)},$$

where ε is an arbitrary real number and $\delta \in W_2^{-1}(\mathbb{R}^1)$ is the Dirac δ -functional, $\langle \varphi, \delta \rangle = \varphi(0)$.

Proof. It is clear that the operator \tilde{A} is an extension of the bounded operator \tilde{A} if considered as an operator from $H_+ = W_2^1(\mathbb{R}^1)$ to $H_- = W_2^{-1}(\mathbb{R}^1)$. It immediately follows from definition (10) of the operator \tilde{A} that

$$|\langle \hat{A}u, \varphi \rangle| \leq c||u||_{H_+}||\varphi||_{H_+},$$

this operator \hat{A} is generalized Hermitian and defined on the whole space $H_+ = W_2^1(\mathbb{R}^1)$. Hence, \tilde{A} is generalized essentially selfadjoint.

If \tilde{A} is an arbitrary selfadjoint extension of the operator \hat{A} from $H_+ = W_2^1(\mathbb{R}^1)$ into $H_- = W_2^{-1}(\mathbb{R}^1)$, then the operator $\tilde{\tilde{A}} - \tilde{A}$ is distinct from zero only on a onedimensional subspace that contains $\varphi_0 = \frac{1}{2}e^{-|x|} \in W_2^1(\mathbb{R}^1)$, and it is generalized Hermitian. But then there exists a real number ε such that $\mathbb{I}(\tilde{\tilde{A}} - \tilde{A}) = \varepsilon \varphi_0(\cdot, \varphi_0)_{W_2^1}$. This implies (11), since $\varphi_0 = \mathbb{I}\delta$.

4. DIFFERENTIAL OPERATORS WITH BOUNDARY-VALUE CONDITIONS

Example 2. On the space $L_2(\mathbb{R}^1)$, consider a selfadjoint differential operator A given by the differential expression $-\frac{d^2}{dx^2}$ on functions such that their restrictions to the positive and the negative semiaxes belong to the Sobolev spaces $W_2^2(0,\infty)$ and $W_2^2(-\infty,0)$, correspondingly. The functions in the domain of the operator A satisfy, in the point x = 0, the adjacency conditions

(12)
$$u(+0) = u(-0) \equiv u(0), \quad u'(+0) - u'(-0) = \alpha u(0),$$

where $\alpha \neq 0$ is a real number. We have Au(x) = -u''(x) for $x \neq 0$. Such an operator is used in quantum mechanics [7] and corresponds to a one-dimensional Schrödinger operator with the intensity α point interaction in the point x = 0.

Consider chain (1) with $H_+ = W_2^2(\mathbb{R}^1)$, $H_- = W_2^{-2}(\mathbb{R}^1)$, $H_0 = L_2(\mathbb{R}^1)$. Let the operator A be considered as acting from H_+ in H_- , that is, the operator \hat{A} is defined on the set

(13)
$$\mathfrak{D}(\hat{A}) = \mathfrak{D}(A) \cap H_+ = \{ u : u \in W_2^2(\mathbb{R}^1), u(0) = 0 \}.$$

It is easy to see that $\mathfrak{D}(\hat{A})$ is not dense in the space $H_+ = W_2^2(\mathbb{R}^1)$. This follows, in particular, from the fact proved in Section 3 that $\{u : u \in W_2^1(\mathbb{R}^1), u(0) = 0\}$ is not dense in $W_2^1(\mathbb{R}^1)$ since $W_2^2(\mathbb{R}^1)$ is dense in $W_2^1(\mathbb{R}^1)$. Hence, the operator \hat{A} is not essentially selfadjoint.

Theorem 3. Let A be the selfadjoint operator on $H_0 = L_2(\mathbb{R}^1)$ considered in Example 2. Let $H_+ = W_2^1(\mathbb{R}^1)$ and $H_- = W_2^{-1}(\mathbb{R}^1)$. Then the operator \hat{A} is a generalized essentially selfadjoint bounded operator from H_+ into H_- . The closure \bar{A} of this operator \hat{A} admits the representation

$$\bar{A} = -\frac{d^2}{dx^2} + \alpha \delta < \cdot, \delta >,$$

where δ is the Dirac delta-function.

Proof. This operator \bar{A} is a sum of two bounded operators from H_+ into H_- . Let us show that it is an extension of the operator \hat{A} . Let $u \in \mathfrak{D}(\hat{A})$. Then $\hat{A}u = -u''(x)$ for $x \neq 0$. However, for an arbitrary function $\varphi \in \mathbb{C}_0^{\infty}$, we have $\langle \bar{A}u, \varphi \rangle = \langle u, \bar{A}\varphi \rangle = \langle u, -\varphi'' \rangle + \alpha u(0)\bar{\varphi}(0) = (-u'', \varphi)$. Here we have used the integration by parts formula and the condition $u'(+0) - u'(-0) = \alpha u(0)$. Hence, $\bar{A}u = \hat{A}u$. Since $\mathfrak{D}(\hat{A})$ is a dense subset of H_+ , the operator \hat{A} coincides on $\mathfrak{D}(\hat{A})$ with the bounded operator \bar{A} .

In Example 1, the operator \hat{A} was not generalized essentially selfadjoint, since its domain $\mathfrak{D}(\hat{A})$ is not dense in H_+ . However, such an operator has selfadjoint extensions given in Theorem 2. There is a question of whether the operator \hat{A} would always have selfadjoint extensions if the set $\mathfrak{D}(\hat{A})$ is dense in H_+ [1]. A negative answer to this question is given by the example of [8].

Theorem 4. Let A be the selfadjoint differential operator $i\frac{d}{dx}$ defined in the space $H_0 = L_2(0,1)$ on the set $W_2^1(0,1)$ of functions that satisfy the boundary condition u(0) = u(1). Let $H_+ = L_2((0,1),\rho)$ be the space of functions that are square integrable on the interval (0,1) with the weight $\rho \ge 1$, where $\rho(x)$ is a continuous unbounded function on the interval (0,1), and $H_- = L_2((0,1),\rho^{-1})$. Then the operator \hat{A} is densely defined on the space H_+ . We have the following statements:

- 1) If $\int_0^1 \rho(x) \, dx = \infty$ then $\mathfrak{D}(\hat{A}) \equiv \mathfrak{D}(A) \cap H_+ \subset \overset{\circ}{W_2^1} \equiv \{u : u \in W_2^1(0,1), u(0) = u(1) = 0\}.$
- 2) If $\rho = [x(1-x)]^{-1}$ then operator \hat{A} is generalized essentially selfadjoint.
- If ρ = x⁻¹ then operator is not generalized essentially selfadjoint and, moreover, does not have generalized selfadjoint extensions as the operator from H₊ into H₋.

Proof. For $\varphi_+ \in H_+$, it is necessary and sufficient that there would exist a function $\varphi \in L_2(0,1)$ and $\varphi_+(x) = \rho^{-\frac{1}{2}}(x)\varphi(x)$. For functions $\varphi_- \in H_-$, we have the representation $\varphi_- = \rho^{\frac{1}{2}}(x)\varphi(x)$. Here, $||\varphi_+||_{H_+} = ||\varphi||_{L_2}$, $||\varphi_-||_{H_-} = ||\varphi||_{L_2}$. The domain of the operator \hat{A} is $\mathfrak{D}(A) \cap H_+$. Since $\mathfrak{D}(\hat{A}) \supset C_0^{\infty}(0,1)$ and the space $C_0^{\infty}(0,1)$ is dense in H_+ , the set $\mathfrak{D}(\hat{A})$ is dense in H_+ .

Statement 1) is obvious since, from the condition $u \in \mathfrak{D}(\hat{A})$, it follows that function u(x) is continuous on the interval [0, 1] and u(0) = u(1). However, if this function belongs to H_+ then u(0) = u(1) = 0 that is $\mathfrak{D}(\hat{A}) \subset W_2^1$. It is easy to prove that in the cases 2) and 3) we have $\mathfrak{D}(\hat{A}) = W_2^1$.

Existence of generalized selfadjoint extensions of the operator \hat{A} is equivalent to existence of selfadjoint extensions of the operator $\mathbb{I}\hat{A}$ on H_+ . Let us find deficiency indices of this symmetric operator. To this end, find functions $\eta_{\pm}(x) \in H_+$ that satisfy the identities

(14)
$$(\mathbb{I}\hat{A}u \pm iu, \eta_{\pm})_{H_{\pm}} = 0$$

for arbitrary $u \in \mathfrak{D}(\hat{A})$. Note that the operator \mathbb{I} is a multiplication operator, $\mathbb{I}\varphi_{-}(x) = \rho^{-1}(x)\varphi_{-}(x)$. The identity (14) can be written in an equivalent form,

(15)
$$\int [i\frac{d}{dx} \pm i\rho(x)]u(x)\bar{\eta}_{\pm}(x)\,dx = 0.$$

Since $u \in \mathfrak{D}(\hat{A}) \supset C_0^{\infty}(0,1)$, it follows from (15) that the functions η_{\pm} are generalized solutions of the equations

(16)
$$[i\frac{d}{dx} \mp i\rho(x)]\eta_{\pm}(x) = 0$$

In the case where $\rho = [x(1-x)]^{-1}$, equation (16) has solutions $\eta_+ = x(1-x)^{-1}$ and $\eta_- = x^{-1}(1-x)$ that do not belong to the space H_+ . Hence, the deficiency indices of the symmetric operator $\mathbb{I}\hat{A}$ are zero then the operator is essentially selfadjoint [4, 3].

If $\rho = x^{-1}$, equation (16) has solutions $\eta_+ = x$ and $\eta_- = x^{-1}$. The function $\eta_+ \in H_+$, and the function η_- does not belong to the space H_+ . Hence, the deficiency indices of the operator $\mathbb{I}\hat{A}$ are (1,0), and since they are different, the operator $\mathbb{I}\hat{A}$ does not admit selfadjoint extensions on H_+ .

Remark 4. As it has been shown in examples of selfadjoint operators A on the principal Hilbert space H_0 of theorems 1–4, the operator \hat{A} may be essentially selfadjoint, if considered as an operator from H_+ into H_- , or may be not. This fact does not depend on essential selfadjointness of $A_+ = A \upharpoonright_{\mathfrak{D}(A) \cap H_+}$ in H_0 . All four cases are possible.

Acknowledgments. The third author (L.N.) expresses his gratitude to DFG for a financial support of the project DFG BR 1686/2-1 and thanks the Institute of Mathematics at TU of Clausthal for the warm hospitality.

References

- Yu. M. Berezansky, J. Brasche, Generalized selfadjoint operators and their singular perturbations, Methods Funct. Anal. Topology 8 (2002), no. 4, 1–14.
- Ju. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968. (Russian edition: Naukova Dumka, Kiev, 1965)
- Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, *Functional Analysis*, Vols. 1, 2, Birkhäuser Verlag, Basel—Boston—Berlin, 1996. (Russian edition: Vyshcha Shkola, Kiev, 1990)
- N. I. Ahiezer, I. M. Glazman, *Theory of Linear Operators in Hilbert Space*, Dover Publications, New York, 1993. (Russian edition: Vol. 1, Vyshcha Shkola, Kharkov, 1977)
- L. Nizhnik, One-dimensional Schrödinger operators with point interactions on Sobolev spaces, J. Funct. Anal. Appl. 40 (2006), no. 2, 74–79.
- S. Albeverio, L. Nizhnik, A Schrödinger operator with point interactions on the Sobolev spaces, Lett. Math. Phys. 70 (2004), 185–194.
- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer Verlag, Berlin—New York, 1988; 2nd ed. with an Appendix by P. Exner, Amer. Math. Soc. Chelsea Publishing, Providence, RI, 2005.
- I. Ya. Ivasiuk, Generalized selfadjointness of differentiation operator on weight Hilbert space, Methods Funct. Anal. Topology 13 (2007), no. 4, 333–337.

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 3 TERESHCHENKIVS'KA, KYIV, 01601, UKRAINE

E-mail address: berezan@mathber.carrier.kiev.ua

INSTITUTE OF MATHEMATICS, TU CLAUSTHAL, 1 ERZSTR., CLAUSTHAL-ZELLERFELD, 38678, GERMANY *E-mail address*: johannes.brasche@tu-clausthal.de

INSTITUTE OF MATHEMATICS, NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 3 TERESHCHENKIVS'KA, KYIV, 01601, UKRAINE

 $E\text{-}mail \ address: \texttt{nizhnik@imath.kiev.ua}$

Received 15/09/2010

198