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ON GENERALIZED SELFADJOINT OPERATORS ON SCALES OF

HILBERT SPACES

YU. M. BEREZANSKY, J. BRASCHE, AND L. P. NIZHNIK

Abstract. We consider examples of generalized selfadjoint operators that act from

a positive Hilbert space to a negative space. Such operators were introduced and

studied in [1]. We give examples of selfadjoint operators on the principal Hilbert
space H0 that, being considered as operators from the positive space H+ ⊂ H0 into

the negative space H− ⊃ H0, are not essentially selfadjoint in the generalized sense.

1. Introduction

Let us first give a definition of a generalized selfadjoint operator and some results
from [1]. Consider a chain of Hilbert spaces (rigging)

(1) H− ⊃ H0 ⊃ H+, || · ||H− ≤ || · ||H0
≤ || · ||H+

.

We will assume that the positive Hilbert space H+ is dense in the principal space H0.
The space H− is negative and consists of antilinear functionals defined on H+. Here, the
scalar product (·, ·)H0

on H0 is a continuous sesquilinear form on H− ×H+ that, being
extended, defines a pairing < ·, · > between elements of H− and H+ [2, 3],

(2) < α,ϕ >= < ϕ,α >, α ∈ H−, ϕ ∈ H+.

There is a standard procedure [2, 3] that relates chain (1) to an operator I : H− → H+

that is an isometry from H− onto H+,

(3) ∀α, β ∈ H− (α, β)H− =< α, Iβ >=< Iα, β > .

Let A be an operator that acts from H+ into H− with dense domain D(A) in H+.
The operator A+ that acts from H+ into H− is called adjoint to the operator A in
the generalized sense (in the sense of chain (1)) if its domain D(A+) consists of all
elements ψ ∈ H+ such that there exists ψ− ∈ H− satisfying < Aϕ,ψ >=< ϕ,ψ− >
∀ϕ ∈ D(A) and A+ψ = ψ− [1].

In the case when H+ = H0 = H−, this definition coincides with the usual definition of
an adjoint operator on a Hilbert space [4, 3]. By using the operator I defined in (3), it is
easy to see that IA acts from H+ into H+ and its adjoint on H+ is (IA)∗ that coincides
with IA+.

If the operator A+ coincides with A, then such an operator will be called generalized
selfadjoint [1]. In this case, the operator A+ = IA is selfadjoint on the space H+. Con-
versely, every operator A+ that is selfadjoint on the space H+ gives rise to a generalized
selfadjoint operator, A = (I)−1A+, from the space H+ into the space H−. Note that
there is a number of problems in physics connected with selfadjoint operators on the
Sobolev spaces W s

2 (Rn) [5, 6].
If < Aϕ,ψ >=< ϕ,Aψ > for all ϕ,ψ ∈ D(A) ⊂ H+, then the operator A is called

generalized Hermitian. The closure Ā of a generalized Hermitian operator A always
exists and is a generalized Hermitian operator. If the closure Ā of an operator A that
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acts from H+ into H− is generalized selfadjoint, Ā+ = Ā, then the operator A is called
generalized essentially selfadjoint. It is clear that a bounded generalized Hermitian ope-
rator A acting from H+ into H− and having dense domain D(A) in H+ is essentially
selfadjoint. Hence, it is also true that a generalized Hermitian operator defined on the
whole space H+ is a bounded selfadjoint operator acting from H+ into H−.

2. Selfadjoint differential operators with constant coefficients

Consider rigging (1), where H+ = W s
2 (Rn) is the Sobolev space of functions ϕ(x)

defined on x ∈ Rn by the following norm for the integer s:

(4) ||ϕ||2W s
2 (Rn) =

∑
|α|≤s

∫
Rn

|ϕ(α)(x)|2 dx, ϕ(α)(x) =
∂|α|

∂xα1
1 · · · ∂x

αn
n
ϕ(x).

The principal space H0 is the space L2(Rn). The Fourier transform of a function ϕ

(5) ϕ̃(ξ) =

∫
eiξ·xϕ(x) dx

belongs to the space L2(Rn, ρs(ξ)), where the weight is ρs(ξ) = (1 + |ξ|2)s and the norm
is defined by

(6) ||ϕ̃||2L2(Rn,ρs(ξ))
=

∫
Rn

|ϕ̃(ξ)(x)|2ρs(ξ) dξ.

By the Parceval identity, the W s
2 -norm of functions ϕ is equivalent to the L2(Rn, ρs(ξ))-

norm of ϕ̃, the Fourier transform of the functions ϕ. This permits to define the Sobolev
spaces W s

2 (Rn) for arbitrary real s. Note that, for s > 0, W−s2 (Rn) is a negative space
relatively to the positive space W s

2 (Rn) and the space H0 = L(Rn).
Consider a differential expression with constant coefficients,

(7) P(D) =
∑
|α|≤m

aαDα,

where α = (α1, . . . , αn) is an integer multi-index, |α| = α1 + · · ·+αn, Dα = Dα1
1 . . .Dαn

n ,
Dk = 1

i
∂
∂xk

, and aα are constant complex coefficients. Restricted to compactly supported

infinitely differentiable functions in C∞0 (Rn), the differential expression P(D) defines a
minimal operator P , Pϕ = P(D)ϕ(x), on the space L2(Rn). The operator P is Hermitian
if and only if all the coefficients aα in the differential expression (7) are real.

Theorem 1. Let P(ξ) =
∑
|α|≤m

aαξ
α be a polynomial of n variables ξ = (ξ1, . . . , ξn) with

real coefficients. Then the minimal operator P defined on C∞0 (Rn) by the differential
expression P(D) =

∑
|α|≤m

aαDα is a generalized essentially selfadjoint operator from the

Sobolev space W s
2 (Rn) into W−s2 (Rn) for arbitrary s ≥ 0.

Proof. Passing to the Fourier transform, we need to prove that the operator of multi-
plication by the polynomial P(ξ) is generalized essentially selfadjoint acting from the
space L2(Rn, ρs) to the space L2(Rn, ρ−s). Since the multiplication operator commutes
with a weight, the claim follows, because the operator of multiplication by P(ξ) in the
space L2(Rn) is essentially selfadjoint if its domain is D, the space of all functions that
are images of the Fourier transforms of functions in C∞0 (Rn), and the set D is dense
in L2(Rn). �

Remark 1. Theorem 1 shows that example 3.4 in [1] is erroneous (the error of this
example was indicated by the authors of [1] earlier).
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Remark 2. If s ≥ m
2 , where m is the order of the differential operator, then the closure

of the differential operator P is defined on the whole space W s
2 (Rn), and is a bounded

selfadjoint operator from W s
2 (Rn) into W−s2 (Rn).

Remark 3. If P(D) is an elliptic differential expression, then the closure P̄ of the differen-
tial operator from W s

2 (Rn) into W−s2 (Rn) is a generalized essentially selfadjoint operator
with the domain D(P̄ ) = Wm−s

2 for s ≤ m
2 .

3. A multiplication operator in a chain of Sobolev spaces

If an operator A acts on a space H0, then it can be considered, with respect to
scale (1), as an operator Â from the space H+ into H− by setting D(Â) = D(A) ∩H+

and Âϕ = Aϕ ∈ H0 ⊂ H−.
It was claimed in [1] that an operator A, which is selfadjoint on H0, being considered

as an operator from H+ into H−, i.e., the operator Â, may or may not be essentially
selfadjoint. Consider an example.

Example 1. Let H0 = L2(R1), H+ = W 1
2 (R1), H− = W−12 (R1). The operator A of

multiplication by the function 1
x will be selfadjoint on L2(R1), with the domain D(A) =

{u : u ∈ L2,
1
xu(x) ∈ L2}. It is easy to see that domain of the operator Â is

(8) D(Â) = D(A) ∩W 1
2 (R1) = {u : u ∈W 1

2 (R1), u(0) = 0}.

The set D(Â) is not dense in the space W 1
2 (R1). Indeed, we fix ϕ0 = 1

2e
−|x| ∈ W 1

2 (R1)

and (u, ϕ0)W 1
2 (R1) = u(0), ∀u ∈ W 1

2 (R1). Hence, ϕ0 is orthogonal to D(Â) in the

space W 1
2 (R1). Since D(Â) is not dense in the space H+ = W 1

2 (R1), the operator Â
can not be selfadjoint, if considered as an operator from H+ into H−.

Theorem 2. An operator Â defined by Âu = 1
xu(x) on functions u ∈ W 1

2 (R1) such

that u(0) = 0 is a generalized Hermitian operator from H+ = W 1
2 (R1) into H− =

W−12 (R1) and admits a selfadjoint extension Ã to the whole space H+ = W 1
2 (R1),

(9) Ãu(x) = (P)
u(x)

x
,

where the functional (P)u(x)x ∈ H− = W−12 (R1) is the Cauchy principal value, that is,

(10)

< (P)
u(x)

x
, ϕ(x) >= (P)

∫
u(x)ϕ(x)

x
dx = lim

ε→0

∫
R1\[−ε,ε]

u(x)ϕ(x)

x
dx

=

∫
R1\[−1,1]

u(x)ϕ(x)

x
dx+

∫ 1

−1

u(x)ϕ(x)− u(0)ϕ(0)

x
dx, ϕ ∈W 1

2 (R1).

All the generalized selfadjoint extensions of the operator Â, which act from W 1
2 (R1)

into W−12 (R1) are given by the identity

(11) Ãε = Ã+ εδ < ·, δ >= Ã+ εδ(·, ϕ0)W 1
2 (R1),

where ε is an arbitrary real number and δ ∈ W−12 (R1) is the Dirac δ-functional,
< ϕ, δ >= ϕ(0).

Proof. It is clear that the operator Ã is an extension of the bounded operator Â if
considered as an operator from H+ = W 1

2 (R1) to H− = W−12 (R1). It immediately

follows from definition (10) of the operator Ã that

| < Âu, ϕ > | ≤ c||u||H+
||ϕ||H+

,
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this operator Â is generalized Hermitian and defined on the whole space H+ = W 1
2 (R1).

Hence, Ã is generalized essentially selfadjoint.

If ˜̃A is an arbitrary selfadjoint extension of the operator Â from H+ = W 1
2 (R1)

into H− = W−12 (R1), then the operator ˜̃A − Ã is distinct from zero only on a one-

dimensional subspace that contains ϕ0 = 1
2e
−|x| ∈ W 1

2 (R1), and it is generalized Her-

mitian. But then there exists a real number ε such that I( ˜̃A− Ã) = εϕ0(·, ϕ0)W 1
2
. This

implies (11), since ϕ0 = Iδ. �

4. Differential operators with boundary-value conditions

Example 2. On the space L2(R1), consider a selfadjoint differential operator A given by

the differential expression − d2

dx2 on functions such that their restrictions to the positive

and the negative semiaxes belong to the Sobolev spaces W 2
2 (0,∞) and W 2

2 (−∞, 0), cor-
respondingly. The functions in the domain of the operator A satisfy, in the point x = 0,
the adjacency conditions

(12) u(+0) = u(−0) ≡ u(0), u′(+0)− u′(−0) = αu(0),

where α 6= 0 is a real number. We have Au(x) = −u′′(x) for x 6= 0. Such an operator
is used in quantum mechanics [7] and corresponds to a one-dimensional Schrödinger
operator with the intensity α point interaction in the point x = 0.

Consider chain (1) with H+ = W 2
2 (R1), H− = W−22 (R1), H0 = L2(R1). Let the

operator A be considered as acting from H+ in H−, that is, the operator Â is defined on
the set

(13) D(Â) = D(A) ∩H+ = {u : u ∈W 2
2 (R1), u(0) = 0}.

It is easy to see that D(Â) is not dense in the space H+ = W 2
2 (R1). This follows, in

particular, from the fact proved in Section 3 that {u : u ∈W 1
2 (R1), u(0) = 0} is not dense

in W 1
2 (R1) since W 2

2 (R1) is dense in W 1
2 (R1). Hence, the operator Â is not essentially

selfadjoint.

Theorem 3. Let A be the selfadjoint operator on H0 = L2(R1) considered in Example 2.

Let H+ = W 1
2 (R1) and H− = W−12 (R1). Then the operator Â is a generalized essentially

selfadjoint bounded operator from H+ into H−. The closure Ā of this operator Â admits
the representation

Ā = − d2

dx2
+ αδ < ·, δ >,

where δ is the Dirac delta-function.

Proof. This operator Ā is a sum of two bounded operators from H+ into H−. Let

us show that it is an extension of the operator Â. Let u ∈ D(Â). Then Âu = −u′′(x)
for x 6= 0. However, for an arbitrary function ϕ ∈ C∞0 , we have < Āu, ϕ >=< u, Āϕ >=<
u,−ϕ′′ > +αu(0)ϕ̄(0) = (u,−ϕ′′) + αu(0)ϕ̄(0) = (−u′′, ϕ). Here we have used the
integration by parts formula and the condition u′(+0) − u′(−0) = αu(0). Hence, Āu =

Âu. Since D(Â) is a dense subset of H+, the operator Â coincides on D(Â) with the
bounded operator Ā. �

In Example 1, the operator Â was not generalized essentially selfadjoint, since its
domain D(Â) is not dense in H+. However, such an operator has selfadjoint extensions

given in Theorem 2. There is a question of whether the operator Â would always have
selfadjoint extensions if the set D(Â) is dense in H+ [1]. A negative answer to this
question is given by the example of [8].
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Theorem 4. Let A be the selfadjoint differential operator i ddx defined in the space H0 =

L2(0, 1) on the set W 1
2 (0, 1) of functions that satisfy the boundary condition u(0) =

u(1). Let H+ = L2((0, 1), ρ) be the space of functions that are square integrable on the
interval (0, 1) with the weight ρ ≥ 1, where ρ(x) is a continuous unbounded function on

the interval (0, 1), and H− = L2((0, 1), ρ−1). Then the operator Â is densely defined on
the space H+. We have the following statements:

1) If

∫ 1

0

ρ(x) dx = ∞ then D(Â) ≡ D(A) ∩H+ ⊂
◦
W 1

2 ≡ {u : u ∈ W 1
2 (0, 1), u(0) =

u(1) = 0}.
2) If ρ = [x(1− x)]−1 then operator Â is generalized essentially selfadjoint.

3) If ρ = x−1 then operator Â is not generalized essentially selfadjoint and, more-
over, does not have generalized selfadjoint extensions as the operator from H+

into H−.

Proof. For ϕ+ ∈ H+, it is necessary and sufficient that there would exist a func-

tion ϕ ∈ L2(0, 1) and ϕ+(x) = ρ−
1
2 (x)ϕ(x). For functions ϕ− ∈ H−, we have the

representation ϕ− = ρ
1
2 (x)ϕ(x). Here, ||ϕ+||H+

= ||ϕ||L2
, ||ϕ−||H− = ||ϕ||L2

. The do-

main of the operator Â is D(A) ∩H+. Since D(Â) ⊃ C∞0 (0, 1) and the space C∞0 (0, 1)

is dense in H+, the set D(Â) is dense in H+.

Statement 1) is obvious since, from the condition u ∈ D(Â), it follows that function
u(x) is continuous on the interval [0, 1] and u(0) = u(1). However, if this function belongs

to H+ then u(0) = u(1) = 0 that is D(Â) ⊂
◦
W 1

2 . It is easy to prove that in the cases 2)

and 3) we have D(Â) =
◦
W 1

2 .

Existence of generalized selfadjoint extensions of the operator Â is equivalent to exis-
tence of selfadjoint extensions of the operator IÂ on H+. Let us find deficiency indices
of this symmetric operator. To this end, find functions η±(x) ∈ H+ that satisfy the
identities

(14) (IÂu± iu, η±)H+
= 0

for arbitrary u ∈ D(Â). Note that the operator I is a multiplication operator, Iϕ−(x) =
ρ−1(x)ϕ−(x). The identity (14) can be written in an equivalent form,

(15)

∫
[i
d

dx
± iρ(x)]u(x)η̄±(x) dx = 0.

Since u ∈ D(Â) ⊃ C∞0 (0, 1), it follows from (15) that the functions η± are generalized
solutions of the equations

(16) [i
d

dx
∓ iρ(x)]η±(x) = 0.

In the case where ρ = [x(1 − x)]−1, equation (16) has solutions η+ = x(1 − x)−1 and
η− = x−1(1 − x) that do not belong to the space H+. Hence, the deficiency indices of

the symmetric operator IÂ are zero then the operator is essentially selfadjoint [4, 3].
If ρ = x−1, equation (16) has solutions η+ = x and η− = x−1. The function η+ ∈ H+,

and the function η− does not belong to the space H+. Hence, the deficiency indices of

the operator IÂ are (1, 0), and since they are different, the operator IÂ does not admit
selfadjoint extensions on H+. �

Remark 4. As it has been shown in examples of selfadjoint operators A on the principal
Hilbert space H0 of theorems 1–4, the operator Â may be essentially selfadjoint, if con-
sidered as an operator from H+ into H−, or may be not. This fact does not depend on
essential selfadjointness of A+ = A �D(A)∩H+

in H0. All four cases are possible.
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