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ON THE GROUP OF LIE-ORTHOGONAL OPERATORS ON A LIE

ALGEBRA

S. V. BILUN, D. V. MAKSIMENKO, AND A. P. PETRAVCHUK

Abstract. Finite dimensional Lie algebras over the field of complex numbers with

a linear operator T : L → L such that [T (x), T (y)] = [x, y] for all x, y ∈ L are

studied. The group of such non-degenerative linear operators on L is considered.
Some properties of this group and its relations with the group Aut(L) in the general

linear group GL(L) are described.

1. Introduction

In the paper [1], abelian complex structures on real Lie algebras were studied (in
connection with some problems in geometry of Kaehler manifolds, see [2]). Recall that a
linear operator J on a real Lie algebra L is called a complex structure if J2 = −E (where
E is the identity operator on L). In the above mentioned paper, a complex structure
J on L is called abelian if [J(x), J(y)] = [x, y] for any x, y ∈ L. This condition on the
linear operator J is similar to the condition of orthogonality for a linear operator in
Euclidean spaces and therefore it is interesting to study properties of linear operators on
Lie algebras which preserve their Lie brackets in the above-mentioned sense. This work is
devoted to studying of such linear operators on Lie algebras (mainly finite dimensional)
over the field C of complex numbers. The group of such linear operators which is an
analogue of the orthogonal group is also studied.

A linear operator T : L → L will be called for convenience Lie-orthogonal if
[J(x), J(y)] = [x, y] for all x, y ∈ L. The set of all non-degenerative Lie-orthogonal
operators on a Lie algebra L is a group which we denote by O(L). The group O(L) has
only few common features with the automorphism group Aut(L) of a Lie algebra L such
that L = [L,L] (accordingly to Theorem 3) and vice-verse it coincides with Aut(L) for
abelian Lie algebras.

It is also proved that if L is a semi-simple Lie algebra over the field C then the group
O(L) has the non-trivial center, a quotient group of which is either trivial or a torsion-free
group.

The notations in the paper are standard. We denote by Z(L) the center of a Lie
algebra L, if T is a linear operator on the algebra L then we denote by L(λ) the root
space which corresponds to an eigenvalue λ of the operator T . We put L(λ) = 0 if λ is
not an eigenvalue of T.

2. On the structure of a Lie algebra which admits an orthogonal linear
operator 6= ±E

The next results can be found in [4], Lemma 1.
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Lemma 1. Let L be a finite dimensional Lie algebra over the field C, T be a linear
Lie-orthogonal operator on L. Then

(1) if the operator T is non-degenerative, then T (Z) ⊆ Z, where Z = Z(L) is the
center of L;

(2) if L(0) is the root subspace for T corresponding to the eigenvalue λ = 0 then
L(0) ⊆ Z(L);

(3) if L(λ) and L(µ) are root subspaces with λµ 6= 1 then [L(λ), L(µ)] = 0.

The next theorem shows the structure of finite dimensional Lie algebra without center
on which a Lie-orthogonal operator is defined.

Theorem 1. Let L be a finite dimensional Lie algebra without center over C, T be a
linear Lie-orthogonal operator on L. Then

L = L(1)⊕ L(−1)⊕ (L(α1) + L(−α1))⊕ · · · ⊕ (L(αk) + L(−αk))

is a direct sum of ideals where the ideals L(αi) + L(−αi) with αi 6= ±1 are solvable of
derived length ≤ 2.

Proof. If T = E or T = −E then it is obviously L = L(1) or L = L(−1) and all is
proved.

Let

(1) L = L(1)⊕ L(−1)⊕ L(α1)⊕ L(−α1)⊕ · · · ⊕ L(αk)⊕ L(−αk)

be a decomposition of L into a direct sum of the root subspaces which correspond to
the eigenvalues 1,−1, α1,−α1, . . . , αk,−αk of the operator T. By Lemma 1 the relation
[L(1), L(β)] = 0 holds for any eigenvalue β 6= 1. Therefore the subspace

V = L(−1)⊕ L(α1)⊕ L(−α1)⊕ · · · ⊕ L(αk)⊕ L(−αk)

lies in the centralizer CL(L(1)). Denote by M1 the subalgebra of the Lie algebra L which
is generated by K-subspace L(1) and by M2 – the subalgebra which is generated by the
subspace V . It can be easily proved that M1∩V = 0 (because this intersection lies in the
center Z(L) and Z(L) = 0 by the condition of the theorem). It easily follows from here
that M1 ∩M2 = 0. But then, taking into account the relations L(1) ⊆M1 and V ⊆M2

we have that M1 = L(1) and M2 = V . By Lemma 1 [M1,M2] = 0 and therefore M1

and M2 are the ideals of the Lie algebra L. Repeating these considerations for subspace
L(−1) from subalgebra

M2 = L(−1)⊕ L(α1)⊕ L(−α1)⊕ · · · ⊕ L(αk)⊕ L(−αk)

we get that L(−1) is an ideal of the Lie algebra L and L = L(1)⊕ L(−1)⊕M3, where

M3 = L(α1)⊕ L(−α1)⊕ · · · ⊕ L(αk)⊕ L(−αk).

Accordingly to Lemma 1 L(αi) ⊕ L(−αi) is an ideal of the Lie algebra L and therefore
M3 is a direct sum of the ideals L(αi) ⊕ L(−αi). By Lemma 3 from [4] each sum
L(αi)⊕L(−αi) is a solvable ideal of derived length ≤ 2. So, we obtain the decomposition
(1). The proof is complete. �

3. On the group of non-degenerative linear orthogonal operators on a
Lie algebra L

Lemma 2. Let L be an arbitrary complex Lie algebra. Then all bijective linear orthogonal
operators on L form a group relatively to superposition.

Proof. If S, T are arbitrary bijective Lie-orthogonal linear operators on the Lie algebra
L then

[ST (x), ST (y)] = [T (x), T (y)] = [x, y]
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for any x, y ∈ L, so the product ST is a Lie-orthogonal linear operator. Further, by the
condition for T there exists the inverse linear operator T−1. Then

[T−1(x), T−1(y)] = [T (T−1(x)), T (T−1(y))] = [x, y]

and therefore T−1 is also orthogonal. �

The group of all bijective linear Lie-orthogonal operators on a Lie algebra L will be
denoted by O(L). If L 6= 0 then O(L) is non-trivial. Really, the identity operator E
lies in O(L) as well as the operator −E. If L is an abelian Lie algebra then obviously
O(L) = GL(L) is the general linear group of the vector space L.

The next example is not so obvious.

Example 1. Let L = 〈e1, e2 | [e1, e2] = e1〉 be the 2-dimensional nonabelian Lie algebra
over the field C. Then O(L) = SL2(C) is the group of all linear operators T on L with
detT = 1.

Really, let T ∈ O(L) be an arbitrary element and T (e1) = α11e1 + α21e2, T (e2) =
α12e1 + α22e2, αij ∈ C. Then

[T (e1), T (e2)] = [e1, e2] = e1

= [α11e1 + α21e2, α12e1 + α22e2] = (α11α22 − α12α21)e1.

It follows from this that α11α22 − α12α21 = 1, i.e. T ∈ SL2(C). And vice versa, for any
linear operator T ∈ SL2(C) we have the relation

[T (e1), T (e2)] = (α11α22 − α12α21)e1 = [e1, e2] = e1,

so α11α22 − α12α21 = 1, i.e. T ∈ O(L). Hence, O(L) w SL2(C).

Lemma 3. Let L be an arbitrary complex Lie algebra, I be an ideal of the algebra L such
that the center of the quotient algebra L/I is zero. Then the ideal I is invariant under
action of the Lie-orthogonal group O(L), i.e. T (I) ⊆ I for any T ∈ O(L).

Proof. Let us show at first that the C-subspace I + T (I) is an ideal of the Lie algebra L
for any T ∈ O(L). Really, for arbitrary x ∈ I, y ∈ L we have

[T (x), y] = [T (x), T (T−1(y))] = [x, T−1(y)] ∈ I.

If the element T (y) goes through the whole Lie algebra L then the element y goes also
through the algebra L, so we have [T (I), L] ⊆ I. Therefore I + (T (I) is an ideal of the
Lie algebra L for any T ∈ O(L).

Now assume that for some T ∈ O(L) we have a strong inclusion I ( I + T (I). Then
it holds for the quotient algebra [I + T (I)/I, L/I] = 0 (because it has been just shown
that [T (I), L] ⊆ I). The last equality is impossible because according to the condition
the center of L/I is zero. The proof is complete. �

Corollary 1. Let L be a finite dimensional complex Lie algebra. Then the solvable
radical S(L) is invariant under action of the group O(L).

Lemma 4. Let L be an arbitrary Lie algebra over the field C, Z(L) be the center of L.
Then Z(L) is invariant under action of the group O(L).

Proof. Assume that for an element z ∈ Z(L) its image T (z) 6∈ Z(L) for some T ∈ O(L).
Then there exists x ∈ L such that [T (z), x] 6= 0. So we have

[T (z), x] = [T (z), T (T−1(x))] = [z, T−1(x)] 6= 0.

But it is impossible since z ∈ Z(L). This contradiction shows that T (Z(L)) ⊆ Z(L). �
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Corollary 2. Let L be a nilpotent complex Lie algebra. Then the upper central series of
the algebra L

0 = Z0(L) ⊆ Z1(L) ⊆ · · · ⊆ Zn(L) = L

is invariant under action of the group O(L).

Theorem 2. Let L be a finite dimensional semi-simple Lie algebra over the field C. Then
the group O(L) contains a central normal divisor N which is an elementary abelian group
of order 2k, where k is the number of simple ideals in the decomposition of L into a direct
sum of simple ideals. The quotient group O(L)/N is either identity or torsion-free.

Proof. Let L = L1 ⊕ L2 ⊕ · · · ⊕ Lk be a decomposition of L into a direct sum of simple
ideals Li, i = 1, . . . , k. By Lemma 2 every ideal Li is invariant under action of the group
O(L) and therefore

O(L) = O(L1)×O(L2)× · · · ×O(Lk).

So, to prove the theorem we can consider only the case of simple Lie algebras. It is
obvious that linear operators E and −E on L are Lie-orthogonal and lie in the center of
O(L). Assume that O(L) 6= {E,−E} and take an arbitrary element T ∈ O(L)\{E,−E}.
Consider the decomposition of the vector space L over C into a direct sum of root
subspaces

L = L(1)⊕ L(−1)⊕ L(α1)⊕ L(−α1)⊕ · · · ⊕ L(αk)⊕ L(−αk),

that correspond to the eigenvalues 1, −1, α1,−α1, . . . , αk,−αk of the operator L (if λ
is not an eigenvalue of T we put L(λ) = 0). Since the Lie algebra L is simple we obtain
using Theorem 1 that either L = L(1) or L = L(−1). Let at first L = L(1). Then the
linear operator T has on L the only eigenvalue λ = 1. Choosing an appropriate Jordan

basis we see that the matrix of T is a direct sum of cells


1 1 0 . . . 0
0 1 1 . . . 0
...

...
. . .

. . .
...

0 . . . 0 1 1
0 . . . . . . 0 1

 .

Since T 6= E at least one of the cells is of order > 1. But then Tn 6= E for any n. The
similar proposition is true in the case of L = L(−1). It easily follows from this that
O(L)/{E,−E} does not have elements of finite order. The proof is complete. �

Note that the group O(L) as well as the group Aut(L) of all automorphisms of the Lie
algebra L are subgroups of the general linear group GL(L) of the vector space L. The
following statement shows in general how the subgroups O(L) and Aut(L) are embedded
in the group GL(L).

Theorem 3. Let L be a Lie algebra over the field C (not necessarily finite dimensional).
If L = [L,L] then for the subgroups O(L) and Aut(L) of the general linear group GL(L)
the following holds:

Aut(L) ∩O(L) = {E}, [O(L),Aut(L)] ⊆ O(L).

In particular, O(L) ·Aut(L) = O(L)hAut(L) is a semi-direct product of two groups.

Proof. Let θ be an arbitrary automorphism of the Lie algebra L and T is an arbitrary
orthogonal operator on L. Then for any elements x, y ∈ L we have

[θ−1Tθ(x), θ−1Tθ(y)] = θ−1[Tθ(x), T θ(y)] = θ−1[θ(x), θ(y)] = [x, y].

It means that θ−1Tθ ∈ O(L), that is [Aut(L), O(L)] ⊆ O(L).
Let ϕ be an arbitrary element from the intersection Aut(L) ∩ O(L). Than for any

elements x, y ∈ L we have

[ϕ(x), ϕ(y)] = [x, y] = ϕ([x, y]).

It means that ϕ acts as identity on all elements from the derived algebra [L,L]. Since
by condition L = [L,L] we obtain ϕ = E. Thus, Aut(L) ∩ O(L) = {E}. The proof is
complete. �
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We show another construction of orthogonal linear operators on Lie algebras with
nonzero center.

Proposition 1. Let L be an arbitrary Lie algebra over the field C and S be a linear map
S : L → Z(L) such that T = E + S is a bijective linear operator on L. Then T is an
orthogonal operator on L.

Proof. Take arbitrary elements x, y ∈ L and consider the equalities

[T (x), T (y)] = [(E + S)(x), (E + S)(y)] = [x+ S(x), y + S(y)]

= [x, y] + [x, S(y)] + [S(x), y] + [S(x), S(y)] = [x, y],

because S(x), S(y) ∈ Z(L) We see that E +S is an orthogonal linear operator on L. �

Example 2. Let L = 〈e, f, h | [e, f ] = h, [h, e] = 2e, [h, f ] = −2f〉 be the simple
3-dimensional complex Lie algebra. Then O(L) = {±E}.

Really, according to Theorem 1 we can assume without loss of generality that every
linear operator T ∈ O(L)\{±E} has only one eigenvalue λ = 1. Then the operator T
has in a Jordan basis {e1, e2, e3} a matrix which is either Jordan cell of size 3 × 3 or a
direct sum of two Jordan cells of order 1 and 2.

Consider at first the Jordan cell of order 3. We can write down in the above mentioned
basis T (e1) = e1, T (e2) = e2 + e1, T (e3) = e3 + e2. Then we obtain

[T (e1), T (e3)] = [e1, e3] = [e1, e3 + e2]

and therefore [e1, e2] = 0. Further,

[T (e2), T (e3)] = [e2, e3] = [e2 + e1, e3 + e2] = [e2, e3] + [e1, e3]

and therefore [e1, e3] = 0. This is impossible because then e1 ∈ Z(L) which contradicts
to that L is a simple Lie algebra.

Let now the matrix of T in the basis {e1, e2, e3} be a direct sum of Jordan cells of
orders 1 and 2. Then we can write down the following:

T (e1) = e1, T (e2) = e2, T (e3) = e3 + e2.

So, we have [T (e1), T (e3)] = [e1, e3] = [e1, e3 + e2]. Thus, [e1, e2] = 0 and therefore
the simple Lie algebra L contains an abelian subalgebra of dimension 2. The latter is
impossible. This contradiction shows that O(L) = {±E}.
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