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POSITIVE OPERATORS ON THE BERGMAN SPACE AND BEREZIN

TRANSFORM

NAMITA DAS AND MADHUSMITA SAHOO

Abstract. Let D = {z ∈ C : |z| < 1} and L2
a(D) be the Bergman space of the disk.

In this paper we characterize the class A ⊂  L∞(D) such that if φ, ψ ∈ A, α ≥ 0
and 0 ≤ φ ≤ αψ then there exist positive operators S, T ∈ L(L2

a(D)) such that

φ(z) = S̃(z) ≤ αT̃ (z) = αψ(z) for all z ∈ D. Further, we have shown that if S and T

are two positive operators in L(L2
a(D)) and T is invertible then there exists a constant

α ≥ 0 such that S̃(z) ≤ αT̃ (z) for all z ∈ D and S̃, T̃ ∈ A. Here L(L2
a(D)) is the

space of all bounded linear operators from L2
a(D) into L2

a(D) and Ã(z) = 〈Akz , kz〉 is

the Berezin transform of A ∈ L(L2
a(D)) and kz is the normalized reproducing kernel

of L2
a(D). Applications of these results are also obtained.

1. Introduction

The Bergman space L2
a(D) is the space of all analytic functions defined on the open unit

disk D, that are square integrable with respect to the area measure dA(z) = 1
πdxdy. It is

known that L2
a(D) is a closed subspace [2] of L2(D, dA) and hence it is a Hilbert space with

an orthonormal basis {
√
n+ 1zn}∞n=0. From this it follows that the analytic polynomials

are dense in L2
a(D), and consequently, the space of all bounded analytic functions on

D, H∞(D) is dense in L2
a(D). Moreover, if f(z) =

∑∞
n=0 anz

n is in L2
a(D), then it can

be checked easily that ‖f‖2 =
∑∞
n=0

|an|2
n+1 . The Toeplitz operator Tψ with symbol ψ in

L∞(D) is defined on L2
a(D) by Tψf = P (ψf), where P is the orthogonal projection of

L2(D) onto L2
a(D). The Hankel operator Hψ is the operator Hψ : L2

a(D) −→ (L2
a(D))⊥,

defined by Hψf = (I − P )(ψf).

Let K(z, w̄) be the function on D × D defined by K(z, w̄) = Kz(w) = 1
(1−zw̄)2 . The

function K(z, w̄) is called the Bergman kernel of D or the reproducing kernel of L2
a(D)

because the formula

f(z) =

∫
D
f(w)K(z, w̄) dA(w)

reproduces each f in L2
a(D) and K(z, w̄) =

∑∞
n=0 en(z)en(w) where en(z) =

√
n+ 1zn,

n ≥ 0, n ∈ Z. Let ka(z) = K(z,ā)√
K(a,ā)

= 1−|a|2
(1−āz)2 . These functions ka are called the

normalized reproducing kernels of L2
a(D); it is clear that they are unit vectors in L2

a(D).
For any a ∈ D, let φa be the analytic mapping on D defined by φa(z) = a−z

1−āz , z ∈ D. An

easy calculation shows that the derivative of φa at z is equal to −ka(z). It follows that
the real Jacobian determinant of φa at z is

Jφa(z) = |ka(z)|2 =
(1− |a|2)2

|1− āz|4
.

Let h∞(D) be the space of all bounded harmonic functions on D. Let L(H) denote the
algebra of all bounded linear operators from the Hilbert space H into itself. Let LC(H)
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denote the ideal of compact operators in L(H). An operator A ∈ L(H) is called positive
if 〈Ax, x〉 ≥ 0 holds for every x ∈ H in which case we write A ≥ 0. Define the Berezin
transform for operators T ∈ L(L2

a(D)) by the formula

σ(T )(z) = T̃ (z) = 〈Tkz, kz〉, z ∈ D.

The function T̃ is called the Berezin transform of T . Let V (D) = {φ ∈ L∞(D) :

ess lim
|z|−→1−

φ(z) = 0}. If T ∈ L(L2
a(D)) then T̃ = σ(T ) ∈ L∞(D) and ‖σ(T )‖∞ ≤ ‖T‖ as

|σ(T )(z)| = |〈Tkz, kz〉| ≤ ‖T‖ for all z ∈ D. Further, if T ∈ LC(L2
a(D)), then as kz −→ 0

weakly, hence σ(T ) ∈ V (D). One may also notice that if T ∈ L(L2
a(D)) is diagonal with

respect to the basis {en}∞n=0, then σ(T ) is radial. For φ ∈ L2(D, dA) and λ ∈ D, let

φ̃(λ) = 〈φkλ, kλ〉 =

∫
D
φ(z)

(1− |λ|2)2

|1− λz|4
dA(z).

If Tφ is a Toeplitz operator with symbol φ ∈ L2, then σ(Tφ) = φ̃. In section 2, we estab-
lish our main result and some applications of the result are also discussed. In section 3,
we discuss about Berezin transform and hyponormal operators.

2. Berezin transform

In this section we characterize the class A ⊂ L∞(D) such that if φ, ψ ∈ A, α ≥ 0 and

0 ≤ φ ≤ αψ then there exist positive operators S, T ∈ L(L2
a(D)) such that φ(z) = S̃(z) ≤

αT̃ (z) = αψ(z) for all z ∈ D. Further, we establish that if S and T are two positive
operators in L(L2

a(D)) and T is invertible then there exists a constant α ≥ 0 such that

S̃(z) ≤ αT̃ (z) for all z ∈ D and S̃, T̃ ∈ A.
Notice that if S ≥ T ≥ 0, S, T ∈ L(L2

a(D)) and A is any invertible positive operator
in L(L2

a(D)), then ASA ≥ ATA. Conversely, if there exist a positive invertible operator

A ∈ L(L2
a(D)) such that ASA ≥ ATA, then S ≥ T ≥ 0 and therefore S̃ ≥ T̃ . Further

if S, T are two positive invertible operators in L(L2
a(D)) such that S ≥ T then T−1 ≥

S−1. This can be verified as follows: If S ≥ T then T−
1
2ST−

1
2 ≥ I. This implies

I ≥ (T−
1
2ST−

1
2 )−1 = T

1
2S−1T

1
2 . Hence T−1 ≥ S−1. Thus if S ≥ T ≥ 0 and S, T are

invertible then T̃−1 ≥ S̃−1. The following is also valid.

Proposition 2.1. Suppose S, T are two positive operators in L(L2
a(D)).

(1) If Tφ is a nonsingular positive Toeplitz operator in L(L2
a(D)) and STφS = TTφT

then S̃ = T̃ .
(2) If Tφ, Tψ are two positive, invertible Toeplitz operators in L(L2

a(D)) and Tφ ≥ Tψ
and STψS ≥ TTφT then S̃ ≥ T̃ .

Proof. (1) If STφS = TTφT holds, then we have (T
1
2

φ ST
1
2

φ )2 = (T
1
2

φ TT
1
2

φ )2, so that

T
1
2

φ ST
1
2

φ = T
1
2

φ TT
1
2

φ holds and the nonsingularity of Tφ ensures S = T and hence S̃ = T̃ .

(2) Since Tφ ≥ Tψ and S is invertible hence STφS ≥ STψS. Thus STφS ≥ TTφT and

so (T
1
2

φ ST
1
2

φ )(T
1
2

φ ST
1
2

φ ) ≥ (T
1
2

φ TT
1
2

φ )(T
1
2

φ TT
1
2

φ ). This implies (T
1
2

φ ST
1
2

φ )2 ≥ (T
1
2

φ TT
1
2

φ )2. By

[6], it follows that T
1
2

φ ST
1
2

φ ≥ T
1
2

φ TT
1
2

φ . Hence S ≥ T and therefore S̃ ≥ T̃ . �

Definition 2.2. A function g(x, ȳ) on D × D is called of positive type (or positive
definite), written g � 0, if

(1)

n∑
j,k=1

cjckg(xj , xk) ≥ 0
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for any n-tuple of complex numbers c1, . . . , cn and points x1, . . . , xn ∈ D. We write g � h
if g − h� 0. We shall say γ ∈ A if γ ∈ L∞(D) and is such that

(2) γ(z) = Θ(z, z̄)

where Θ(x, ȳ) is a function on D×D meromorphic in x and conjugate meromorphic in y
and if there exists a constant c > 0 such that

cK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� 0 for all x, y ∈ D.
It is a fact that (see [3], [4]) Θ as in (2), if it exists, is uniquely determined by γ.

Theorem 2.3. If φ, ψ ∈ A, α ≥ 0 and 0 ≤ φ ≤ αψ then there exist positive operators

S, T ∈ L(L2
a(D)) such that φ(z) = S̃(z) ≤ αT̃ (z) = αψ(z) for all z ∈ D. Further, if

S and T are two positive operators in L(L2
a(D)) and T is invertible then there exists a

constant α ≥ 0 such that S̃(z) ≤ αT̃ (z) for all z ∈ D and S̃, T̃ ∈ A.

Proof. For the first part it suffices to show that 0 ≤ φ ∈ A if and only if there exists a
positive operator S ∈ L(L2

a) such that φ(z) = 〈Skz, kz〉 for all z ∈ D. So let S ∈ L(L2
a(D))

be a positive operator. Let Θ(x, ȳ) =
〈SKy,Kx〉
〈Ky,Kx〉 where Kx = K(., x̄) is the unnormalized

reproducing kernel at x. Then Θ(x, ȳ) is a function on D × D meromorphic in x and
conjugate meromorphic in y. Let φ(z) = Θ(z, z̄).

Then φ(z) = 〈Skz, kz〉 for all z ∈ D and φ ∈ L∞(D) as S is bounded. Now let
f =

∑n
j=1 cjKxj

where cj ’s are constants, xj ∈ D for j = 1, 2, . . . , n. Since S is bounded

and positive there exists a constant c > 0 such that 0 ≤ 〈Sf, f〉 ≤ c‖f‖2. But

〈Sf, f〉 =
〈
S
( n∑
j=1

cjKxj

)
,

n∑
j=1

cjKxj

〉
=

n∑
j,k=1

cj c̄k〈SKxj ,Kxk
〉

=

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j)

and c‖f‖2 = c〈f, f〉 = c
∑n
j,k=1 cj c̄kK(xk, x̄j).

Hence we obtain that cK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� 0. Thus φ ∈ A.
Now let φ ∈ A and φ(z) = Θ(z, z̄) where Θ(x, ȳ) is a function on D×D meromorphic

in x and conjugate meromorphic in y. We shall prove the existence of a positive, bounded
operator S ∈ L(L2

a(D)) such that φ(z) = 〈Skz, kz〉. Let

(3) Sf(x) =

∫
D
f(z)Θ(x, z̄)K(x, z̄) dA(z).

Indeed,

Sf(x) = 〈Sf,Kx〉 = 〈f, S∗Kx〉 =

∫
D
f(z)〈S∗Kx,Kz〉 dA(z)

=

∫
D
f(z)〈SKz,Kx〉 dA(z) =

∫
D
f(z)Θ(x, z̄)K(x, z̄) dA(z).

Then

〈SKy,Kx〉 =

∫
D
Ky(z)Θ(x, z̄)K(x, z̄) dA(z) =

∫
D
Ky(z)Θ(x, z̄)Kx(z) dA(z)

= 〈Θ(x, z̄)Kx,Ky〉 = Θ(x, ȳ)〈Kx,Ky〉 = Θ(x, ȳ)〈Ky,Kx〉.

Hence Θ(x, ȳ) =
〈SKy,Kx〉
〈Ky,Kx〉 and φ(z) = Θ(z, z̄) = 〈Skz, kz〉. We shall now prove that S is

positive, bounded. That is, there exists a constant c > 0 such that 0 ≤ 〈Sf, f〉 ≤ c‖f‖2
for all f ∈ L2

a(D). Since φ ∈ A, there exists a constant c > 0 such that for all x, y ∈ D,

(4) cK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� 0.
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Let f =
∑n
j=1 cjKxj

where cj are constants, xj ∈ D for j = 1, 2, . . . , n. Then from (4) it

follows that 〈Sf, f〉 =

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j) ≥ 0 and

〈Sf, f〉 =

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, x̄j) ≤ c
n∑

j,k=1

cj c̄kK(xk, x̄j) = c‖f‖2.

Since the set of vectors
{∑n

j=1 cjKxj
, xj ∈ D, j = 1, 2, . . . , n

}
is dense in L2

a(D), hence

0 ≤ 〈Sf, f〉 ≤ c‖f‖2 for all f ∈ L2
a(D) and thus S is bounded and positive. To prove

the second part, assume S, T are two positive linear operators in L(L2
a(D)) and T is

invertible. Let α = sup
{
‖Skz‖
‖Tkz‖ : z ∈ D

}
. We shall show that S̃(z) ≤ αT̃ (z) for all

z ∈ D and S̃, T̃ ∈ A. Since T is invertible and positive, hence T
1
2 is also positive and

invertible. Let A = T−
1
2 and B = ASA. Then B is positive and there is a spectral

decomposition associated with B, say {Eλ} for −∞ < λ <∞ and B =
∫ k

0− λdEλ where

k = ‖B‖. Hence 〈Bf, f〉 =
∫ k

0− λd‖Eλ‖2 and sup
{
〈Bf, f〉 : f ∈ L2

a(D), ‖f‖ = 1
}

= k.

Further sup
{
〈Sf,f〉
〈Tf,f〉 : f ∈ L2

a(D), f 6= 0
}

= sup
{
〈Bf, f〉 : f ∈ L2

a(D), ‖f‖ = 1
}

. We shall

now establish that given ε > 0, we can find a g ∈ L2
a(D) such that ‖Sg‖‖Tg‖ ≥ k − ε. Let

r = ε
2
‖T−1‖
‖T

1
2 ‖2

and s = k − r. We shall choose ε small enough such that s > 0. Let

f ∈ L2
a(D), f 6= 0 such that Eλf = 0 for some λ such that s < λ < k. Let g = Af . Now

Sg = T
1
2

∫ k

s

λ dEλ(T
1
2 g)

and

Tg = T
1
2 f = T

1
2

∫ k

s

dEλ(T
1
2 g).

Thus

‖Sg − sTg‖ = ‖T 1
2

∫ k

s

(λ− s) dEλ(T
1
2 g)‖ ≤ ‖T 1

2 ‖r‖T 1
2 g‖ ≤ r‖T 1

2 ‖
2
‖g‖.

Hence

‖Sg‖
‖Tg‖

=
‖sTg + Sg − sTg‖

‖Tg‖
≥ (‖sTg‖ − ‖Sg − sTg‖)

‖Tg‖

≥ s− r‖T 1
2 ‖2‖g‖
‖T−1‖

‖g‖ ≥ k − ε.

Now

sup

{
‖Sf‖
‖Tf‖

: f ∈ L2
a(D), f 6= 0

}
= sup

{
〈Sf, f〉
〈Tf, f〉

: f ∈ L2
a(D), f 6= 0

}
= sup

{
〈Bf, f〉 : f ∈ L2

a(D), ‖f‖ = 1
}

= k.

Thus 〈Skz, kz〉 ≤ k〈Tkz, kz〉 and k is our required constant α. Further since S and T are

positive and bounded, hence S̃, T̃ ∈ A as we have proved in first part and the theorem
is proved. �

Corollary 2.4. The function φ ∈ A and satisfies

(5) CK(x, ȳ)� Θ(x, ȳ)K(x, ȳ)� mK(x, ȳ)� 0

for all x, y ∈ D and some constants C,m > 0 if and only if there exists a positive,
invertible operator T ∈ L(L2

a(D)) such that φ(z) = 〈Tkz, kz〉 for all z ∈ D.
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Proof. Suppose φ ∈ A and (5) holds. Then from theorem 2.3 it follows that there
exists a positive linear operator T ∈ L(L2

a(D)) such that φ(z) = 〈Tkz, kz〉. Now let
f =

∑n
j=1 cjKxj

where cj ’s are constants, xj ∈ D for j = 1, 2, . . . , n. Since

〈Tf, f〉 =
〈
T
( n∑
j=1

cjKxj

)
,

n∑
j=1

cjKxj

〉
=

n∑
j,k=1

cj c̄kΘ(xk, x̄j)K(xk, , x̄j)

and

m‖f‖2 = m〈f, f〉 = m

n∑
j,k=1

cj c̄kK(xk, x̄j),

it follows from (5) that 〈Tf, f〉 ≥ m‖f‖2. As the set of vectors{ n∑
j=1

cjKxj , xj ∈ D, j = 1, 2, . . . , n
}

is dense in L2
a(D), hence 0 ≤ 〈Tf, f〉 ≥ m‖f‖2 for all f ∈ L2

a(D). That is, T ≥ mI where
I is the identity operator in L(L2

a(D)). Hence T is invertible. Conversely, suppose T is a
bounded, positive operator in L(L2

a(D)) which is also invertible. Then from theorem 2.3,
it follows that φ(z) = 〈Tkz, kz〉 ∈ A and there exists a constant m > 0 such that T ≥ mI.
Hence if f =

∑n
j=1 cjKxj

where cj ’s are constants, xj ∈ D, j = 1, 2, . . . , n, then 〈Tf, f〉 =∑n
j,k=1 cj c̄kΘ(xk, x̄j)K(xk, x̄j) and m‖f‖2 = m〈f, f〉 = m

∑n
j,k=1 cj c̄kK(xk, x̄j). As

〈Tf, f〉 ≥ m‖f‖2, hence Θ(x, ȳ)K(x, ȳ) � mK(x, ȳ) for all x, y ∈ D. The corollary
follows. �

If S ∈ L(L2
a(D)) and S is positive, then let

ΘS(x, ȳ) =
〈SKy,Kx〉
〈Ky,Kx〉

for all x, y ∈ D.

Corollary 2.5. Let S and T be two positive, invertible operators in L(L2
a(D)). If

(6) ΘS(x, ȳ)K(x, ȳ)ΘT−1(x, ȳ)K(x, ȳ)� (K(x, ȳ))2

and

(7) ΘT (x, ȳ)K(x, ȳ)ΘS−1(x, ȳ)K(x, ȳ)� (K(x, ȳ))2

for all x, y ∈ D then S = T .

Proof. Suppose (6) holds. Let f =
∑n
j=1 cjKxj

where cj ’s are constants, xj ∈ D, j =
1, 2, . . . , n. Then

〈Sf, f〉〈T−1f, f〉 =
( n∑
j,k=1

cj c̄k

)2

ΘS(xk, x̄j)K(xk, x̄j)ΘT−1(xk, x̄j)K(xk, x̄j)

and ‖f‖4 = 〈f, f〉〈f, f〉 =
(∑n

j,k=1 cj c̄k

)2

(K(xk, x̄j))
2
. Then from (6) it follows that

〈Sf, f〉〈T−1f, f〉 ≥ ‖f‖4. Since the set of vectors
{∑n

j=1 cjKxj
, xj ∈ D, j = 1, 2, . . . , n

}
is dense in L2

a(D), hence for all f ∈ L2
a(D), 〈Sf, f〉〈T−1f, f〉 ≥ ‖f‖4. That is,

〈Sξ, ξ〉〈T−1ξ, ξ〉 ≥ 1 for any unit vector ξ ∈ L2
a(D). Now suppose (7) holds. Proceeding

similarly one can show that 〈Tξ, ξ〉〈S−1ξ, ξ〉 ≥ 1 for any unit vector ξ ∈ L2
a(D). From

[5], it follows that S = T . �
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If S, T are two positive, invertible operators in L(L2
a(D)) then 〈Sξ, ξ〉〈T−1ξ, ξ〉 ≥ 1

for any unit vector ξ ∈ L2
a(D) if and only if ΘtS+(tT )−1(x, ȳ)K(x, ȳ) � 2K(x, ȳ) for all

x, y ∈ D and for any t > 0. This can be verified as follows:
Suppose 〈Sξ, ξ〉〈T−1ξ, ξ〉 ≥ 1 for any unit vector ξ ∈ L2

a(D). Let g ∈ L2
a(D) be a unit

vector. Let Ω(t) = t〈Sg, g〉+ t−1〈T−1g, g〉, t > 0. The minimum value of Ω(t) is equal to

2
√
〈Sg, g〉〈T−1g, g〉. Thus 〈Sξ, ξ〉〈T−1ξ, ξ〉 ≥ 1 for any unit vector ξ ∈ L2

a(D) if and only
if tS + (tT )−1 ≥ 2 for any t > 0. This is true if and only if ΘtS+(tT )−1(x, ȳ)K(x, ȳ) �
2K(x, ȳ) for all x, y ∈ D.

Corollary 2.6. Suppose the function φ ∈ A and satisfies (5) for all x, y ∈ D and for
some constants C,m > 0. Then

|ΘT (x, ȳ)| |ΘT−1(y, x̄)| |K(x, ȳ)|2 ≤ LK(y, ȳ)K(x, x̄).

If ‖T‖ = R and ‖T−1‖ = 1
r , then L = (R+r)2

4Rr .

Proof. Suppose the function φ ∈ A satisfies (5) for all x, y ∈ D and for some constants
C,m > 0. Then it follows from corollary 2.4 that T is invertible and mI ≤ T ≤ CI.
Hence for all x, y ∈ D,

|ΘT (x, ȳ)| |ΘT−1(y, x̄)| |K(x, ȳ)|2 =
〈|TKy,Kx〉|
|〈Ky,Kx〉|

∣∣〈T−1Kx,Ky

〉∣∣
|〈Kx,Ky〉|

|〈Ky,Kx〉|2

= |〈TKy,Kx〉|
∣∣〈T−1Kx,Ky

〉∣∣ ≤ L 〈Ky,Ky〉 〈Kx,Kx〉 ,

where L = (R+r)2

4Rr . The last inequality follows from [7] Kantorovich’s inequality. �

3. Hyponormal operators

It is well known [1] that if S, T ∈ L(L2
a(D)) and S̃(z) = T̃ (z) for all z ∈ D then S = T .

In this section we show that if T̃ (φa(z)) = S̃(z) for some a ∈ D and for all z ∈ D, T ∗ is
p-hyponormal and S is a dominant operator then S = T .

An operator A ∈ L(L2
a(D)) is called hyponormal if A∗A ≥ AA∗. For 0 < p ≤ 1, the

operator A ∈ L(L2
a(D)) is called p-hyponormal if |A|2p ≥ |A∗|2p where |A| is the square

root of A∗A, that is, |A| = (A∗A)
1
2 . The operator A is called dominant if Range(A−λI) ⊂

Range(A− λI)∗ for all λ ∈ C.

Theorem 3.1. Let S, T ∈ L(L2
a(D)). Assume T ∗ is a p-hyponormal operator, 0 < p ≤ 1

and S is a dominant operator. If T̃ (φa(z)) = S̃(z) for all z ∈ D and for some a ∈ D then
S = T .

Proof. Suppose for some a ∈ D, T̃ (φa(z)) = S̃(z) for all z ∈ D. Then
〈
Tkφa(z), kφa(z)

〉
=

〈Skz, kz〉 for all z ∈ D. For a ∈ D, define the operator Ua from L2
a(D) into itself as

Uaf = (foφa)ka. The operator Ua is a bounded linear operator and Uakz = kφa(z).

Further U∗a = Ua and U2
a = I. Hence 〈UaTUakz, kz〉 = 〈Skz, kz〉 for all z ∈ D. Thus

UaTUa = S. It also follows that S∗Ua = UaT
∗ and UaS = TUa. Since Ua is unitary, the

operators S and T are unitarily equivalent. So T is dominant and S∗ is p-hyponormal.
Thus S and T are normal. As Ua is invertible, it follows that S = T . �

Theorem 3.2. Let S, T ∈ L(L2
a(D)). Assume that T ∗ is a p-hyponormal operator,

0 < p < 1 and S is an isometry in L(L2
a(D)). If T̃ (φa(z)) = S̃(z) for all z ∈ D and for

some a ∈ D, then T is unitary.

Proof. If for some a ∈ D, T̃ (φa(z)) = S̃(z) for all z ∈ D, then it follows that
〈
Tkφa(z),

kφa(z)

〉
= 〈Skz, kz〉 for all z ∈ D. That is, UaTUa = S for some a ∈ D. Thus UaT =

SUa and S∗Ua = UaT
∗. It follows therefore that Ua = S∗UaT = UaT

∗T . Hence
Ua(I − T ∗T ) = 0. This implies T ∗T = I and T is an isometry. Thus T and T ∗ are
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p-hyponormal. Hence T is a normal operator which is also an isometry. Thus T is
unitary. �
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