# POSITIVE OPERATORS ON THE BERGMAN SPACE AND BEREZIN TRANSFORM 

NAMITA DAS AND MADHUSMITA SAHOO


#### Abstract

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $L_{a}^{2}(\mathbb{D})$ be the Bergman space of the disk. In this paper we characterize the class $\mathcal{A} \subset \mathrm{E}^{\infty}(\mathbb{D})$ such that if $\phi, \psi \in \mathcal{A}, \alpha \geq 0$ and $0 \leq \phi \leq \alpha \psi$ then there exist positive operators $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\widetilde{S}(z) \leq \alpha \widetilde{T}(z)=\alpha \psi(z)$ for all $z \in \mathbb{D}$. Further, we have shown that if $S$ and $T$ are two positive operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $T$ is invertible then there exists a constant $\alpha \geq 0$ such that $\widetilde{S}(z) \leq \alpha \widetilde{T}(z)$ for all $z \in \mathbb{D}$ and $\widetilde{S}, \widetilde{T} \in \mathcal{A}$. Here $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is the space of all bounded linear operators from $L_{a}^{2}(\mathbb{D})$ into $L_{a}^{2}(\mathbb{D})$ and $\widetilde{A}(z)=\left\langle A k_{z}, k_{z}\right\rangle$ is the Berezin transform of $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $k_{z}$ is the normalized reproducing kernel of $L_{a}^{2}(\mathbb{D})$. Applications of these results are also obtained.


## 1. Introduction

The Bergman space $L_{a}^{2}(\mathbb{D})$ is the space of all analytic functions defined on the open unit disk $\mathbb{D}$, that are square integrable with respect to the area measure $d A(z)=\frac{1}{\pi} d x d y$. It is known that $L_{a}^{2}(\mathbb{D})$ is a closed subspace $[2]$ of $L^{2}(\mathbb{D}, d A)$ and hence it is a Hilbert space with an orthonormal basis $\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$. From this it follows that the analytic polynomials are dense in $L_{a}^{2}(\mathbb{D})$, and consequently, the space of all bounded analytic functions on $\mathbb{D}, H^{\infty}(\mathbb{D})$ is dense in $L_{a}^{2}(\mathbb{D})$. Moreover, if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is in $L_{a}^{2}(\mathbb{D})$, then it can be checked easily that $\|f\|^{2}=\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{n+1}$. The Toeplitz operator $T_{\psi}$ with symbol $\psi$ in $L^{\infty}(\mathbb{D})$ is defined on $L_{a}^{2}(\mathbb{D})$ by $T_{\psi} f=P(\psi f)$, where P is the orthogonal projection of $L^{2}(\mathbb{D})$ onto $L_{a}^{2}(\mathbb{D})$. The Hankel operator $H_{\psi}$ is the operator $H_{\psi}: L_{a}^{2}(\mathbb{D}) \longrightarrow\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$, defined by $H_{\psi} f=(I-P)(\psi f)$.

Let $K(z, \bar{w})$ be the function on $\mathbb{D} \times \mathbb{D}$ defined by $K(z, \bar{w})=\overline{K_{z}(w)}=\frac{1}{(1-z \bar{w})^{2}}$. The function $K(z, \bar{w})$ is called the Bergman kernel of $\mathbb{D}$ or the reproducing kernel of $L_{a}^{2}(\mathbb{D})$ because the formula

$$
f(z)=\int_{\mathbb{D}} f(w) K(z, \bar{w}) d A(w)
$$

reproduces each $f$ in $L_{a}^{2}(\mathbb{D})$ and $K(z, \bar{w})=\sum_{n=0}^{\infty} e_{n}(z) \overline{e_{n}(w)}$ where $e_{n}(z)=\sqrt{n+1} z^{n}$, $n \geq 0, n \in \mathbb{Z}$. Let $k_{a}(z)=\frac{K(z, \bar{a})}{\sqrt{K(a, \bar{a})}}=\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}$. These functions $k_{a}$ are called the normalized reproducing kernels of $L_{a}^{2}(\mathbb{D})$; it is clear that they are unit vectors in $L_{a}^{2}(\mathbb{D})$. For any $a \in \mathbb{D}$, let $\phi_{a}$ be the analytic mapping on $\mathbb{D}$ defined by $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}, z \in \mathbb{D}$. An easy calculation shows that the derivative of $\phi_{a}$ at $z$ is equal to $-k_{a}(z)$. It follows that the real Jacobian determinant of $\phi_{a}$ at $z$ is

$$
J_{\phi_{a}}(z)=\left|k_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)^{2}}{|1-\bar{a} z|^{4}} .
$$

Let $h^{\infty}(\mathbb{D})$ be the space of all bounded harmonic functions on $\mathbb{D}$. Let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators from the Hilbert space $H$ into itself. Let $\mathcal{L C}(H)$

[^0]denote the ideal of compact operators in $\mathcal{L}(H)$. An operator $A \in \mathcal{L}(H)$ is called positive if $\langle A x, x\rangle \geq 0$ holds for every $x \in H$ in which case we write $A \geq 0$. Define the Berezin transform for operators $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ by the formula
$$
\sigma(T)(z)=\widetilde{T}(z)=\left\langle T k_{z}, k_{z}\right\rangle, \quad z \in \mathbb{D}
$$

The function $\widetilde{T}$ is called the Berezin transform of $T$. Let $V(\mathbb{D})=\left\{\phi \in L^{\infty}(\mathbb{D})\right.$ : ess $\left.\lim _{|z| \longrightarrow 1^{-}} \phi(z)=0\right\}$. If $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then $\widetilde{T}=\sigma(T) \in L^{\infty}(\mathbb{D})$ and $\|\sigma(T)\|_{\infty} \leq\|T\|$ as $|\sigma(T)(z)|=\left|\left\langle T k_{z}, k_{z}\right\rangle\right| \leq\|T\|$ for all $z \in \mathbb{D}$. Further, if $T \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{D})\right)$, then as $k_{z} \longrightarrow 0$ weakly, hence $\sigma(T) \in V(\mathbb{D})$. One may also notice that if $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is diagonal with respect to the basis $\left\{e_{n}\right\}_{n=0}^{\infty}$, then $\sigma(T)$ is radial. For $\phi \in L^{2}(\mathbb{D}, d A)$ and $\lambda \in \mathbb{D}$, let

$$
\widetilde{\phi}(\lambda)=\left\langle\phi k_{\lambda}, k_{\lambda}\right\rangle=\int_{\mathbb{D}} \phi(z) \frac{\left(1-|\lambda|^{2}\right)^{2}}{|1-\bar{\lambda} z|^{4}} d A(z)
$$

If $T_{\phi}$ is a Toeplitz operator with symbol $\phi \in L^{2}$, then $\sigma\left(T_{\phi}\right)=\widetilde{\phi}$. In section 2 , we establish our main result and some applications of the result are also discussed. In section 3, we discuss about Berezin transform and hyponormal operators.

## 2. BEREZIN TRANSFORM

In this section we characterize the class $\mathcal{A} \subset L^{\infty}(\mathbb{D})$ such that if $\phi, \psi \in \mathcal{A}, \alpha \geq 0$ and $0 \leqq \phi \leq \alpha \psi$ then there exist positive operators $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\widetilde{S}(z) \leq$ $\alpha \widetilde{T}(z)=\alpha \psi(z)$ for all $z \in \mathbb{D}$. Further, we establish that if $S$ and $T$ are two positive operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $T$ is invertible then there exists a constant $\alpha \geq 0$ such that $\widetilde{S}(z) \leq \alpha \widetilde{T}(z)$ for all $z \in \mathbb{D}$ and $\widetilde{S}, \widetilde{T} \in \mathcal{A}$.

Notice that if $S \geq T \geq 0, S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $A$ is any invertible positive operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, then $A S A \geq A T A$. Conversely, if there exist a positive invertible operator $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A S A \geq A T A$, then $S \geq T \geq 0$ and therefore $\widetilde{S} \geq \widetilde{T}$. Further if $S, T$ are two positive invertible operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $S \geq T$ then $T^{-1} \geq$ $S^{-1}$. This can be verified as follows: If $S \geq T$ then $T^{-\frac{1}{2}} S T^{-\frac{1}{2}} \geq I$. This implies $I \geq\left(T^{-\frac{1}{2}} S T^{-\frac{1}{2}}\right)^{-1}=T^{\frac{1}{2}} S^{-1} T^{\frac{1}{2}}$. Hence $T^{-1} \geq S^{-1}$. Thus if $S \geq T \geq 0$ and $S, T$ are invertible then $\widetilde{T^{-1}} \geq \widetilde{S^{-1}}$. The following is also valid.
Proposition 2.1. Suppose $S, T$ are two positive operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$.
(1) If $T_{\phi}$ is a nonsingular positive Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $S T_{\phi} S=T T_{\phi} T$ then $\widetilde{S}=\widetilde{T}$.
(2) If $T_{\phi}, T_{\psi}$ are two positive, invertible Toeplitz operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $T_{\phi} \geq T_{\psi}$ and $S T_{\psi} S \geq T T_{\phi} T$ then $\widetilde{S} \geq \widetilde{T}$.
Proof. (1) If $S T_{\phi} S=T T_{\phi} T$ holds, then we have $\left(T_{\phi}^{\frac{1}{2}} S T_{\phi}^{\frac{1}{2}}\right)^{2}=\left(T_{\phi}^{\frac{1}{2}} T T_{\phi}^{\frac{1}{2}}\right)^{2}$, so that $T_{\phi}^{\frac{1}{2}} S T_{\phi}^{\frac{1}{2}}=T_{\phi}^{\frac{1}{2}} T T_{\phi}^{\frac{1}{2}}$ holds and the nonsingularity of $T_{\phi}$ ensures $S=T$ and hence $\widetilde{S}=\widetilde{T}$.
(2) Since $T_{\phi} \geq T_{\psi}$ and $S$ is invertible hence $S T_{\phi} S \geq S T_{\psi} S$. Thus $S T_{\phi} S \geq T T_{\phi} T$ and so $\left(T_{\phi}^{\frac{1}{2}} S T_{\phi}^{\frac{1}{2}}\right)\left(T_{\phi}^{\frac{1}{2}} S T_{\phi}^{\frac{1}{2}}\right) \geq\left(T_{\phi}^{\frac{1}{2}} T T_{\phi}^{\frac{1}{2}}\right)\left(T_{\phi}^{\frac{1}{2}} T T_{\phi}^{\frac{1}{2}}\right)$. This implies $\left(T_{\phi}^{\frac{1}{2}} S T_{\phi}^{\frac{1}{2}}\right)^{2} \geq\left(T_{\phi}^{\frac{1}{2}} T T_{\phi}^{\frac{1}{2}}\right)^{2}$. By [6], it follows that $T_{\phi}^{\frac{1}{2}} S T_{\phi}^{\frac{1}{2}} \geq T_{\phi}^{\frac{1}{2}} T T_{\phi}^{\frac{1}{2}}$. Hence $S \geq T$ and therefore $\widetilde{S} \geq \widetilde{T}$.
Definition 2.2. A function $g(x, \bar{y})$ on $\mathbb{D} \times \mathbb{D}$ is called of positive type (or positive definite), written $g \gg 0$, if

$$
\begin{equation*}
\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} g\left(x_{j}, \overline{x_{k}}\right) \geq 0 \tag{1}
\end{equation*}
$$

for any n-tuple of complex numbers $c_{1}, \ldots, c_{n}$ and points $x_{1}, \ldots, x_{n} \in \mathbb{D}$. We write $g \gg h$ if $g-h \gg 0$. We shall say $\gamma \in \mathcal{A}$ if $\gamma \in L^{\infty}(\mathbb{D})$ and is such that

$$
\begin{equation*}
\gamma(z)=\Theta(z, \bar{z}) \tag{2}
\end{equation*}
$$

where $\Theta(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$ meromorphic in $x$ and conjugate meromorphic in $y$ and if there exists a constant $c>0$ such that

$$
c K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg 0 \quad \text { for all } \quad x, y \in \mathbb{D} .
$$

It is a fact that (see [3], [4]) $\Theta$ as in (2), if it exists, is uniquely determined by $\gamma$.
Theorem 2.3. If $\phi, \psi \in \mathcal{A}, \alpha \geq 0$ and $0 \leq \phi \leq \alpha \psi$ then there exist positive operators $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\widetilde{S}(z) \leq \alpha \widetilde{T}(z)=\alpha \psi(z)$ for all $z \in \mathbb{D}$. Further, if $S$ and $T$ are two positive operators in $\mathcal{L}\left(\bar{L}_{a}^{2}(\mathbb{D})\right)$ and $T$ is invertible then there exists a constant $\alpha \geq 0$ such that $\widetilde{S}(z) \leq \alpha \widetilde{T}(z)$ for all $z \in \mathbb{D}$ and $\widetilde{S}, \widetilde{T} \in \mathcal{A}$.

Proof. For the first part it suffices to show that $0 \leq \phi \in \mathcal{A}$ if and only if there exists a positive operator $S \in \mathcal{L}\left(L_{a}^{2}\right)$ such that $\phi(z)=\left\langle S k_{z}, \bar{k}_{z}\right\rangle$ for all $z \in \mathbb{D}$. So let $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ be a positive operator. Let $\Theta(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$ where $K_{x}=K(., \bar{x})$ is the unnormalized reproducing kernel at $x$. Then $\Theta(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$ meromorphic in $x$ and conjugate meromorphic in $y$. Let $\phi(z)=\Theta(z, \bar{z})$.

Then $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$ and $\phi \in L^{\infty}(\mathbb{D})$ as $S$ is bounded. Now let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where $c_{j}$ 's are constants, $x_{j} \in \mathbb{D}$ for $j=1,2, \ldots, n$. Since $S$ is bounded and positive there exists a constant $c>0$ such that $0 \leq\langle S f, f\rangle \leq c\|f\|^{2}$. But

$$
\begin{aligned}
\langle S f, f\rangle & =\left\langle S\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{j=1}^{n} c_{j} K_{x_{j}}\right\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\left\langle S K_{x_{j}}, K_{x_{k}}\right\rangle \\
& =\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right)
\end{aligned}
$$

and $c\|f\|^{2}=c\langle f, f\rangle=c \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)$.
Hence we obtain that $c K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg 0$. Thus $\phi \in \mathcal{A}$.
Now let $\phi \in \mathcal{A}$ and $\phi(z)=\Theta(z, \bar{z})$ where $\Theta(x, \bar{y})$ is a function on $\mathbb{D} \times \mathbb{D}$ meromorphic in $x$ and conjugate meromorphic in $y$. We shall prove the existence of a positive, bounded operator $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\left\langle S k_{z}, k_{z}\right\rangle$. Let

$$
\begin{equation*}
S f(x)=\int_{\mathbb{D}} f(z) \Theta(x, \bar{z}) K(x, \bar{z}) d A(z) \tag{3}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
S f(x) & =\left\langle S f, K_{x}\right\rangle=\left\langle f, S^{*} K_{x}\right\rangle=\int_{\mathbb{D}} f(z) \overline{\left\langle S^{*} K_{x}, K_{z}\right\rangle} d A(z) \\
& =\int_{\mathbb{D}} f(z)\left\langle S K_{z}, K_{x}\right\rangle d A(z)=\int_{\mathbb{D}} f(z) \Theta(x, \bar{z}) K(x, \bar{z}) d A(z)
\end{aligned}
$$

Then

$$
\begin{aligned}
\left\langle S K_{y}, K_{x}\right\rangle & =\int_{\mathbb{D}} K_{y}(z) \Theta(x, \bar{z}) K(x, \bar{z}) d A(z)=\int_{\mathbb{D}} K_{y}(z) \Theta(x, \bar{z}) \overline{K_{x}(z)} d A(z) \\
& =\overline{\left\langle\overline{\Theta(x, \bar{z})} K_{x}, K_{y}\right\rangle}=\overline{\overline{\Theta(x, \bar{y})}\left\langle K_{x}, K_{y}\right\rangle}=\Theta(x, \bar{y})\left\langle K_{y}, K_{x}\right\rangle
\end{aligned}
$$

Hence $\Theta(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}$ and $\phi(z)=\Theta(z, \bar{z})=\left\langle S k_{z}, k_{z}\right\rangle$. We shall now prove that $S$ is positive, bounded. That is, there exists a constant $c>0$ such that $0 \leq\langle S f, f\rangle \leq c\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. Since $\phi \in \mathcal{A}$, there exists a constant $c>0$ such that for all $x, y \in \mathbb{D}$,

$$
\begin{equation*}
c K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg 0 \tag{4}
\end{equation*}
$$

Let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where $c_{j}$ are constants, $x_{j} \in \mathbb{D}$ for $j=1,2, \ldots, n$. Then from (4) it follows that $\langle S f, f\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \geq 0$ and

$$
\langle S f, f\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right) \leq c \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)=c\|f\|^{2}
$$

Since the set of vectors $\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1,2, \ldots, n\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, hence $0 \leq\langle S f, f\rangle \leq c\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$ and thus S is bounded and positive. To prove the second part, assume $S, T$ are two positive linear operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $T$ is invertible. Let $\alpha=\sup \left\{\frac{\left\|S k_{z}\right\|}{\left\|T k_{z}\right\|}: z \in \mathbb{D}\right\}$. We shall show that $\widetilde{S}(z) \leq \alpha \widetilde{T}(z)$ for all $z \in \mathbb{D}$ and $\widetilde{S}, \widetilde{T} \in \mathcal{A}$. Since $T$ is invertible and positive, hence $T^{\frac{1}{2}}$ is also positive and invertible. Let $A=T^{-\frac{1}{2}}$ and $B=A S A$. Then $B$ is positive and there is a spectral decomposition associated with $B$, say $\left\{E_{\lambda}\right\}$ for $-\infty<\lambda<\infty$ and $B=\int_{0^{-}}^{k} \lambda d E_{\lambda}$ where $k=\|B\|$. Hence $\langle B f, f\rangle=\int_{0^{-}}^{k} \lambda d\left\|E_{\lambda}\right\|^{2}$ and $\sup \left\{\langle B f, f\rangle: f \in L_{a}^{2}(\mathbb{D}),\|f\|=1\right\}=k$. Further $\sup \left\{\frac{\langle S f, f\rangle}{\langle T f, f\rangle}: f \in L_{a}^{2}(\mathbb{D}), f \neq 0\right\}=\sup \left\{\langle B f, f\rangle: f \in L_{a}^{2}(\mathbb{D}),\|f\|=1\right\}$. We shall now establish that given $\epsilon>0$, we can find a $g \in L_{a}^{2}(\mathbb{D})$ such that $\frac{\|S g\|}{\|T g\|} \geq k-\epsilon$. Let $r=\frac{\epsilon}{2} \frac{\left\|T^{-1}\right\|}{\left\|T^{\frac{1}{2}}\right\|^{2}}$ and $s=k-r$. We shall choose $\epsilon$ small enough such that $s>0$. Let $f \in L_{a}^{2}(\mathbb{D}), f \neq 0$ such that $E_{\lambda} f=0$ for some $\lambda$ such that $s<\lambda<k$. Let $g=A f$. Now

$$
S g=T^{\frac{1}{2}} \int_{s}^{k} \lambda d E_{\lambda}\left(T^{\frac{1}{2}} g\right)
$$

and

$$
T g=T^{\frac{1}{2}} f=T^{\frac{1}{2}} \int_{s}^{k} d E_{\lambda}\left(T^{\frac{1}{2}} g\right)
$$

Thus

$$
\|S g-s T g\|=\left\|T^{\frac{1}{2}} \int_{s}^{k}(\lambda-s) d E_{\lambda}\left(T^{\frac{1}{2}} g\right)\right\| \leq\left\|T^{\frac{1}{2}}\right\| r\left\|T^{\frac{1}{2}} g\right\| \leq r\left\|T^{\frac{1}{2}}\right\|^{2}\|g\|
$$

Hence

$$
\begin{aligned}
\frac{\|S g\|}{\|T g\|} & =\frac{\|s T g+S g-s T g\|}{\|T g\|} \geq \frac{(\|s T g\|-\|S g-s T g\|)}{\|T g\|} \\
& \geq s-\frac{r\left\|T^{\frac{1}{2}}\right\|^{2}\|g\|}{\left\|T^{-1}\right\|}\|g\| \geq k-\epsilon .
\end{aligned}
$$

Now

$$
\begin{aligned}
\sup \left\{\frac{\|S f\|}{\|T f\|}: f \in L_{a}^{2}(\mathbb{D}), f \neq 0\right\} & =\sup \left\{\frac{\langle S f, f\rangle}{\langle T f, f\rangle}: f \in L_{a}^{2}(\mathbb{D}), f \neq 0\right\} \\
& =\sup \left\{\langle B f, f\rangle: f \in L_{a}^{2}(\mathbb{D}),\|f\|=1\right\}=k
\end{aligned}
$$

Thus $\left\langle S k_{z}, k_{z}\right\rangle \leq k\left\langle T k_{z}, k_{z}\right\rangle$ and $k$ is our required constant $\alpha$. Further since $S$ and $T$ are positive and bounded, hence $\widetilde{S}, \widetilde{T} \in \mathcal{A}$ as we have proved in first part and the theorem is proved.

Corollary 2.4. The function $\phi \in \mathcal{A}$ and satisfies

$$
\begin{equation*}
C K(x, \bar{y}) \gg \Theta(x, \bar{y}) K(x, \bar{y}) \gg m K(x, \bar{y}) \gg 0 \tag{5}
\end{equation*}
$$

for all $x, y \in \mathbb{D}$ and some constants $C, m>0$ if and only if there exists a positive, invertible operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\left\langle T k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$.

Proof. Suppose $\phi \in \mathcal{A}$ and (5) holds. Then from theorem 2.3 it follows that there exists a positive linear operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\phi(z)=\left\langle T k_{z}, k_{z}\right\rangle$. Now let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where $c_{j}$ 's are constants, $x_{j} \in \mathbb{D}$ for $j=1,2, \ldots, n$. Since

$$
\langle T f, f\rangle=\left\langle T\left(\sum_{j=1}^{n} c_{j} K_{x_{j}}\right), \sum_{j=1}^{n} c_{j} K_{x_{j}}\right\rangle=\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k},, \overline{x_{j}}\right)
$$

and

$$
m\|f\|^{2}=m\langle f, f\rangle=m \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)
$$

it follows from (5) that $\langle T f, f\rangle \geq m\|f\|^{2}$. As the set of vectors

$$
\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, \quad j=1,2, \ldots, n\right\}
$$

is dense in $L_{a}^{2}(\mathbb{D})$, hence $0 \leq\langle T f, f\rangle \geq m\|f\|^{2}$ for all $f \in L_{a}^{2}(\mathbb{D})$. That is, $T \geq m I$ where $I$ is the identity operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Hence $T$ is invertible. Conversely, suppose $T$ is a bounded, positive operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ which is also invertible. Then from theorem 2.3, it follows that $\phi(z)=\left\langle T k_{z}, k_{z}\right\rangle \in \mathcal{A}$ and there exists a constant $m>0$ such that $T \geq m I$. Hence if $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where $c_{j}$ 's are constants, $x_{j} \in \mathbb{D}, j=1,2, \ldots, n$, then $\langle T f, f\rangle=$ $\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Theta\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right)$ and $m\|f\|^{2}=m\langle f, f\rangle=m \sum_{j, k=1}^{n} c_{j} \overline{c_{k}} K\left(x_{k}, \overline{x_{j}}\right)$. As $\langle T f, f\rangle \geq m\|f\|^{2}$, hence $\Theta(x, \bar{y}) K(x, \bar{y}) \gg m K(x, \bar{y})$ for all $x, y \in \mathbb{D}$. The corollary follows.

If $S \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $S$ is positive, then let

$$
\Theta_{S}(x, \bar{y})=\frac{\left\langle S K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle} \quad \text { for all } \quad x, y \in \mathbb{D}
$$

Corollary 2.5. Let $S$ and $T$ be two positive, invertible operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. If

$$
\begin{equation*}
\Theta_{S}(x, \bar{y}) K(x, \bar{y}) \Theta_{T^{-1}}(x, \bar{y}) K(x, \bar{y}) \gg(K(x, \bar{y}))^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta_{T}(x, \bar{y}) K(x, \bar{y}) \Theta_{S^{-1}}(x, \bar{y}) K(x, \bar{y}) \gg(K(x, \bar{y}))^{2} \tag{7}
\end{equation*}
$$

for all $x, y \in \mathbb{D}$ then $S=T$.
Proof. Suppose (6) holds. Let $f=\sum_{j=1}^{n} c_{j} K_{x_{j}}$ where $c_{j}$ 's are constants, $x_{j} \in \mathbb{D}, j=$ $1,2, \ldots, n$. Then

$$
\langle S f, f\rangle\left\langle T^{-1} f, f\right\rangle=\left(\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\right)^{2} \Theta_{S}\left(x_{k}, \bar{x}_{j}\right) K\left(x_{k}, \bar{x}_{j}\right) \Theta_{T^{-1}}\left(x_{k}, \overline{x_{j}}\right) K\left(x_{k}, \overline{x_{j}}\right)
$$

and $\|f\|^{4}=\langle f, f\rangle\langle f, f\rangle=\left(\sum_{j, k=1}^{n} c_{j} \overline{c_{k}}\right)^{2}\left(K\left(x_{k}, \overline{x_{j}}\right)\right)^{2}$. Then from (6) it follows that $\langle S f, f\rangle\left\langle T^{-1} f, f\right\rangle \geq\|f\|^{4}$. Since the set of vectors $\left\{\sum_{j=1}^{n} c_{j} K_{x_{j}}, x_{j} \in \mathbb{D}, j=1,2, \ldots, n\right\}$ is dense in $L_{a}^{2}(\mathbb{D})$, hence for all $f \in L_{a}^{2}(\mathbb{D}),\langle S f, f\rangle\left\langle T^{-1} f, f\right\rangle \geq\|f\|^{4}$. That is, $\langle S \xi, \xi\rangle\left\langle T^{-1} \xi, \xi\right\rangle \geq 1$ for any unit vector $\xi \in L_{a}^{2}(\mathbb{D})$. Now suppose (7) holds. Proceeding similarly one can show that $\langle T \xi, \xi\rangle\left\langle S^{-1} \xi, \xi\right\rangle \geq 1$ for any unit vector $\xi \in L_{a}^{2}(\mathbb{D})$. From [5], it follows that $S=T$.

If $S, T$ are two positive, invertible operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then $\langle S \xi, \xi\rangle\left\langle T^{-1} \xi, \xi\right\rangle \geq 1$ for any unit vector $\xi \in L_{a}^{2}(\mathbb{D})$ if and only if $\Theta_{t S+(t T)^{-1}}(x, \bar{y}) K(x, \bar{y}) \gg 2 K(x, \bar{y})$ for all $x, y \in \mathbb{D}$ and for any $t>0$. This can be verified as follows:

Suppose $\langle S \xi, \xi\rangle\left\langle T^{-1} \xi, \xi\right\rangle \geq 1$ for any unit vector $\xi \in L_{a}^{2}(\mathbb{D})$. Let $g \in L_{a}^{2}(\mathbb{D})$ be a unit vector. Let $\Omega(t)=t\langle S g, g\rangle+t^{-1}\left\langle T^{-1} g, g\right\rangle, t>0$. The minimum value of $\Omega(t)$ is equal to $2 \sqrt{\langle S g, g\rangle\left\langle T^{-1} g, g\right\rangle}$. Thus $\langle S \xi, \xi\rangle\left\langle T^{-1} \xi, \xi\right\rangle \geq 1$ for any unit vector $\xi \in L_{a}^{2}(\mathbb{D})$ if and only if $t S+(t T)^{-1} \geq 2$ for any $t>0$. This is true if and only if $\Theta_{t S+(t T)^{-1}}(x, \bar{y}) K(x, \bar{y}) \gg$ $2 K(x, \bar{y})$ for all $x, y \in \mathbb{D}$.
Corollary 2.6. Suppose the function $\phi \in \mathcal{A}$ and satisfies (5) for all $x, y \in \mathbb{D}$ and for some constants $C, m>0$. Then

$$
\begin{gathered}
\left|\Theta_{T}(x, \bar{y})\right|\left|\Theta_{T^{-1}}(y, \bar{x})\right||K(x, \bar{y})|^{2} \leq L K(y, \bar{y}) K(x, \bar{x}) \\
\text { If }\|T\|=R \text { and }\left\|T^{-1}\right\|=\frac{1}{r} \text {, then } L=\frac{(R+r)^{2}}{4 R r}
\end{gathered}
$$

Proof. Suppose the function $\phi \in \mathcal{A}$ satisfies (5) for all $x, y \in \mathbb{D}$ and for some constants $C, m>0$. Then it follows from corollary 2.4 that $T$ is invertible and $m I \leq T \leq C I$. Hence for all $x, y \in \mathbb{D}$,

$$
\begin{aligned}
& \left|\Theta_{T}(x, \bar{y})\right|\left|\Theta_{T^{-1}}(y, \bar{x})\right||K(x, \bar{y})|^{2}=\frac{\left\langle\mid T K_{y}, K_{x}\right\rangle \mid}{\left|\left\langle K_{y}, K_{x}\right\rangle\right|} \frac{\left|\left\langle T^{-1} K_{x}, K_{y}\right\rangle\right|}{\left|\left\langle K_{x}, K_{y}\right\rangle\right|}\left|\left\langle K_{y}, K_{x}\right\rangle\right|^{2} \\
& \quad=\left|\left\langle T K_{y}, K_{x}\right\rangle\right|\left|\left\langle T^{-1} K_{x}, K_{y}\right\rangle\right| \leq L\left\langle K_{y}, K_{y}\right\rangle\left\langle K_{x}, K_{x}\right\rangle
\end{aligned}
$$

where $L=\frac{(R+r)^{2}}{4 R r}$. The last inequality follows from [7] Kantorovich's inequality.

## 3. Hyponormal operators

It is well known [1] that if $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $\widetilde{S}(z)=\widetilde{T}(z)$ for all $z \in \mathbb{D}$ then $S=T$. In this section we show that if $\widetilde{T}\left(\phi_{a}(z)\right)=\widetilde{S}(z)$ for some $a \in \mathbb{D}$ and for all $z \in \mathbb{D}, T^{*}$ is $p$-hyponormal and $S$ is a dominant operator then $S=T$.

An operator $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is called hyponormal if $A^{*} A \geq A A^{*}$. For $0<p \leq 1$, the operator $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ is called $p$-hyponormal if $|A|^{2 p} \geq\left|A^{*}\right|^{2 p}$ where $|A|$ is the square root of $A^{*} A$, that is, $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$. The operator $A$ is called dominant if Range $(A-\lambda I) \subset$ Range $(A-\lambda I)^{*}$ for all $\lambda \in \mathbb{C}$.
Theorem 3.1. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right.$ ). Assume $T^{*}$ is a p-hyponormal operator, $0<p \leq 1$ and $S$ is a dominant operator. If $\widetilde{T}\left(\phi_{a}(z)\right)=\widetilde{S}(z)$ for all $z \in \mathbb{D}$ and for some $a \in \mathbb{D}$ then $S=T$.

Proof. Suppose for some $a \in \mathbb{D}, \widetilde{T}\left(\phi_{a}(z)\right)=\widetilde{S}(z)$ for all $z \in \mathbb{D}$. Then $\left\langle T k_{\phi_{a}(z)}, k_{\phi_{a}(z)}\right\rangle=$ $\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. For $a \in \mathbb{D}$, define the operator $U_{a}$ from $L_{a}^{2}(\mathbb{D})$ into itself as $U_{a} f=\left(f o \phi_{a}\right) k_{a}$. The operator $U_{a}$ is a bounded linear operator and $U_{a} k_{z}=k_{\phi_{a}(z)}$. Further $U_{a}^{*}=U_{a}$ and $U_{a}^{2}=I$. Hence $\left\langle U_{a} T U_{a} k_{z}, k_{z}\right\rangle=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. Thus $U_{a} T U_{a}=S$. It also follows that $S^{*} U_{a}=U_{a} T^{*}$ and $U_{a} S=T U_{a}$. Since $U_{a}$ is unitary, the operators $S$ and $T$ are unitarily equivalent. So $T$ is dominant and $S^{*}$ is $p$-hyponormal. Thus $S$ and $T$ are normal. As $U_{a}$ is invertible, it follows that $S=T$.

Theorem 3.2. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Assume that $T^{*}$ is a p-hyponormal operator, $0<p<1$ and $S$ is an isometry in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. If $\widetilde{T}\left(\phi_{a}(z)\right)=\widetilde{S}(z)$ for all $z \in \mathbb{D}$ and for some $a \in \mathbb{D}$, then $T$ is unitary.
Proof. If for some $a \in \mathbb{D}, \widetilde{T}\left(\phi_{a}(z)\right)=\widetilde{S}(z)$ for all $z \in \mathbb{D}$, then it follows that $\left\langle T k_{\phi_{a}(z)}\right.$, $\left.k_{\phi_{a}(z)}\right\rangle=\left\langle S k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. That is, $U_{a} T U_{a}=S$ for some $a \in \mathbb{D}$. Thus $U_{a} T=$ $S U_{a}$ and $S^{*} U_{a}=U_{a} T^{*}$. It follows therefore that $U_{a}=S^{*} U_{a} T=U_{a} T^{*} T$. Hence $U_{a}\left(I-T^{*} T\right)=0$. This implies $T^{*} T=I$ and $T$ is an isometry. Thus $T$ and $T^{*}$ are
p-hyponormal. Hence $T$ is a normal operator which is also an isometry. Thus $T$ is unitary.

## References

1. S. Axler and D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Mathematica 127 (1998), no. 2, 113-136.
2. J. B. Conway, A Course in Functional Analysis, 2nd edition, Springer-Verlag, New York, 1990.
3. G. M. Golusin, Geometric Theory of Functions of a Complex Variable, Moscow, Nauka, 1966. (Russian); English transl. American Mathematical Society, Providence, RI, 1969.
4. S. G. Krantz, Function Theory of Several Complex Variables, John Wiley \& Sons, New York, 1982.
5. T. Hayashi, Non-commutative arithmetic-geometric mean inequality, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3399-3406.
6. C. S. Lin Inequalities of Reid type and Furuta, Proc. Amer. Math. Soc. 129 (2001), no. 3, 855-859.
7. W. G. Strang, On the Kantorovich inequality, Proc. Amer. Math. Soc. 11 (1960), no. 3, 468.
P.G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, Orissa, India

E-mail address: namitadas440@yahoo.co.in
School of Applied Sciences (Mathematics), KiIT University, Campus-3 (Kathajori Campus) Bhubaneswar-751024, Orissa, India

E-mail address: smita_782006@yahoo.co.in


[^0]:    1991 Mathematics Subject Classification. 47B35, 32M15.
    Key words and phrases. Bergman space, positive operators, Berezin transform, reproducing kernel.

