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HARDY TYPE SPACES ON INFINITE DIMENSIONAL

GROUP ORBITS

O. V. LOPUSHANSKY AND M. V. OLEKSIENKO

Abstract. In Hilbert Hardy spaces of complex analytic functions with infinitely

many variables, defined on unitary orbits of locally compact second countable group,
the Cauchy type integral formulas are established. Existence of radial boundary

values is proved. Results are illustrated for a reduced Heisenberg group.

1. Motivation and main results

The classical theory of the Hardy space H2
χ(B) of complex analytic functions on the

1-dimensional complex ball B,
{
f : supr∈[0,1)

(∫
T |f(reiϑ)|2dχ(eiϑ)

)1/2
<∞

}
, essentially

uses invariant properties of the Haar measure χ on the cyclic group T =
{
eiϑ : ϑ ∈ [0, 2π)

}
.

The T-invariancy provides that H2
χ(B) is unitary equivalent to the Hermitian dual of the

`2-space of Taylor coefficients (dn0f/n!). Moreover, any function f ∈ H2
χ(B) can be

uniquely defined by the integral Cauchy formula through its radial boundary values on
T. There is a natural question: is it possible in this theory to replace T with a general
locally compact group?

The Hardy type space H2
χ(B) with a Haar measure χ on an abstract locally compact

group G were considered in [6], where some of its properties were described. In the
present work we analyze a more general case, when a G-invariant measure χ is defined
on a unitary orbit G of a locally compact second countable group G acting in an infinite
dimensional Hilbert space E. We establish the Cauchy type formula

(1.1) C[f ](ξ) =

∫
G

C(ξ, ζ)f(ζ) dχ(ζ), ξ ∈ B,

which for every function f ∈ H2
χ produces its unique analytic extensions C[f ] on the open

unit ball B in E, where H2
χ denotes the closure in the space L2

χ of all Hilbert-Schmidt

polynomials over E. We also describe the space of Taylor coefficients for H2
χ. Moreover,

in the case of Hardy spaces, the boundary values problem, which is defined on orbits, for
analytic functions becomes substantial. Namely, we establish that the radial boundary
values of C[f ] on the orbit G are equal to f for every function f ∈ H2

χ. As an example,
we consider a reduced Heisenberg group.

Note that integral representations of Hardy spaces Hp (p ≥ 1) with infinitely many
variables were an object of research in [5, 7]. The Hardy spaces H∞ were investigated in
[1] and in many other publications.
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2. Preliminaries

Let E stand for a complex separable Hilbert space and let G stand for a locally compact
second countable group. Suppose that there exists a unitary representation

U : G 3 x 7−→ Ux ∈ L(E),

which is weakly continuous. Hereafter L(·) denotes the algebra of all bounded linear
operators.

Fix an element } ∈ E with ‖}‖E = 1 and consider its orbit

G :=
{
Ux} = ζ ∈ E : x ∈ G

}
,

which as a topological space we identify with the factor-space G
/
G}, where G} :={

υ ∈ G : Uυ} = }
}

. The closed unit ball in E endowed with the weak topology, we will
denote by K. The weak continuity of U implies that the embedding G# K is continuous.
Further we denote by C(K) the uniform algebra of continuous complex functions on K.

Recall that a measure χ on the orbit G is G-invariant if for any x ∈ G its shift χ◦Ux−1

is equal to χ, i.e., if

(2.1)

∫
G

f(ζ) dχ(Ux−1ζ) =

∫
G

(f ◦ Ux)(ζ) dχ(ζ) =

∫
G

f(ζ) dχ(ζ)

for all x ∈ G and χ-integrable complex function f on G. As is well known (see e.g., [9]),
for any locally compact second countable group G an invariant measure χ on an orbit G
exists and the equality

(2.2)

∫
G

dχ(Ux})

∫
G}
ϕ(xυ) dυ =

∫
G
ϕ(x) dx

uniquely connects it with a Haar measure dx on G. Here ϕ is any integrable complex
function on G and dυ denotes a Haar measure on G}. Clearly, the choice of a G-invariant
measure χ on G depends on the element } ∈ S.

In what follows we suppose that an element } ∈ S and the corresponding G-invariant
measure χ on its orbit G are fixed, and that the representation codomain UG of a group
G contains the complex cyclic subgroup T. Let L2

χ stand for the Hilbert space of all
quadratically χ-integrable complex functions on the orbit G.

First we give an auxiliary result which at once follows from our assumptions about
the group.

Proposition 2.1. If χ is a G-invariant measure on G then the decomposition

(2.3)

∫
G

f dχ =
1

2π

∫
G

dχ(ζ)

∫ 2π

0

f(eiϑζ) dϑ

with χ-integrable complex function f on G holds and the condition
∫
G
ζ dχ(ζ) = 0 is valid.

Proof. By Fubini’s theorem∫
G

dχ(ζ)

∫ 2π

0

f(eiϑζ)dϑ =

∫ 2π

0

dϑ

∫
G

f(eiϑζ)dχ(ζ)

for all f , since the integrand f ◦ eiϑ is integrable vector-valued function on ϑ ∈ [0, 2π).
The internal integrals on the right side do not depend on ϑ ∈ [0, 2π) in view of the T-

invariance of χ. As
∫ 2π

0
dϑ = 2π, we obtain (2.3). Using (2.3) for any linear continuous

functional f we have ∫
G

fdχ =
1

2π

∫
G

fdχ

∫ 2π

0

exp(iϑ)dϑ = 0

and the proposition is proved. �
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3. Polynomial orthogonal systems on irreducible orbits

Let ⊗nhE, (n ∈ N) denote the complete nth tensor Hilbert power of E, and ⊗0
hE = C.

If s : {1, . . . , n} 7−→ {s(1), . . . , s(n)} runs all n-elements permutations then the codomain
of the corresponding orthogonal projector

sn : ⊗nhE 3 ξ1 ⊗ . . .⊗ ξn 7−→ ξ1 � . . .� ξn :=
1

n!

∑
ξs(1) ⊗ . . .⊗ ξs(n),

which means the symmetric Hilbert nth tensor power of E, we denote by �nhE. Thus,
�nhE = ⊗nhE 	 ker sn. Recall that the symmetric Fock space is defined as the Hilbert

orthogonal sum F = C⊕ E⊕
(
�2

hE
)
⊕
(
�3

hE
)
⊕ . . .

We use E∗ =
{
ζ∗ := 〈· | ζ〉E : ζ ∈ E

}
to denote the Hermitian dual space for E. The

isometries (⊗nhE)∗ = ⊗nhE∗ and (�nhE)∗ = �nhE∗ hold. For any element ψn ∈ �nhE
uniquely assists the form ψ∗n := 〈· | ψn〉F belonging to �nhE∗, which further we will identify
with the n-homogeneous Hilbert-Schmidt polynomial

ψ∗n : E 3 ξ 7−→ ψ∗n(ξ) :=
〈
ξ⊗n | ψn

〉
F
,

where is denoted
ξ⊗n := ξ ⊗ . . .⊗ ξ ∈ �nhE, ξ ∈ E.

For each n-homogeneous polynomial ψ∗n with ψn ∈ �nhE we assign the polynomial func-
tion [

}n(ψn)
]
(ζ) = δζ(ψ

∗
n)

of the variable ζ = Ux} with x ∈ G, generating on the orbit G by all G-shifts of the point
evaluation character

δ}(ψ∗n) = ψ∗n(}).

Theorem 3.1. Let an element } ∈ S be fixed in such way that the antilinear operators

}n : �nh E 3 ψn 7−→ }n(ψn) ∈ L2
χ (n ∈ N)

are well defined and have the bounded norm ‖}n‖ = ‖}n‖L(�nhE, L2
χ), and let

Enh := �nhE	 ker }n, Fh := C⊕ E1
h ⊕ E2

h ⊕ E3
h ⊕ . . .

Then

(i) the corresponding restricted mapping

}̂n : Enh 3 ψn 7−→ ψ̂n := }̂n(ψn) ∈ L2
χ, }̂n :=

}n
‖}n‖

is an isometry between the subspace Enh and its image H2
n := }̂n(Enh), so

(3.1)

∫
G

ψ̂n ω̂n dχ =
〈
ωn
∣∣ ψn〉F, ψn, ωn ∈ Enh ;

(ii) the antilinear mapping

(3.2) }̂ : Fh 3 ψ =
∑
n∈Z+

ψn 7−→ ψ̂ :=
∑
n∈Z+

}̂n(ψn) ∈ H2
χ, }̂ :=

(
}̂n
)
,

where ψ̂0 = ψ̄0 with ψ0 ∈ C, is an isometry between the subspace Fh and its

image H2
χ := }̂(Fh), so

(3.3)

∫
G

ψ̂ ω̂ dχ =
〈
ω | ψ

〉
F
, ψ, ω ∈ Fh;

(iii) the following orthogonal decomposition holds:

H2
χ = C⊕H2

1 ⊕H2
2 ⊕H2

3 ⊕ . . .
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Proof. Due to boundedness of }n the following integral∫
G

}n(ψn)}n(ωn) dχ =

∫
G

(ψ∗n ◦ Ux)(})(ω∗n ◦ Ux)(}) dχ(Ux})

is an Hermitian continuous form on the Hilbert space �nhE, which is antilinear by
ψn ∈ �nhE and linear by ωn ∈ �nhE. Therefore, there exists a bounded positive linear

operator An ∈ L
(
�nh E

)
for which

(3.4)
〈
ωn | Anψn

〉
F

=

∫
G

}n(ψn)}n(ωn) dχ.

Similarly as in the proof of [6, Theorem 2.4] from the G-invariance properties (2.1) it
follows that An commutes with all diagonal unitary representations of the form

{
U⊗ny ∈

L
(
�nh E

)
: y ∈ G

}
, i.e., the equality

An ◦ U⊗ny = U⊗ny ◦An, y ∈ G

holds, where U⊗ny = Uy ⊗ . . .⊗ Uy denotes the nth tensor power. In fact, we have〈
ωn | (An ◦ U⊗ny )ψn

〉
⊗nhE

=

∫
G

〈
(Ux})⊗n | U⊗ny ψn

〉
⊗nhE

〈
(Ux})⊗n | ωn

〉
⊗nhE

dχ(Ux}).

The G-invariancy of the measure χ on G implies that∫
G

〈
(Ux})⊗n | U⊗ny ψn

〉
⊗nhE

〈
(Ux})⊗n | ωn

〉
⊗nhE

dχ(Ux})

=

∫
G

〈
(Uy−1x})⊗n | ψn

〉
⊗nhE

〈
(Uy−1x})⊗n | U⊗ny−1ωn

〉
⊗nhE

dχ(Ux})

=

∫
G

〈
(Ux})⊗n | ψn

〉
⊗nhE

〈
(Ux})⊗n | U⊗ny−1ωn

〉
⊗nhE

dχ(Ux}).

As a result, we obtain〈
ωn | (An ◦ U⊗ny )ψn

〉
⊗nhE

=
〈
U⊗ny−1ωn | Anψn

〉
⊗nhE

=
〈
ωn | (U⊗ny ◦An)ψn

〉
⊗nhE

.

On the other hand, for any n ∈ N the set
{

(Ux})⊗n : x ∈ G
}

is total in the subspace Enh
under its definition. Hence, the corresponding representations U⊗ny are irreducible over
Enh . Via the well-known property [4, Theorem 21.30] the restriction An |Enh is proportional

to the identity operator 1Enh
on Enh , i.e.,

An |Enh= ℵ−2n 1Enh

for a constant ℵ2n ∈ C. Hence, we can rewrite (3.4) as follows

(3.5)
〈
ωn | ψn

〉
F

= ℵ2n
∫
G

}n(ψn)}n(ωn) dχ, ψn, ωn ∈ Enh .

In particular, it follows that

‖}n‖ = sup
‖ψn‖�n

h
E=1

‖}n(ψn)‖L2
χ

=
1

ℵn
.

Via Proposition 2.1 for any ψn ∈ Enh and ωm ∈ Emh we obtain∫
G

ψ̂n ω̂m dχ =
1

2π

∫
G

ψ̂n ω̂m dχ

∫ 2π

0

ei(n−m)ϑ dϑ =

{
0 : n 6= m

〈ωn | ψn〉F : n = m.

Hence, ψ̂n ⊥ ω̂m in L2
χ if n 6= m. Thus, the orthogonal decomposition (iii) holds. �

Remark 3.2. In [6] it was proved that in the case if χ is a Haar measure on the group G and
U is its regular irreducible representation over L2

χ then the assumptions of Theorem 3.1
are satisfied for any

} ∈ L∞χ ∩ S.
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4. Cauchy type formula and radial boundary values

In [6] it was proved that if G is the full unitary group of linear operators over the
m-dimensional complex space Cm (m ∈ N), endowed with the probability Haar measure,
then for any } ∈ Cm such that ‖}‖Cm = 1 the Cauchy kernel with the variables ξ ∈ Cm,
‖ξ‖Cm < 1 and ζ ∈ Cm, ‖ζ‖Cm = 1 has the form (see [8, 1.4.9])

C(ξ, ζ) =
∑
n∈Z+

(m− 1 + n)!

(m− 1)!n!

〈
ξ | ζ

〉n
Cm with ℵ2n =

(m− 1 + n)!

(m− 1)!n!
,

where the condition limn→∞
n
√
ℵ2n = 1 is satisfied.

This fact justifies that the following kernel

(4.1) C (ξ, ζ) =
∑
n∈Z+

ℵ2n 〈αξ | ζ〉
n
E , ℵ2n =

1

‖}n‖2

with ‖ξ‖E < 1 and ‖ζ‖E ≤ 1, for which there exists the limit

(4.2) lim
n→∞

n
√
ℵ2n = 1/α for some constant α ≥ 0,

we can mean the Cauchy type kernel in more general cases. Now we are going to consider
this more carefully.

Recall (see e.g. [3]) that a function defined on an open ball in a normed space is
Gâteaux analytic if its restrictions to all finite dimensional affine subsets are analytic. If
a Gâteaux analytic function is, in addition, norm continuous then it is called analytic.

Put for simplicity E = E1
h and denote

B :=
{
ξ ∈ E : ‖ξ‖E < 1

}
, S :=

{
ξ ∈ E : ‖ξ‖E = 1

}
.

Proposition 4.1. If the condition (4.2) is satisfied then the kernel C (ξ, ζ) with ζ ∈ K
is an analytic C(K)-valued function by the variable ξ ∈ B.

Proof. Calculating a uniform norm by ζ ∈ K of the power series (4.1), we obtain

‖C (ξ, ·)‖C(K) ≤
∑
n∈Z+

ℵ2n ‖αξ‖
n
E <∞

for all ξ ∈ B. Hence, C (ξ, ·) is an analytic C(K)-valued function by ξ ∈ B. �

Proposition 4.2. Let the assumptions of Theorem 3.1 be satisfied. Then for any fixed
r ∈ [0, 1/α) the integral operator

(4.3) C[f ] (ξ) =

∫
G

C (ξ, ζ) f(ζ) dχ(ζ), f ∈ H2
χ

with ξ = rλ, (λ ∈ G) belongs to the algebra L(H2
χ). The function

C[f ]r : G 3 λ 7−→ C[f ] (rλ)

with r ∈ [0, 1/α) belongs to H2
χ and

‖f‖L2
χ

= sup
r∈[0,1/α)

(∫
G

|C[f ] (rλ)|2 dχ(λ)
)1/2

.

Proof. Let
(
ϕj,n

)
j∈N be an orthonormal basis in the space Enh with n ∈ N. Then the

system
(
ϕ̂j,n

)
j∈N is an orthonormal basis in H2

n. Indeed, substituting in (3.5) ωn = ϕj,n
and ψn = ϕi,n with j 6= i we have∫

G

ϕ̂j,n ϕ̂i,n dχ =
〈
ϕi,n | ϕj,n

〉
F

= 0,
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i.e., ϕ̂j,n ⊥ ϕ̂i,n in L2
χ. So, the system

(
ϕ̂j,n

)
is orthonormal in the space L2

χ. If ξ⊗n =∑
j 〈ξ⊗n | ϕj,n〉Fϕj,n denotes the Fourier expansions under

(
ϕj,n

)
of an element ξ ∈ E

then we have

Cn(ξ, ζ) := ℵ2n
〈
αnξ⊗n | ζ⊗n

〉
F

= (rα)n
∑
j∈N

ϕ̂j,n(λ)ϕ̂j,n(ζ),

i.e., Cn(ξ, ζ) = (rα)nCn(λ, ζ) with ζ = Uy}, λ = Ux} ∈ G for all x, y ∈ G and ξ = rαλ,
(rα = ‖ξ‖E). So,

C
(
ξ, ζ
)

=
∑
n∈Z+

(rα)n
∑
j∈N

ϕ̂j,n(λ)ϕ̂j,n(ζ) =
∑
n∈Z+

(rα)nCn(ζ, λ).

Theorem 3.1 implies that∫
G

ϕ̂j,n(ζ)Cn(ξ, ζ) dχ(ζ) = ϕ̂j,n(ξ)

∫
G

ϕ̂j,n(ζ) ϕ̂j,n(ζ) dχ(ζ) = ϕ̂j,n(ξ)

for all ϕj,n and ξ ∈ G. Since
(
ϕ̂j,n

)
is an orthonormal basis in H2

n, the integral operator

with kernel Cn produces the identity mapping on H2
n.

Let f =
∑
n∈Z+

fn ∈ H2
χ with fn ∈ H2

n. Using that fn ⊥ Cm at n 6= m in L2
χ, we obtain

f(ξ) =
∑
n∈Z+

∫
G

Cn(ξ, ζ)fn(ζ) dχ(ζ) =

∫
G

C(ξ, ζ)f(ζ) dχ(ζ)

for all ξ ∈ G. It follows that the series C[f ](ξ) =
∑
n∈Z+

C[fn](ξ) with

C[fn](ξ) =

∫
G

Cn(ξ, ζ)fn(ζ) dχ(ζ) = ℵ2n
∫
G

〈
αξ
∣∣ ζ〉n

E
fn(ζ) dχ(ζ)

= (rα)n
∫
G

Cn(λ, ζ)fn(ζ) dχ(ζ) = (rα)nfn(λ) = fn(ξ)

is convergent in H2
χ by the variable λ ∈ G, uniformly by r ∈ [0, ε] with 0 < ε < 1/α.

Applying that Cn ⊥ fm and fn ⊥ fm at n 6= m in L2
χ, we have∥∥Cr[f ]

∥∥2
L2
χ

=

∫
G

∣∣∣∣ ∑
n∈Z+

(rα)n
∫
G

Cn(λ, ζ)fn(ζ) dχ(ζ)

∣∣∣∣2 dχ(λ)

=

∫
G

∣∣∣∣ ∑
n∈Z+

(rα)nfn(λ)

∣∣∣∣2dχ(λ) =

∥∥∥∥∑(rα)nfn

∥∥∥∥2
L2
χ

=
∑
n∈Z+

(rα)2n‖fn‖2L2
χ

for any r < 1/α. It follows that

sup
r∈[0,1/α)

∑
(rα)2n‖fn‖2L2

χ
=
∑
‖fn‖2L2

χ
= ‖f‖2L2

χ
.

Via the Cauchy-Schwarz inequality, we have∥∥Cr[f ]
∥∥
L2
χ
≤ 1

(1− r2α2)1/2

( ∑
n∈Z+

‖fn‖2L2
χ

)1/2

=
‖f‖L2

χ

(1− r2α2)1/2

for all f ∈ H2
χ. Hence, the operator (4.3) belongs to L(H2

χ). �

Theorem 4.3. Let the assumptions of Theorem 3.1 and the condition (4.2) are simul-
taneously satisfied. Then for any f =

∑
n∈Z+

fn ∈ H2
χ with fn ∈ H2

n the integral transform

(1.1) with the Cauchy type kernel (4.1) is a unique analytic extension C[f ] of the function
f on the open ball B with the Taylor coefficients at the origin

(4.4)
dn0C[f ](ξ)

n!
= ℵ2n

∫
G

〈αξ | ζ〉nE fn(ζ) dχ(ζ), ξ ∈ E.
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For each analytic function C[f ] its radial boundary values on the orbit G are equal to f
in the following sense

(4.5) lim
r→1/α

∫
G

|Cr[f ]− f |2 dχ = 0, r ∈ [0, 1/α) .

Proof. Via Proposition 4.1 C(ξ, ·) is an analytic C(K)-valued function by ξ ∈ B. Hence,
the function C[f ] determined by (1.1) is also analytic by ξ ∈ B in view of [3, 3.1.2].
Differentiating at the origin, we obtain

dn0C[f ](ξ)

n!
= ℵ2n

∫
G

〈αξ | ζ〉nE fn(ζ) dχ(ζ) = C[fn](ξ), ξ ∈ B.

By the Cauchy-Schwarz inequality,

|C[fn](ξ)| ≤ ℵ2n
∫
G

∣∣〈αξ | ζ〉nE fn(ζ)
∣∣ dχ(ζ) ≤ ℵ2n‖αξ‖nE‖fn‖L2

χ

for all ξ ∈ E. Hence, any C[fn] is a n-homogeneous polynomial on E, which takes the form
(4.4). As it is well known [3, 2.4.2], continuous Taylor coefficients uniquely define the
analytic function C[f ] on B. So, the uniqueness of the analytic extension C[f ] is proved.
Finally, using the orthogonal property we have∫

G

|Cr[f ]− f |2 dχ =
∑
n∈Z+

(
r2nα2n − 1

)
‖fn‖2L2

χ
−→ 0

if r → 1/α and the theorem is proved. �

Following to [6], by the Hardy space associated with G we mean the space of analytic
functions H2

χ(B) :=
{
C[f ] : f ∈ H2

χ

}
, defined by the formula (1.1), with the finite norm∥∥C[f ]

∥∥
H2
χ

= sup
r∈[0,1/α)

(∫
G

∣∣C[f ](rλ)
∣∣2 dχ(λ)

)1/2

.

Corollary 4.4. The following antilinear isometry is valid:

H2
χ(B) ' Fh.

Proof. Since
∥∥C[f ]

∥∥
H2
χ

= ‖f‖L2
χ

for all f ∈ H2
χ, the isometry H2

χ(B) ' H2
χ holds. Now

the desired isometry H2
χ(B) ' Fh at once follows from Theorem 3.1. �

5. The case of reduced Heisenberg group

In what follows we put G = H, where the Cartesian product H = R2 × T stands for
the reduced Heisenberg group with the multiplication

(x, y, eiϑ) · (u, v, eiη) =
(
x+ u, y + v, ei(ϑ+η)ei(xv−yu)/2

)
,

having the Haar measure dx dy dτ with τ = eiϑ ∈ T and dτ =
dϑ

2π
. We refer to [10] about

Heisenberg groups.
Let E = L2

R be the Hilbert space of quadratically integrable complex functions f on R
with the norm ‖f‖L2

R
=
( ∫

R |f(x)|2 dx
)1/2

. Consider in L2
R the orthonormal basis

ϕj : R 3 t 7−→ e−t
2/2

4
√
π

φj−1(t)√
2j−1(j − 1)!

, φj−1(t) = (−1)j−1et
2 dj−1

dtj−1
e−t

2

,

where j ∈ N and φj−1 is the Hermite (j − 1)-degree polynomial. Note that the space
L2
Rn = ⊗nhL2

R coincides with the closure of complex linear span of functions{
ξ1(t1) . . . ξn(tn) : ξ1, . . . , ξn ∈ L2

R, (t1, . . . , tn) ∈ Rn
}
.
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Therefore, �nhL2
R is the closed subspace in L2

Rn of symmetric functions with respect to
the permutations of n scalar variables. The following system

ϕ
⊗(k)
(j) := ϕ⊗k1j1

� . . .� ϕ⊗knjn

with all (j) = (j1, . . . , jn) ∈ Nn, j1 < . . . < jn and (k) = (k1, . . . , kn) ∈ Zn+ such that
k1 + · · ·+ kn = n forms an orthogonal basis in �nhL2

R, which is non-orthonormal and

‖ϕ⊗(k)(j) ‖�nhL2
R

=
√

(k)!/n!, where (k)! := k1! . . . kn!. (see [2, 2.2.2]).

The Schrödinger representation U of the group H into L
(
L2
R
)

is given by

Ux,y,τξ(t) = τeixy/2eiytξ(t+ x), x, y, t ∈ R, τ ∈ T, ξ ∈ L2
R,

which is unitary and irreducible. It is easy to see that the codomain of U contains the
complex cyclic group, since T =

{
U0,0,τ : (0, 0, τ) ∈ H

}
. Via the Stone-von Neumann

Theorem every irreducible unitary representation V of H over any Hilbert space E, satis-
fying the condition V (0, 0, τ)ξ = τξ for all τ ∈ T and ξ ∈ E, is unitarily equivalent to the
Schrödinger representation U .

The Gauss density function

} : R 3 t 7−→ π−1/4e−t
2/2 (i.e. } = ϕ1)

belongs to the unit sphere S ⊂ L2
R and the H-orbit of }

G =
{
Ux,y,τ} ∈ L2

R : (x, y, τ) ∈ H
}

=
{
gx,y,τ (t) = π−1/4τeixy/2eiyte−(t+x)

2/2 : (x, y, τ) ∈ H, t ∈ R
}

also contains in S, as a function of the variable t for any fixed (x, y, τ) ∈ H. In fact, for
any fixed (x, y, τ) ∈ H we have

‖Ux,y,τ}‖L2
R

=

(∫
R

∣∣∣π−1/4e−t2/2∣∣∣2 dt)1/2

= 1.

The stationary subgroup
{

(x, y, τ) ∈ H : Ux,y,τ} = }
}

coincides with the group unit
(0, 0, 1) ∈ H, hence the equality (2.2) has the form∫

G

f dχ =

∫
H

(f ◦ Ux,y,τ )(}) dx dy dτ,

where the H-invariant measure χ on G is defined by the Haar measure dx dy dτ on H and
f ◦ U is an integrable complex function on H.

Consider the diagonal nth tensor power of Schrödinger’s representation

H 3 (x, y, τ) 7−→ U⊗nx,y,τ ∈ L
(
�nhL2

R
)
, n ∈ N

and put U⊗0x,y,τ = 1. Let L2
χ be the corresponding Hilbert space of quadratically χ-

integrable complex functions on the orbit G. Each function

}n
(
ϕ
⊗(k)
(j)

)
: H 3 (x, y, τ) 7−→

〈
(Ux,y,τ})⊗n

∣∣ ϕ⊗(k)(j)

〉
L2

Rn

with k1 + · · ·+ kn = n, belongs to L2
χ and the following operator

}n : �nh L2
R 3 ϕ

⊗(k)
(j) −→ }n

(
ϕ
⊗(k)
(j)

)
∈ L2

χ, (j) ∈ Nn

is well-defined. In fact, calculating the Fourier transformation by the variable t ∈ R, we
have

}1
(
ϕj
)
(x, y, τ) =

τeixy/2(−1)j−1√
2j−1π(j − 1)!

∫
R
eiyte−(x+t)

2/2et
2/2 d

j−1

dtj−1
e−t

2

dt

=
τeixy/2(−1)j−1(x− iy)j−1√

2j−1(j − 1)!
e(−x

2−2ixy−y2)/4
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for any ϕj . For all (k) such that k1 + · · ·+ kn = n it follows∣∣∣}n(ϕ⊗(k)(j)

)∣∣∣ =

n∏
l=1

∣∣}1(ϕjl)(x, y, τ)
∣∣kl = e−

n
4 (x2+y2)

n∏
l=1

(
(x2 + y2)jl−1

2jl−1(jl − 1)!

)kl/2
.

Since, ∫ ∞
0

e−nu
n∏
l=1

(
ujl−1

(jl − 1)!

)kl
du =

n∏
l=1

m!

(jl − 1)!kl

∫ ∞
0

e−nu
um

m!
du

=

n∏
l=1

m!

(jl − 1)!kl
1

nm

∫ ∞
0

e−nu
(un)m

m!
du ≤ 1

n

with m =
n∑
l=1

(jl − 1)kl and

∫ ∞
−∞

∫ ∞
−∞

f

(
x2 + y2

2

)
dx dy = 4

∫ ∞
0

∫ π/2

0

f(u) du dϑ = 2π

∫ ∞
0

f(u) du,

where x2 = 2u cos2 ϑ and y2 = 2u sin2 ϑ, we obtain that each such function }n
(
ϕ
⊗(k)
(j)

)
belongs to L2

χ and the following estimation holds:

(5.1)

∫
H

∣∣∣}n(ϕ⊗(k)(j)

)∣∣∣2 dx dy dτ ≤ 2π

n
.

Any element ψn ∈ �nhL2
R with ‖ψn‖�nhL2

R
≤ 1 may be presented in the form of its

Fourier decomposition

ψn =
∑

(k),(j)

α
(k)
(j)ϕ

⊗(k)
(j)

√
n!

(k)!
, k1 + · · ·+ kn = n,

∑
(k),(j)

|α(k)
(j) |

2 ≤ 1.

Applying the inequality (5.1), we have∥∥∥∥ ∑
(k),(j)

α
(k)
(j)}n

(
ϕ
⊗(k)
(j)

)√ n!

(k)!

∥∥∥∥
L2
χ

≤
∑

(k),(j)

α
(k)
(j)

√
n!

(k)!

∥∥∥}n(ϕ⊗(k)(j)

)∥∥∥
L2
χ

≤
∑

(k),(j)

α
(k)
(j)

√
n!

(k)!

2π

n
.

It follows that

‖}n(ψn)‖2L2
χ
≤ 2π(n− 1)!‖ψn‖2�nhL2

R
or ‖}n‖ ≤

√
2π(n− 1)!.

If (j) = (1, j2, . . . , jn) and (k) = (n, 0, . . . , 0) we have that ϕ
⊗(k)
(j) = ϕ⊗n1 and∫

H

∣∣}n(ϕ⊗n1

)∣∣2 dx dy dτ =

∫
H

∣∣}1(ϕ1

)
(x, y, τ)

∣∣2n dx dy dτ
=

∫
R2

∣∣∣e−(x2+2ixy+y2)/4
∣∣∣2ndx dy =

2π

n
.

Since 1 = ‖ϕ⊗n1 ‖�nhL2
R

=

√
n

2π

∥∥}n(ϕ⊗n1

)∥∥
L2
χ
, we have ϕ⊗n1 /∈ ker }n. It follows that

‖}n‖ = sup
‖ψn‖�n

h
L2
R≤1

‖}n(ψn)‖L2
χ
≥
∥∥}n(ϕ⊗n1

)∥∥
L2
χ

=

√
2π

n
.
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Hence, lim
n→∞

n
√
ℵ2n ≤ lim

n→∞
n

√
n

2π
= 1 and the Cauchy type kernel has the form

Ĉ (ξ, Ux,y,τ}) = 1 +

∞∑
n=1

ℵ2n
〈
ξ
∣∣ Ux,y,τ}〉nL2

R

= 1 +

∞∑
n=1

ℵ2n
(
τeixy/2

4
√
π

∫
R
ξ(t)eiyt−(t+x)

2/2 dt

)n
,

which is a L2
χ-valued analytic function by the variable ξ ∈ B, where B ⊂ L2

R. Thus, for

any f ∈ H2
χ and ξ ∈ B we have

Ĉ[f ](ξ) =

∫
H
Ĉ (ξ, Ux,y,τ}) (f ◦ Ux,y,τ )(}) dx dy dτ,

lim
r→1

∫
H

∣∣∣Ĉr[f ](x, y, τ)− (f ◦ Ux,y,τ )(})
∣∣∣2 dx dy dτ = 0,

where the functions Ĉ[f ]r : H 3 (x, y, τ) 7−→ Ĉ[f ](rUx,y,τλ) with r ∈ [0, 1) belong to H2
χ

for any λ ∈ S.
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