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HILL’S POTENTIALS IN HÖRMANDER SPACES AND THEIR

SPECTRAL GAPS

V. A. MIKHAILETS AND V. M. MOLYBOGA

Abstract. The paper deals with the Hill–Schrödinger operators with singular pe-

riodic potentials in the space Hω(T) ⊂ H−1(T). The authors exactly describe the
classes of sequences being the lengths of spectral gaps of these operators. The func-

tions ω may be nonmonotonic. The space Hω(T) coincides with the Hörmander space

Hω
2 (T) with the weight function ω(

√
1 + ξ2) if ω is in the Avakumovich class OR.

1. Introduction

Let us consider the Hill–Schrödinger operators

(1) S(q)u := −u′′ + q(x)u, x ∈ R,
with 1-periodic real-valued potentials

q(x) =
∑
k∈Z

q̂(k)eik2πx ∈ L2(T,R), T := R/Z,

in the complex Hilbert space L2(R).
It is known that the operators S(q) are lower semibounded and self-adjoint. Their

spectra are absolutely continuous and have a zone structure [26].
Spectra of the operators S(q) are completely defined by the location of the endpoints

of the spectral gaps {λ0(q), λ±n (q)}∞n=1 which satisfy the inequalities

(2) −∞ < λ0(q) < λ−1 (q) ≤ λ+
1 (q) < λ−2 (q) ≤ λ+

2 (q) < · · ·
For even/odd numbers n ∈ Z+, the endpoints of spectral gaps {λ0(q), λ±n (q)}∞n=1 are
eigenvalues of the periodic/semiperiodic problems on the interval [0, 1]:

S±(q)u := −u′′ + q(x)u = λu,

Dom(S±(q)) :=
{
u ∈ H2[0, 1]

∣∣∣u(j)(0) = ±u(j)(1), j = 0, 1
}
.

Interiors of the spectral bands (stability or tied zones)

B0(q) := (λ0(q), λ−1 (q)), Bn(q) := (λ+
n (q), λ−n+1(q)), n ∈ N,

together with the collapsed gaps

λ = λ+
n = λ−n , n ∈ N,

are characterized as a locus of those real λ ∈ R for which all solutions of the equation
−u′′ + q(x)u = λu are bounded. Open spectral gaps (instability or forbidden zones)

G0(q) := (−∞, λ0(q)), Gn(q) := (λ−n (q), λ+
n (q)) 6= ∅, n ∈ N,
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make a set of those real λ ∈ R for which any nontrivial solution of the equation −u′′ +
q(x)u = λu is unbounded.

We will study the behaviour of the lengths of the spectral gaps

γq(n) := λ+
n (q)− λ−n (q), n ∈ N,

of the operators S(q) in terms of the behaviour of the Fourier coefficients {q̂(n)}n∈N of
the potentials q with respect to appropriate weight spaces, that is by means of potential
regularity.

For L2(T,R)-potentials, a fundamental result in this problem follows from the Marchenko
and Ostrovskii paper [13] (see also [12]),

(3) q ∈ Hs(T,R)⇔
∑
n∈N

(1 + 2n)2sγ2
q (n) <∞, s ∈ Z+,

where Hs(T,R), s ∈ Z+, denotes the Sobolev spaces of 1-periodic real-valued functions
on the circle T.

To characterize regularity of the potentials in a finer, way we will use the real Hörmander
spaces

Hω(T,R) :=
{
f =

∑
k∈Z

f̂ (k)eik2πx
∣∣∣ f̂(k) = f̂(−k), k ∈ Z,

∑
k∈N

ω2(k)|f̂(k)|2 <∞
}
,

where ω(·) is a positive weight. In the case of Sobolev spaces, the weight is a power func-
tion. Such definition of the real Hörmander spaces on the circle completely corresponds
to the theory of function spaces on a smooth closed manifold [19, 20] (for more details
see Appendix 5 and the monograph [21]).

Djakov, Mityagin [2], Pöschel [24, 25] extended the Marchenko–Ostrovskii Theorem
(3) to the general class of weights Ω = {Ω(k)}k∈N satisfying the following conditions:

(i) Ω(k)↗∞, k ∈ N (monotonicity);
(ii) Ω(k +m) ≤ Ω(k)Ω(m) ∀k,m ∈ N (submultiplicity);

(iii) log Ω(k)
k ↘ 0, k →∞ (subexponentiality).

For such weights they proved that

(4) q ∈ HΩ(T,R)⇔ {γq(·)} ∈ hΩ(N).

Here hΩ(N) is the Hilbert space of weighted sequences generated by the weight Ω(·).
For the power weights

ws = {ws(k)}k∈N , ws(k) := (1 + 2k)s, s ∈ R,

it is convenient to use shorter notation Hωs(T) ≡ Hs(T), hωs(N) ≡ hs(N).
After the celebrated Kronig and Penney paper [11], the Schrödinger operators with

(periodic) distributions as potentials came into mathematical physics. A subsequent
development of quantum mechanics stimulated an active research in area (see the bibli-
ography in the monograph [1]).

In this paper, we study the Hill–Schrödinger operators S(q) with 1-periodic real-valued
distribution potentials q in the negative Sobolev space H−1(T,R),

(5) q(x) =
∑
k∈Z

q̂(k)eik2πx ∈ H−1(T,R).

This means that

(6s)
∑
k∈N

(1 + 2k)2s|q̂(k)|2 <∞, s = −1, and q̂(k) = q̂(−k), k ∈ Z.

All real-valued pseudo-functions, measures, pseudo-measures and some more singular
distributions on the circle satisfy this condition.
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Under the assumption (5) the operators (1) can be well defined in the complex Hilbert
space L2(R) in the following basic ways:

• as form-sum operators;
• as quasi-differential operators (minimal operators, maximal operators, the Fried-

richs extensions of the minimal operators);
• as limits of operators with smooth 1-periodic potentials in the norm resolvent

sense.

Equivalence of all these definitions was proved in the paper [16].
The Hill–Schrödinger operators S(q) are lower semibounded and self-adjoint, their

spectra are absolutely continuous and have a band and gap structure as in the classical
case [7, 10, 16, 3, 22, 5]. The endpoints of spectral gaps satisfy the inequalities (2). For
even/odd numbers n ∈ Z+, they are eigenvalues of the periodic/semiperiodic problems
on the interval [0, 1] [16, Theorem C].

In the paper [17], we extended the Marchenko–Ostrovskii Theorem (3) to the case of
singular potentials q ∈ H−1+(T,R). This means that q satisfies (6s) with some s > −1.
We proved that

q ∈ Hs(T,R)⇔ {γq(·)} ∈ hs(N), s ∈ (−1,∞).

Djakov, Mityagin [4] extended the latter statement to the limiting case s = −1,

(7) q ∈ Hs(T,R)⇔ {γq(·)} ∈ hs(N), s ∈ [−1,∞),

under the a priori assumption q ∈ H−1(T,R). Moreover, they extended the result (4)
to the case of potentials q ∈ H−1(T,R) and the more general weights

(8) q ∈ HΩ∗
(T,R)⇔ {γq(·)} ∈ hΩ∗

(N), Ω∗ :=

{
Ω(k)

1 + 2k

}
k∈N

,

where the weights Ω = {Ω(k)}k∈N are supposed to be monotonic, submultiplicative and
subexponential.

2. Main results

The aim of this paper is to extend the result (7) to a more extensive class of weights,
for which the conditions of monotonicity and regularity of the weight behaviour may not
hold, and to supplement the result (8).

For convenience of formulation of the results we introduce the following definition.

Definition. Let the set X ⊂ H−1(T,R). We write ω ∈ MO(X) if

q ∈ Hω(T,R)⇔ {γq(·)} ∈ hω(N) ∀q ∈ X.

It is easy to see that

X ⊂ Y ⇒ MO(X) ⊂ MO(Y ),

and

(3)⇔ ωs ∈ MO(L2(T)), s ∈ Z+,

(4)⇔ Ω ∈ MO(L2(T)),

(7)⇔ ωs ∈ MO(H−1(T)), s ∈ [−1,∞),

(8)⇔ Ω∗ ∈ MO(H−1(T)).

Further, let us recall that lower order µ(ω) and upper order ρ(ω) of a weight sequence
ω = {ω(k)}k∈N are defined as follows:

µ ≡ µ(ω) := lim inf
k→∞

logω(k)

log k
, ρ ≡ ρ(ω) := lim sup

k→∞

logω(k)

log k
.
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The following statement is the main result of this paper.

Theorem 1. Let q ∈ H−1(T,R) and a weight ω = {ω(k)}k∈N satisfy the conditions

−1 < µ(ω) ≤ ρ(ω) <∞,(9)

ρ(ω) <

{
1 + 2µ(ω) if µ(ω) ∈ (−1, 0],

1 + µ(ω) if µ(ω) ∈ [0,∞).
(10)

Then ω ∈ MO(H−1(T)).

Remark 1.1. In the case of the L2(T)-potentials, we prove a stronger result in the pa-
per [18].

Remark 1.2. Theorem 1 shows that if the sequence {|q̂(nk)|}∞k=1 decreases/increases
particularly fast on a certain subsequence {nk}∞k=1 ⊂ N, then so does the sequence
{γq(nk)}∞k=1 on the same subsequence. The converse statement is also true.

Corollary 1.1. Let, for a weight ω = {ω(k)}k∈N, there exist the order

lim
k→∞

logω(k)

log k
= s ∈ (−1,∞).

Then ω ∈ MO(H−1(T)).

From Corollary 1.1 we obtain the following result.

Corollary 1.2. (cf. [17]). Let the weight ω = {ω(k)}k∈N be a regularly varying sequence
at +∞ in the Karamata sense with the index s ∈ (−1,∞). Then ω ∈ MO(H−1(T)).

Note that the assumption of Corollary 1.2 holds, for instance, for the weight

ω(k) = (1 + 2k)s (log(1 + k))r1(log log(1 + k))r2 · · · (log log · · · log(1 + k))rp ,

s ∈ (−1,∞), {r1, . . . , rp} ⊂ R, p ∈ N,

see the monograph [27].
Theorem 1 extends the statement (7) to the case of non-regularly varying weights.
The following example shows that statement (8) does not cover Corollary 1.1 and

Theorem 1.

Example A. Let s ∈ (−1,∞). Set

ω(k) :=

{
ks log(1 + k) if k ∈ 2N,
ks if k ∈ (2N− 1).

Then the weight ω = {ω(k)}k∈N satisfies the conditions of Corollary 1.1. But one can
prove that the weight

ω∗ := {(1 + 2k)ω(k)}k∈N
is not equivalent to any monotonic weight.

3. Preliminaries

Here, for convenience, we define Hilbert spaces of weighted two-sided sequences and
formulate the Convolution Lemma 2.

For every positive sequence ω = {ω(k)}k∈N there exists its unique extension on Z,
which is a two-sided sequence satisfying the conditions

(i) ω(0) = 1,
(ii) ω(−k) = ω(k) ∀k ∈ N,
(iii) ω(k) > 0 ∀k ∈ Z.
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Let hω(Z) ≡ hω(Z,C) be the Hilbert space of two-sided sequences,

hω(Z) :=
{
a = {a(k)}k∈Z

∣∣∣∑
k∈Z

ω2(k)|a(k)|2 <∞
}
,

(a, b)hω(Z) :=
∑
k∈Z

ω2(k)a(k)b(k), a, b ∈ hω(Z),

‖a‖hω(Z) := (a, a)
1/2
hω(Z), a ∈ hω(Z).

By hω(n), we will denote the n-th term of the sequence in the space hω(Z).
Basic weights which we use are the power ones,

ws = {ws(k)}k∈Z : ws(k) = (1 + 2|k|)s, s ∈ R.
In this case it is convenient to use shorter notations, hωs(Z) ≡ hs(Z), s ∈ R.

Operation of convolution for two-sided sequences

a = {a(k)}k∈Z and b = {b(k)}k∈Z
is formally defined as follows:

(a, b) 7→ a ∗ b, (a ∗ b)(k) :=
∑
j∈Z

a(k − j) b(j), k ∈ Z.

Sufficient conditions for the convolution to exist as a continuous map are given by the
following known lemma, see for example [9].

Lemma 2. (The Convolution Lemma). Let s, r ≥ 0, and t ≤ min(s, r), t ∈ R. If
s + r − t > 1/2 then the convolution (a, b) 7→ a ∗ b is well defined as a continuous map
acting in the spaces

(a) hs(Z)× hr(Z)→ ht(Z),
(b) h−t(Z)× hs(Z)→ h−r(Z).

In the case s+ r − t < 1/2, this statement fails to hold.

4. The Proofs

Basic point of our proof of Theorem 1 is to obtain sharp asymptotic formulae for
lengths of the spectral gaps {γq(n)}n∈N of the Hill–Schrödinger operators S(q).

Lemma 3. The lengths of spectral gaps {γq(n)}n∈N of the Hill-Schrödinger operators
S(q) with q ∈ Hs(T,R), s ∈ (−1,∞), uniformly on the bounded sets of potentials q
in the corresponding Sobolev spaces Hs(T) for n ≥ n0, n0 = n0

(
‖q‖Hs(T)

)
, satisfy the

following asymptotic formulae:

γq(n) = 2|q̂(n)|+ h1+2s−ε(n), ε > 0, if s ∈ (−1, 0],(11)

γq(n) = 2|q̂(n)|+ h1+s(n) if s ∈ [0,∞).(12)

Proof of Lemma 3. The asymptotic estimates (11) were established by the authors in the
paper [17, Theorem 1] by using the isospectral transformation method for the problem
[23, 14, 15].

The asymptotic formulae (12) follow from [8, Theorem 1.2] due to the Convolution
Lemma 2 (see also [8, Appendix]). Indeed, from [8, Theorem 1.2] with q ∈ Hs(T,R),
s ∈ [0,∞), we get

(13)
∑
n∈N

(1 + 2n)2(1+s)
(

min
±

∣∣∣γq(n)± 2
√

(q̂ + %)(−n)(q̂ + %)(n)
∣∣∣ )2

≤ C
(
‖q‖Hs(T)

)
,

where

%(n) :=
1

π2

∑
j∈Z\{±n}

q̂(n− j)q̂(n+ j)

(n− j)(n+ j)
.



240 V. A. MIKHAILETS AND V. M. MOLYBOGA

Without loos of generality, we assume that

(14) q̂(0) := 0.

Taking into account that the potentials q are real-valued we have

q̂(k) = q̂(−k), %(k) = %(−k), k ∈ Z.
Then from (13) we get the estimates

(15) {γn(q)− 2 |q̂(n) + %(n)|}n∈N ∈ h
1+s(N).

Further, since by assumption, q ∈ Hs(T,R), that is, {q̂(k)}k∈Z ∈ hs(Z), we have{
q̂(k)

k

}
k∈Z
∈ h1+s(Z), s ∈ [0,∞),

taking into account (14). Applying the Convolution Lemma 2 we obtain

(16)

%(n) =
1

π2

∑
j∈Z

q̂(n− j)q̂(n+ j)

(n− j)(n+ j)
=

1

π2

∑
j∈Z

q̂(2n− j)
2n− j

· q̂(j)
j

=

({
q̂(k)

k

}
k∈Z
∗
{
q̂(k)

k

}
k∈Z

)
(2n) ∈ h1+s(N).

Finally, from (15) and (16) we get the necessary estimates (12).
The proof of Lemma 3 is complete. �

Proof of Theorem 1. Let q ∈ H−1(T,R) and ω = {ω(k)}k∈N be a given weight satis-
fying conditions (9) and (10) of Theorem 1. We need to prove the statement

(17) q ∈ Hω(T,R)⇔ {γq(·)} ∈ hω(N).

From the condition (9) and the definition of the lower and upper orders of a weight
sequence, we conclude that for the given weight ω = {ω(k)}k∈N the following estimates
are fulfilled:

kµ−δ � ω(k)� kρ+δ, −1 < µ ≤ ρ <∞, δ > 0.

Hence, the continuous embeddings

Hρ+δ(T) ↪→ Hω(T) ↪→ Hµ−δ(T),(18)

hρ+δ(N) ↪→ hω(N) ↪→ hµ−δ(N), −1 < µ ≤ ρ <∞, δ > 0(19)

are valid because of

(20) Hω1(T) ↪→ Hω2(T), hω1(N) ↪→ hω2(N) if ω1 � ω2.

Let q ∈ Hω(T,R), then from (18) we obtain that q ∈ Hµ−δ(T,R), δ > 0. Since δ > 0
is arbitrary, we may choose it so that

µ− δ > 0 if µ > 0,

µ− δ > −1 otherwise.

Further, using Lemma 3 we get the following asymptotic formulae for the lengths of
spectral gaps:

γq(n) = 2|q̂(n)|+ h1+2(µ−δ)−ε(n), ε > 0 if µ− δ ∈ (−1, 0],(21)

γq(n) = 2|q̂(n)|+ h1+µ−δ(n) if µ− δ ∈ [0,∞).(22)

Now, due to the possibility to choose δ > 0 and ε > 0 arbitrarily, we may take them
so that

1 + 2(µ− δ)− ε > ρ+ δ if µ− δ ∈ (−1, 0],(23)

1 + µ− δ > ρ+ δ if µ− δ ∈ [0,∞).(24)

This choice is possible since (9) and (10) hold.
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Taking into account (23), (24) and using (20), it follows from (21), (22) that

γq(n) = 2|q̂(n)|+ hρ+δ(n).

From the latter formula and formula (19) we finally obtain

(25) γq(n) = 2|q̂(n)|+ hω(n).

Hence, as by the assumption, q ∈ Hω(T,R), and as a consequence of {q̂(·)} ∈ hω(N), we
get {γq(·)} ∈ hω(N).

The implication (⇒) in (17) has been proved.
Conversely, let {γq(·)} ∈ hω(N). Then applying (19) we have {γq(·)} ∈ hµ−δ(N),

δ > 0,
µ− δ > 0 if µ > 0,

µ− δ > −1 otherwise.

Now, applying (7) we conclude that q ∈ Hµ−δ(T,R).
We have already proved the implication

q ∈ Hµ−δ(T,R)⇒ (25).

So we have
γq(n) = 2|q̂(n)|+ hω(n),

and hence {q̂(·)} ∈ hω(N), i.e., q ∈ Hω(T,R).
The implication (⇐) in (17) has been proved.
The proof of Theorem 1 is complete. �

5. Hörmander spaces on the circle

Let OR be a class of all Borel measurable functions ω : (0,∞) → (0,∞), for which
there exist real numbers a, c > 1 such that

c−1 ≤ ω(λt)

ω(t)
≤ c, t ≥ 1, λ ∈ [1, a].

The space Hω
2 (Rn), n ∈ N, consists of all complex-valued distributions u ∈ S ′(Rn)

such that their Fourier transformations û are locally Lebesgue integrable on Rn and
ω(〈ξ〉)|û(ξ)| ∈ L2(Rn) with 〈ξ〉 := (1 + ξ2)1/2. This space is a Hilbert space with respect
to the inner product

(u1, u2)Hω
2 (Rn) :=

∫
Rn

ω2(〈ξ〉)û1(ξ)û2(ξ) dξ.

It is a special case of the isotropic Hörmander spaces [6]. If Ω is a domain in Rn with
a smooth boundary, then the spaces Hω

2 (Ω) are defined in a standard way.
Let Γ be an infinitely smooth closed oriented manifold of dimension n ≥ 1 with a

given on it density dx. Let D′(Γ) be the topological vector space of distributions on Γ
dual to C∞(Γ) with respect to the extension by continuity of the inner product in the
space L2(Γ) := L2(Γ, dx).

Now, let us define the Hörmander spaces on the manifold Γ. Choose a finite atlas from
the C∞-structure on Γ formed by the local charts αj : Rn ↔ Uj , j = 1, . . . , r, where
the open sets Uj form a finite covering of the manifold Γ. Let functions χj ∈ C∞(Γ),
j = 1, . . . , r, satisfying the condition suppχj ⊂ Uj form a partition of unity on Γ .
By definition, the linear space Hω

2 (Γ) consists of all distributions f ∈ D′(Γ) such that
(χjf) ◦αj ∈ Hω

2 (Rn) for every j, where (χjf) ◦αj is a representation of the distribution
χjf in the local chart αj . In the space Hω

2 (Γ), the inner product is defined by the formula

(f1, f2)Hω
2 (Γ) :=

r∑
j=1

((χjf1) ◦ αj , (χjf2) ◦ αj)Hω
2 (Rn) ,
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and induces the norm ‖f‖Hω
2 (Γ) := (f, f)

1/2
Hω

2 (Γ).

There exists an alternative definition of the space Hω
2 (Γ) which shows that this space

does not depend (up to equivalence of norms) on the choice of the local charts, the
partition of unity, and that it is a Hilbert space.

Let a ΨDO A of order m > 0 be elliptic on Γ, and let it be a positive unbounded

operator on the space L2(Γ). For instance, we can set A := (1−4Γ)
1/2

, where 4Γ is
the Beltrami-Laplace operator on the Riemannian manifold Γ. Redefine the function
ω ∈ OR on the interval 0 < t < 1 by ω(t) := ω(1) and introduce the norm

(5.1) f 7→ ‖ω(A1/m)f‖L2(Γ), f ∈ C∞(Γ).

Theorem 5.1. If ω ∈ OR, then the space Hω
2 (Γ) coincides, up to the equivalence of

norms, with the completion of the linear space C∞(Γ) with respect to the norm (5.1).

Since the operator A has a discrete spectrum, the space Hω
2 (Γ) can be described by

means of the Fourier series. Let {λk}k∈N be a monotonically non-decreasing, positive
sequence of all eigenvalues of the operator A, enumerated according to their multiplicity.
Let {hk}k∈N be an orthonormal basis in the space L2(Γ) formed by the corresponding
eigenfunctions of the operator A, Ahk = λkhk. Then for any distribution, the following
expansion into the Fourier series converging in the linear space D′(Γ) holds:

(5.2) f =

∞∑
k=1

ck(f)hk, f ∈ D′(Γ), ck(f) := (f, hk).

Theorem 5.2. The following formulae are fulfilled:

Hω
2 (Γ) =

{
f =

∞∑
k=1

ck(f)hk ∈ D′(Γ)
∣∣∣ ∞∑
k=1

ω2(k1/n)|ck(f)|2 <∞
}
,

‖f‖2Hω
2 (Γ) �

∞∑
k=1

ω2(k1/n)|ck(f)|2.

Note that for every distribution f ∈ Hω
2 (Γ), series (5.2) converges in the norm of the

space Hω
2 (Γ). If values of the function ω are separated from zero, then Hω

2 (Γ) ⊆ L2(Γ),
and everywhere above we may replace the space D′(Γ) by the space L2(Γ). For more
details, see [21, 19, 20].

Example B. Let Γ = T. Then n = 1, and we can choose A =
(
1− d2/dx2

)1/2
, where we

denote by x the natural parametrization on T. The eigenfunctions hk = eik2πx, k ∈ Z,
of the operator A form an orthonormal basis in the space L2(T). For ω ∈ OR we have

f ∈ Hω
2 (T)⇔ f =

∑
k∈Z

f̂(k)eik2πx,
∑

k∈Z\{0}

|f̂(k)|2ω2(|k|) <∞.

In this case, the function f is real-valued if and only if f̂(k) = f̂(−k), k ∈ Z. Therefore
the class Hω coincides with the Hörmander space Hω

2 (T,R) with the weight function

ω(
√

1 + ξ2) if ω ∈ OR.
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