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ON ASYMPTOTIC BEHAVIOR OF THE CONSTANTS IN
GENERALIZED KHINTCHINE’S INEQUALITY

V. V. MYKHAYLYUK AND V. A. BALAN

ABSTRACT. We establish an asymptotic behavior of the constants in Khintchine’s
inequality for independent random variables of mean zero.

1. INTRODUCTION

Let ()52, be the sequence of Rademacher functions
rn(t) = sign sin(2"wt), t€[0,1].
According to Khintchine’s inequality [1] for each n € N, p € [1,+00), and a sequence
(ar)72, of reals ar € R we have
n

Ly A0(Y ) <[ S| <0 (S )
k=1 P

- k=1
where || ||, is the norm of L, = L,[0,1],
1
40— 7 1sp<2 o _ 1 L I<p<2,
P 1, 2<p<+oo, r O(yp), 2<p<+oo.

Recall that a sequence (f,)52; of measurable functions f,, : [0,1] — R is called a
sequence of independent random wvariables (i.r.v.) if for each n € N and any intervals
[a1,D1], ..., [an, bn] C R, the following equality holds:

u( () 17 G bid)) = TT ol o D)}
k=1 k=1

On the other hand, Khintchine’s inequality was generalized in [2] for k-tuple products
of mean zero i.r.v. In particular, for each n € N, each collection (yx)}_; of i.r.v. y, € L,

p > 1, such that fol yrdp = 0 and for each collection of reals, (ax)y_, we have

)y  n 1 n n 3

« A 2 * 2

(1.2) qpi*p( E ai) < H E akkap < ﬂrB,(,O)p ( E ai) ;
k=1 k=1 k=1

where 7 = max{p,2},¢ = min{p,2},p* = max{p,ﬁ} —lar € R)1 <k <n, a=

inf dg, = .
1§Hkl§n|\yn|\q and f3, éign”yn”’"

We remark that inequality (1.2) can be obtained for the case of p =1 ([2]).
Moreover, inequality (1.2) can be written in the following way:
n 1

(1.3) anp<Zai)% < H zn:akkap < ﬁer(zn:ai)E,
k=1

k=1

where A, and B, are the largest and the smallest constants respectively such that this
inequality holds for each n € N, each collection (aj)j_, of reals a, and each collection
(yx)j—, of mean zero independent random variables yj.
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In particular, we have

n

122 anyrllp n

B, zsup{klﬁ tn e N,Zai =Lyi,...,Yn € Lp— i.r.v.}
T k=1

for each p > 1.

Note that (1.2) and B,(,O) < /p imply B, < p,/p. So, the question on the order of
magnitude for the function f(p) = B, naturally arises.

In [3], using standard methods and some combinatorial arguments we proved that
By, <pforallpeN.

So, the question of a similar estimation for B, for each p > 1 naturally arises as well.

In this paper we clarify arguments of [3], and with the help of a generalization of the
Riesz-Thorin theorem we show that B, < 2+/e(p+2) forallp > 1.

2. THE UPPER ESTIMATE OF By, FOR p € N

In this section we develop a method from [3] and obtain an upper estimate for By,
with p € N.

We recall that (a3 + -+ ap)™ = > v(k1y. .. ky)at .. aE" for each reals
ke A kn=m
a,...,a, € Rand m € N, where v(ky,...,k,) = M,L'k",

We need the following combinatorial statements.
Proposition 2.1. Let ky,...,k,, m1,...,m, be natural positive reals such that ki +
otk =myte4my =2p, k1, .k, ma, . my £ 1 and [ki—my| <1 forl <i < n.
Then, Y(k1,.-kn) < (%)P'

"/(m17~--1mn) -
Proof. Since k1+---+k, =my+---+my, thesets {i : k; =m;+1} and {i : k; = m;—1}
have the same quantity of elements which we denote by s. Let m; = k1 — 1,mg =
ko—+1,...,mos_ 1 =kos_ 1 —1,mos = kos+ 1. Then
A= ’}/(kl,,kn) - ]C2+1 ) k4+1 k25+1
y(ma, .. my) k1 ks kos—1
The expression A attains it’s most value when k1, ks, ..., kos_1 attain their least values.
Since mo;_1 7é 1 and ko;_1 = moj_1 + 1 75 1, mo;—1 > 2 and kg;_1 > 3 for 1 <i < s.
Then using the Cauchy inequality we obtain
kot tkosts)® s s
Ao B2t ) (has+1) (Fatdhaads) o (Bt ke =25\ _ (29— 25"
- 3% - 3% - 3s - 3s
We consider the function f(z) = (2 — l)x where z € (0, §]. Since f(§) = lin% f(x) =
xr—r
1, by Rolle’s theorem, the function f reaches it’s maximum at some point zo € (0, %),

where f'(z9) =0, i.e. In f(xg) = pp%;’o. Hence,

flxo) = 70 <eP.

Therefore, taking into account that s < p and f(x) <1 for each = € [§, p] we obtain
2\° /p s 2\° 2e\”
A<= - (=-1) < (= < (=) .
<(3) (-0 =(5) v = (5)

Proposition 2.2. Letp€e N, ay,...,a, € R.

n
Then > k1, kp)al L ake < (2ep- 3 a2)".
K1+ +kn=2p k=1
ki, kn#1
Proof. Without loss of generality we can assume that a; > ay > .-+ > a, > 0. Let
A= {(ki,kay....kn) ki 1, k1 +ka+ -+ k, = 2p} and B = {(m1,ma,...,my,) :
m,; is even, mj +msg+ .-+ m, = 2p}. Now we construct a mapping ¢ : A — B. Fix
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(k1,...,kn) € A. Denote by I the set of all numbers 1 <14 <n such that k; is even, and
by J the set of all numbers 1 < ¢ < n such that k; is odd. Since k1 + -+ - + k,, = 2p, the
set J has even quantity of elements. Let J = {j1,...,j25} where j; < jo < -+ < jas.
Then we set

ki, iel,
m; =19 ki+1, i=jgy_1, 115,
ki717 i:j2l, ].SZSS,
for each 1 <i <nand (my,...,my) = @(k1,...,kn).
Since the reals a; decrease and the indices j; increase,
(2.1) alfl coake <at™ g™,

Now since |k; — m;| < 1 for 1 < i < n, by Proposition 2.1 we have y(k1,...,k,) <

2e\P
(g) (Mg, ..., my).
Thus, if (mq,...,my) = @(k1,..., k) then

2e\” m m
(2.2) (ks .k )att ek < <3) y(ma,...,my)al™t . oan.

For each (m1,...,my) € B we put C = Cpyy ., = {(k1, -0 kn) 2 0(B1,y .o k) =
(mi,...,mp)} and N = Ny, = {8 < n:m; #0}.

Note that for each (ki1,...,k,) € C we have k; = m; for i ¢ N and k; € {m; —
1,m;,m; + 1} for ¢ € N. Furthermore, m; > 2 for i € N. So |[N| < p. Thus, by the
multiplication principle of ([4]) we have |C| < 3P.

Taking into account (2.2) we obtain

2e P m m
Z (ks ky)at ek < (3) Z Y(olkt, ... kn))al™ .. .ap
(

(K1 k) EA ki,....kn)EA

2e\?
<(5) T Cmmdrlmemar
(

my,...,my)EB

< (2e)P Z v(2l,.. ., 2ln)afl1 oai,

Ll =p
Now since
2p!
20,...,2l) = —————
A e TR TR
+1)...2
= (p ) p "Y(ll,...,ls)
(lh4+1)...20; - (25 + 1) ... 214
(2p)?
< 59 Yy, ls) =Pyl )
for each collection of reals ly,...,ls > 1,1 +--- + I = p, one has that
Z y(k1y ..k )ak . akn
(k1,...,kn)EA
n P
< (2ep)? Z (1, l)adht . aP e = (Zep . Z ai) .
It =p k=1

The following theorem is the main result of this section.
Theorem 2.3. By, < +/2ep for each p € N.

Proof. Fix n € N and a collection (yx)j_, of i.r.v. yp € L, of mean zero. Note that since
the random variables y1, ..., y, are independent,

1 1 1
/y'fl~-~yfi"'du=/ y'fldu-~-/ ynrdp =0,
0 0 0
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if k; = 1 for at least one of the integers. On the other hand,

1 1 1
k n _ k n
/ ity Iduf/ Iyllldu---/ lyhr | dp
0 0
n</8k71+ +kn._ﬂ§£

k n
< yallit - Nyalliz < Hyallap - - llynllzy <

Observe that it is sufficient to consider the case of ay,...,a, > 0.
Now we show that

n

Hzakyku R O AR

k=1
Using Proposition 2.2, we obtain

1 n 2p 1
/ (Zakyk) dp= > 7(k1,-.-,kn)a’f1-~-aﬁ”-/ vt ykndp
0 “k=1 0

kit +kn=2p

1
= Z 'y(kl,...,k)alfl...a’;"~/ Yo ykedy
0

k1, kp)alt L akn lykr .yl

dp

e

P
< Bi’; Z (k.. kn)att ek < 63;: . (2€p~ Zai) .

kit =2p k=1
Then

n n 1
Hzakka §ﬂ2p\/ 2610(2‘1%)27
k=1 2p k=1
and thus,

By, </ 2ep.

3. A GENERALIZATION OF THE RIESZ-THORIN THEOREM

In this section we prove a version of the Riesz-Thorin interpolation theorem [5] which
we will use to obtain an upper estimate of B, for each p > 1. The proof of this version
is similar to the proof of the classic theorem (see [5]).

We need Hadamard’s theorem about three lines [5].

Theorem 3.1. (Hadamard). Let I ={z € C: 0 < Rez <1}, f:II = C be a bounded
and analytic in 11 function. Then for each 6 € [0,1] we have

My < My~? - MY,
where My = sup{|f(0 +iy)| : y € R}.

Now assume n € N, reals satisfy 1 < p(l) < pgl) < 400, ..., 1 < p(”) < p(n) <
400, 1 < qo < q1 < oo, L (),1 < i< n,j € {0,1} are the spaces ofp —1ntegrable
functions z : [0,1] — K, where K e {C,R}, X; C L NORIEES X, C Lpgn) are linear
subspaces which contain all finite valued simple functlons on |0, 1] Y C Lg, is a linear
subspace, 71 : X1 —= Y, ..., T, : X,, = Y are operators, X = EB X; and T X =Y,
T(xy+ 4+ xn) =Ti(z1) + - + Tn(xy), where 1 € X1, .. xneX

For each a € (0, 1) and 1 < k < n we denote by p( ) the real pa) € [p (()k),p(lk)] such
that -5 = 1% + & and by g, the real ¢, € [go, ¢1] such that L = 1=2 4 «
p Po Pi qo q0

o
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Let 7 : R® — R be any norm on R". For each « € [0,1] by 7, we denote the norm on
X defined by

ral@) = Tl + -+ ) = 7l g [l o)
Then we set So =T : (X, 7) = (Y, | - lqu)-
Theorem 3.2. Let K= C. Then ||Sa| < ||Sol|*=% - ||S1||* for each o € [0,1].

Proof. Fix a € [0,1]. Denote ¢ = gn, p1 = p&l), ey P = p,(l") and K = ||So||*= - ||S1]|~.
It is enough to prove that

(3.1) ||Soc33||q <K - 7o()

for each = € X.
Since all norms on R™ are equivalent, the 7-convergence is equivalent to the coordinate-
wise convergence in R™. Moreover, the set of all simple functions is dense in every space

L,. So it is sufficient to prove (3.1) for any simple functions 1, ..., zp.
my
Let x), = 7'; az(vk)XAiﬁk, =21+ -+, and 7, (z) = 1. Then (3.1) takes the following
form:

(3.2) [Sazlly < K.

Hahn-Banach’s theorem implies that (3.2) is equivalent to the inequality | f(Sax)| < K
for each f € (Lg)* with ||f]| = 1. Thus, it is sufficient to check that for each simple

l
function v = 3 b;x,, with [[v]|y = 1 where % + % = 1 the following inequality holds
i=1
1
(3.3) | / o(B)Saz(t)dpl < K.
0
We consider the functions ¢1,...,0n,% @ C — C, ¢x(z) = 3% + &,
Po P

P(z) =12 + 2 where L + L =L + L =1, For each z € C we set
q0 qy q0 °l) q1 q1

my
wre = 3l Peer @ sign af) - (agp,) S xa,,

i=1

for1 <k <nifz, #0and x, =0if 2, =0,
Ty = (xl,z; cee 7xn,z)
and
l
ve = |67V Psign by,
i=1
0, =0,

wheresignz:{ . z;«éO for any z € C.

=]’
Observe that z, = x, vo = v,

; L—iy 1y vk [ Dk D
R VA Py
Analogously
. Pk . Pk Pk
i or(l+iy) = "0 —Hy<(k) _ (k)>7
D1 by Po

. ¢ . (d { . ¢ . (d d
q’-wuy):,“y(/—/)’ ¢ YA +iy) = +iy| 5 — ).
q q1 q1 )

0
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p(k) 1

0 N
du)

(
0

For each k, 1 < k < n, we have
mp
k i . k - i
D la e signal - (gl ) 7

1
sl o = ( /
1Yy Do 0 =
(k) —
o dM) o

-y 7 m
= el ™ (Z/
j=1"Aik
(k) 1

1— Pk_ 1 _
(k) (k
~ e (Z / (m“%““) n)”

ik

|a§k)|pk¥7k(iy)

1-—5
= [kl ™ '||17k||pk = lzxllp-
Analogously [z, 1iyll, 0 = 2kl vigllyy = llvisiylly = llvlly = 1. Then
(gl - lnigll,oo) = Uzl leallpn)s (ziyll,os - el ,em) =
([z1llpss - znllp,) and
(3.4) To(Ziy) =1, T1(T14iy) = L.

We define a function f: C — C by
l

1 1
f(Z) = / ’Uszzd;U' = / (Z |bi|q/w(Z)Sign biXBi) : T(xl,z + -+ xn,z) d/J'
0 0

i=1
n mg
= 33 Sl Ol s i g o [ T, dn
i=1k=1j=1 Bi

Since all the functions a?,a > 0, are analytic and bounded in II, the function f is the
same in II, as a linear combination of such exponential functions.
Now according to Holder’s inequality and (3.4), we obtain

1
|f(iy)| = ‘/O Uinmiydﬂ" < Hviyllq() NTziyllgo = Hvinq(] 180Ty llgo

< viyllgy - 150l - 70(2iy) = [1S0ll-
Analogously |f(1 + iy)| < ||S1]]. Now using Theorem 3.1 and the fact that x, = x and
Vo = v, We obtain

| / 1vasaxdu\ - | / lvaTxadu\ — |f(a)] < sup |f(a +iy)]

yeR
(Suplf(@y)\) - (sup [f(L+ i) )™ < [Sol'7* [ = K
yeER yeER
O

The following result gives an estimate for the norm of operator S, in the case when
K=R.
Corollary 3.3. Let K =R. Then ||Sa| < 2/Sol[*= - ||S1]|* for each o € [0,1].
Proof. Let for each a € [0,1] SS be the extension of the operator S, to the space Lga of
functions z : [0,1] — C.

Note that [|SS|| > ||Sa| and [|SS|| < sup (||Saz| +[[Sayll) < 2[Sa|l- By Theorem 2.2

lzlI<1
we have

1Sall < ISal < ISGI = - ST < 2+ S0l - 1Su]l*

4. THE MAIN RESULT

The following theorem gives an upper estimate for B,,.
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Theorem 4.1. Let 2 < py < p1, ¢ > 2, 8 € [0,1] and % = 1;0’3 + pﬁl. Then B, <
2B1-F. Bf .
0 1

n
Proof. Fix n € N, ay,...,a, € R such that Y af = 1 and ir.v. @1,...,2, € L,. It is

k=1
sufficient to prove that
n
| kz arillq
=1 1-5 B
———— < 2B - By
sup [z lq oo
1<k<n
At first we consider the case z1,...,%, € Lp, .

For each 1 < k < n we set ¢y, : Ly, [0,1] — Ly, ([0,1]"), ¢r(z)(t1, ..., tn) = z(tx).
Observe that all the mappings v are isometric embeddings.

Since the spaces Ly, [0, 1] and Ly, ([0, 1]™) are isometrically isomorphic [6], there exists
a linear isometry 1 : Ly, ([0,1]™) — Ly, [0,1]. Now let ¢r = 1) o ¢y, for each 1 < k < n.

Note that for any 21, ..., 2, € Ly, the functions ¢1(z1), ..., ¥, (2,) are i.r.v. Moreover,
for each ir.v. 21,...,2, € Ly, and reals by,...,b, € R we have

(4.1) 1> bezells = 1) brorzi)ls = 11D batone(ze)ls
k=1 k=1 k=1

for any s € [po, p1]-

1 2 n 1 2 n

Let g0 = pi) = pf” = =pf" =po, @ =p" =p = = p{” =p,
n

Xi=Xo= =X, =L, Y=L, , Ty = a1, ..., Ty = anpn, X = & X;, and
k=1

operator T': X — Y acts by the following rule T(z1 + -+ 2,) = T1(z1) + -+ Th(zn) =

> appr(zr), where z1 € X1, ..., z, € X,,. Furthermore, by 7 we denote the maximum-

k=1

norm on R™. Let for each a € [0,1] and 1 < k < n reals pka) and ¢,, norm 7, and

operator S, are defined analogously as in Section 3.
Taking into account that ¢ (21),...,%n(2,) are i.r.v. and (4.1) we have

n n
||S ( )” || Z ak‘pk('zk)”po || Z akwk(zk)HPO
IS0 | = sup 2R — sup =L = sup =1 < By,
2#0 7-O(Z) 240 sup ||Zk||;l70 z#0 Sup ||¢k(zk)||1)0
1<k<n 1<k<n

where z = z1 + - - - + z,. Similarly ||Si|| < B,,.
Now by Corollary 3.3, equality (4.1) and equality ¢ = gg we have

|22 arwel 32 arpr ()l
k=1 / (4.1) k=1 ! _ ||S/3(3?1 + - +337L)Hq

sup lzwlly — sup flawlly  7e(z o )
1<k<n 1<k<n
< |ISsll < 2l1So - 1511l < 2B,,7 - By,.
. oo
Now we prove the general case z1,...,2, € L,. We consider a sequence ((IS))?:J
i=1
of collections xgz), D of iry. :c,(;) € Lo such that Hxl(;) — zflg < 1 for each i € N
and k =1,...,n. Accordingly to the proved above we have
n .
I3 aia?ly
= 1-8 B
iy, - By, " By, -
sup [zl
n
It remains to pass ¢ to infinity. O

The following result gives an upper and a lower estimates for B), if p > 1.
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Theorem 4.2. 1/ [2@ < B, <2\/e(p+ 2) for each p > 1.

Proof. We remark that B, > B for cach p > 1. We will show that BY) > /1.

Fix p,n € N, n > 2p and reals a; = --- = a, = 1. Observe that
larry + -+ anrnllsh = lre+ - +raldb = Y (21, 2k)
kit tkn=p
! 2p)!
> cr(2,.. 2 = 2P

pin—p)! (21)P
:n(n—1)...(n—p—|—1)(p—|—1)...2p>(@)p
2v —\2/7

that is,
1
np 2 p
I el 2 5 = () -/

Then for every p > 1 we have

3

~_
[N
b ‘ﬁ

It et rallap = I+ rallaggy = (3

=
Il
—

and thus, B:,(,O) > @

Now we will show that B, < 2y/e(p+2). Let p > 2. Then there exists a number
g € N such that 2¢ < p < 2(¢+ 1). Now choose a € [0, 1] such that zl) =
Using theorems 2.3 and 4.1 we obtain

11—« «
B, < 2Bl % BS ., <2 <\/26q> : (\/2e(q n 1))

< 2v/e(2¢+2) < 2¢/e(p + 2).

l—a a
2q + 2q+2°

Now let 1 < p < 2. Then

B, < By <V2e < 2y/e(p + 2).

The following question naturally arises in a connection with Theorem 4.2.

Question 4.3. Does there exist lim Brg
p—r00 VP
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