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ON ∗-REPRESENTATIONS OF A CLASS OF ALGEBRAS WITH

POLYNOMIAL GROWTH RELATED TO COXETER GRAPHS

N. D. POPOVA AND A. V. STRELETS

Abstract. For a Hilbert space H, we study configurations of its subspaces related

to Coxeter graphs Gs1,s2 , s1, s2 ∈ {4, 5}, which are arbitrary trees such that one edge

has type s1, another one has type s2 and the rest are of type 3. We prove that such
irreducible configurations exist only in a finite dimensional H, where the dimension

of H does not exceed the number of vertices of the graph by more than twice. We

give a description of all irreducible nonequivalent configurations; they are indexed
with a continuous parameter. As an example, we study irreducible configurations

related to a graph that consists of three vertices and two edges of type s1 and s2.

0. Introduction

Let H be a Hilbert space and Hi ⊂ H, i = 0, . . . , n − 1, be a set of its subspaces.
Many publications (see [6, 2, 1, 4, 12, 3, 5] and others) are dedicated to an investigation
of systems of subspaces,

S = (H;H0, . . . ,Hn−1).

For any system of subspaces S we can introduce a set of orthogonal projections {Pi},
i = 0, . . . , n− 1, where Pi denotes an orthogonal projection on the Hilbert subspace Hi

of the Hilbert space H.
A system of subspaces S = (H;H0, . . . ,Hn−1) is called a simple system if all subspaces

are different and for any pair of subspaces Hi and Hj , i 6= j, following relations hold:

(1) PiPjPi = τijPi and PjPiPj = τjiPj ,

where

0 < τij = τji = cos2 θij < 1 (0 < θij <
π

2
),

or the subspaces Hi and Hj are orthogonal, i.e.,

(2) PiPj = PjPi = 0 (θij =
π

2
).

For more details about simple systems of subspaces see the review [11].
A more general class of systems of subspaces is a class of systems such that for any

pair of subspaces Hi and Hj , i < j, one of following relations hold:

(3)

mij−1∏
k=0

(
PiPjPi − τkijPi

)
= 0 and

mij−1∏
k=0

(
PjPiPj − τkijPj

)
= 0,

or

(4)

mij−1∏
k=0

(
PiPjPi − τkijPi

)
Pj = 0 and

mij−1∏
k=0

(
PjPiPj − τkijPj

)
Pi = 0,
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where

mij ∈ N, 0 < τkij = cos2 θkij 6 1 (0 6 θkij <
π

2
), 0 6 k 6 mij − 1,

or the subspaces Hi and Hj are orthogonal, i.e.,

(5) PiPj = PjPi = 0 (θij =
π

2
).

Suppose that τk1ij = τk2ij , k1 6= k2. Let us show that relations (3) imply the following
relations:

(6)

mij−1∏
k=0
k 6=k2

(
PiPjPi − τkijPi

)
= 0 and

mij−1∏
k=0
k 6=k2

(
PjPiPj − τkijPj

)
= 0,

and relations (4) imply the relations

(7)

mij−1∏
k=0
k 6=k2

(
PiPjPi − τkijPi

)
Pj = 0 and

mij−1∏
k=0
k 6=k2

(
PjPiPj − τkijPj

)
Pi = 0.

Indeed, if the first equality of relations (6) does not hold, then there exists a vector y ∈ H
such that

z =

mij−1∏
k=0
k 6=k2

(
PiPjPi − τkijPi

)
y 6= 0,

then

〈 z, z 〉 = 〈
mij−1∏
k=0
k 6=k2

(
PiPjPi − τkijPi

)
y,

mij−1∏
k=0
k 6=k2

(
PiPjPi − τkijPi

)
y 〉

= 〈
mij−1∏
k=0

(
PiPjPi − τkijPi

)
y,

mij−1∏
k=0
k 6=k2
k 6=k1

(
PiPjPi − τkijPi

)
y 〉 = 0,

which contradicts to z 6= 0. The rest of equalities of relations (6) and (7) can be proved
in the same way.

Taking into account the above, we will assume that

1 > τ0ij > τ1ij > · · · > τ
mij−1
ij > 0.

Moreover, in the case of mij = 1 and τ0ij = 1, relations (3) imply Hi = Hj . This case will

be excluded from our consideration. So it will be supposed that 0 < τ0ij < 1 considering
relations (3) in the case where mij = 1.

For further considerations it will be suitable to determine mji and τkji in the case

where i < j and 0 6 k 6 mij − 1 by equalities mji = mij and τkji = τkij .
It is convenient to represent considered systems with finite non-oriented Coxeter

graphs G = (V,R) without multiple edges and loops (here V = {0, . . . , n − 1} is the
set of vertices of the graph and R = {γij = γji} is the set of edges of the graph which
are split into the types R = tRs, s ∈ N, s > 3) and a mapping f which maps edges
of the graph into polynomials f : R → R[x]. More precisely, each vertex i of the graph
corresponds to a subspace Hi and vertices i and j are connected with an edge γij having



254 N. D. POPOVA AND A. V. STRELETS

type s = 2mij + 1 or s = 2(mij + 1) if and only if condition (3) or (4), correspondingly,
holds for the subspaces Hi and Hj ,

f : γij 7→ fij(x) =

mij−1∏
k=0

(x− τkij)

in the first case and

f : γij 7→ fij(x) = x

mij−1∏
k=0

(x− τkij)

in the second one. If the subspaces Hi and Hj are orthogonal, the vertices are not
connected. It can be supposed that such “missed edges” have type 2 and the related
mapping f maps these “edges” into the polynomials fij(x) = x.

Note that relations (3) can be rewritten as

fij(PiPj)Pi = 0, fij(PjPi)Pj = 0,

and relations (4), (5) can be rewritten in the following form:

fij(PiPj) = 0, fij(PjPi) = 0.

Moreover, after opening the parentheses, the left-hand side of each equation in rela-
tions (3) and (4) will be a linear combination of products of the projections Pi and Pj ,
and type s will be equal to the length of the longest product in the linear combination.

Evidently, the considered systems of subspaces are ∗-representations, in Hilbert spaces,
of ∗-algebras

TLG,f,⊥ = C〈 p0, . . . , pn−1 | p2i = p∗i = pi, i ∈ V ;

fij(pipj)p
σij

i = 0, fij(pjpi)p
σij

j = 0, i 6= j ∈ V 〉,

here σij = 1 if the type of the edge is an odd number and σij = 0 otherwise. The
equality Hi = Im π(pi), i ∈ V , gives a correspondence between the class of systems of
subspaces, S = (H;H0, . . . ,Hn−1), and ∗-representations π of the ∗-algebras TLG,f,⊥ in
the Hilbert space H.

In papers [9, 10, 8], the algebras defined above have been denoted by TLG,g,⊥, where
g is also a mapping from the set of edges into the set of polynomials defined in such a
way that fij(x) = xmij−σij+1 − gij(x).

It was shown in [9] that the algebra TLG,f,⊥ is finite dimensional if and only if the
graph G is a tree and the number of edges that have the type grater than 3 is less or
equal to one; the algebra is infinite dimensional and has polynomial growth if and only
if the graph G has one cycle and all its edges have type 3, or the graph G is a tree
and the type of any edge is less than 6 and only two of the edges have the type greater
than 3. ∗-Representations of finite dimensional algebras have been studied in paper [10].
In paper [8] there have been studied ∗-representations of algebras that have polynomial
growth and two edges of the related Coxeter graph have type 4. In the present paper,
we consider algebras that have polynomial growth and at least one edge of the related
Coxeter graph has type 5.

By Gs1,s2 , s1, s2 ∈ {4, 5}, we denote a Coxeter graph such that it is a tree and its
edges have type 3 except for two edges the types of which are s1 and s2.

In the first section we will show that any irreducible ∗-representation of the alge-
bra TLGs1,s2

,f,⊥ is finite dimensional, moreover, a strict estimation of the dimension will

be obtained (Theorem 8).
In the second section we will prove three simple propositions which describe pairs of

orthogonal projections on a finite dimensional Hilbert space connected with edges of type
3, 4 or 5.
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In the third section we will provide a procedure which allows to construct irreducible ∗-
representations πν on Hilbert spacesHν , where ν is a parameter with the values chosen in
such a way that some sesquilinear form is nonnegative definite (Lemma 14). For different
values of ν, the related ∗-representations are unitarily nonequivalent (Proposition 15).

In the forth section it will be shown that any irreducible proper ∗-representation is
unitarily equivalent to πν for some ν.

In the fifth section we will consider ∗-algebras related to Coxeter graphs with three
vertices and two edges where the first edge has type 5 and the second one has type 4 or
5.

1. Irreducible ∗-representations are finite dimensional

A path of length m in a Coxeter graph G,

l = l(i0) = (i0, i1, . . . , im), γik−1,ik ∈ R,

will be called a path without repetitions if ik 6= ij for k, j = 0, . . . ,m, k 6= j. The path
l = (i0) is considered as a path of length 0 without repetitions, and it is convenient to
consider the path l = () as an “empty” one. For a path l = (i0, i1, . . . , im), define l∗ =
(im, im−1, . . . , i0). A union of paths l1 = (i0, . . . , ik−1, ik) and l2 = (ik, ik+1 . . . , it) is de-
fined to be the path l1∪l2 = (i0, . . . , ik−1, ik, ik+1, . . . , it). To any path l = (i0, i1, . . . , im),
we make correspond the product Πl = pi0 . . . pim in the algebra, to the “empty” path,
we set Πl = e.

To be specific let us enumerate vertices of the Coxeter graph Gs1,s2 such that edge γ0,1
has type s1, γm−1,m has type s2 and the vertices 1 and m− 1 are connected by the path

l̂ = (1, 2, . . . ,m− 1).

All vertices of the graph can be naturally splitted into three parts

V = V0 ∪ Vin ∪ Vm,

where any two vertices of each part are connected with a path which consists of type 3
edges only.

Denote by N the set of all paths l such that Πl is a normal word and denote by Ni
the set of all paths l ∈ N which end at vertex i. For normal words, Groebner bases,
the composition lemma, we refer to e.g. [13]. For the algebra TLG,f,⊥, normal words are
precisely the words that do not contain, as subwords, the leading words of the defining
relations of the algebra TLG,f,⊥, see [9]. That is, a normal word should not contain, as
subwords, the following words:

p2i , i ∈ V ;

pipj , pjpi, if γij 6∈ R;

(pipj)
kpσi , (pjpi)

kpσj , if γij ∈ Rs, s = 2k + σ > 3, σ ∈ {0, 1}.

Let π : TLGs1,s2 ,f,⊥ → B(H) be a ∗-representation of the algebra TLGs1,s2 ,f,⊥. De-
note Hi = ImPi, i ∈ V.
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Proposition 1. Let 0 6= xi ∈ Hi. Then the closure of the linear span of the vec-
tors {π(Πl)xi}l∈Ni

is invariant with respect to π.

Proof. Indeed, either the product pjΠl is equal to 0 or pjΠl = Πl′ , where the path l′ ends
at the vertex i. In the second case, either l′ ∈ Ni or Πl′ =

∑
l′′ λl′′Πl′′ , where l′′ ∈ Ni.

Actually, it follows from the relations in the algebra that if a normal word ends with pi
then the product of the word by pj on the left is either equal to 0 or it is equal to some
linear combination of words which end with pi. �

Denote

d =

{
p1, m = 2,
pm−1pm−2√
τm−1,m−2

· pm−2pm−3√
τm−2,m−3

· . . . · p2p1√
τ2,1

, m > 2,

D = π(d),

b1 = p1p0p1, B1 = π(b1)|H1
,

b2 = d∗pmd, B2 = π(b2)|H1
.

It is evident that d∗d = p1 and dd∗ = pm−1.

Proposition 2. The following identities hold:

f0,1(B1) = 0, fm−1,m(B2) = 0.

Proof. Indeed,
0 = f0,1(P1P0)P1 = f0,1(P1P0P1)P1,

so f0,1(B1) = 0. Further,

0 = fm−1,m(Pm−1Pm)Pm−1

= D∗fm−1,m(Pm−1Pm)Pm−1D = fm−1,m(D∗PmD)P1,

which means fm−1,m(B2) = 0. �

Consider a ∗-algebra

A = C〈 c1, c2 | c∗i = ci, f0,1(c1) = 0, fm−1,m(c2) = 0 〉.
For any ∗-representation π : TLGs1,s2 ,f,⊥ → B(H), we can construct ∗-representation of
the ∗-algebra A by the formulas

π̂ : A → B(H1), c1 7→ B1, c2 7→ B2.

Proposition 3. Irreducible ∗-representations of the ∗-algebra A can be one- or two-
dimensional only.

Proof. If deg f0,1 = 2, deg fm−1,m = 2 and each polynomial has distinct roots, then the
algebra A is isomorphic to the algebra generated by two orthogonal projections,

C〈 q1, q2 | q∗i = qi = q2i 〉.
It is known that this algebra has one- and two-dimensional irreducible ∗-representations
only (see, for example, [7]). �

Lemma 4. If a ∗-representation π is irreducible then the ∗-representation π̂ is irreducible
too.

Proof. Let π̂ be reducible. Then H1 = H11 ⊕ H12, where H11 and H12 are nontrivial
invariant subspaces of H1 with respect to the ∗-representation π̂. Consider

0 6= x ∈ H11, 0 6= y ∈ H12.

By Proposition 1, the closure of the linear span of the set of vectors,

{π(Πl)x}l∈N1 ,
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is invariant in respect to π, then it is equal to H. On the other hand,

〈π(Πl)x, y 〉 = 〈P1π(Πl)P1x, y 〉 =
∑

l̃:l̃∈N1,l̃∗∈N1

λl̃〈π(Πl̃)x, y 〉 = 0.

Indeed, if l̃ ∈ N1, l̃
∗ ∈ N1 then either π(Πl̃) = P1 or π(Πl̃) is equal, up to a scalar, to

(P1P0P1)σ1(D∗PmDP1P0P1)r(D∗PmD)σ2 ,

where σ1, σ2 ∈ {0, 1}, r ∈ N ∪ {0}, and σ1 + σ2 + r > 0. Then π(Πl̃)x ∈ H11. So it has
been shown that 〈 z, y 〉 = 0 for any z ∈ H. If y ∈ H12 ⊂ H1 ⊂ H, then 〈 y, y 〉 = 0 and
this contradicts to y 6= 0. �

Corollary 5. If the ∗-representation π is irreducible and P0D
∗PmDP0 6= 0, then there

exists 0 6= x ∈ H0 and ξ > 0 such that P0D
∗PmDP0x = ξx.

Proof. By the previous proposition, ∗-representation π̂ is irreducible because the ∗-rep-
resentation π is irreducible. Then

dimH1 6 2, dim ImP0D∗PmDP0 6 2.

Because P0D
∗PmDP0 6= 0, we have that the self-adjoint finite dimensional non negative

operator P0D
∗PmDP0 has positive eigenvalue ξ and the related eigenvector x. �

Let us introduce a map
ψi : V → Ni

that maps every vertex into the unique path without repetitions from this vertex into

vertex i. It is evident that l̂ = ψ0(m). Let introduce two paths with repetitions l0 =
(0, 1, 0) and lm = (m,m− 1,m). Consider the sets of paths,

S = {ψ0(i) | i ∈ V },
L0 = {ψ0(i) ∪ l0 | i ∈ V0},

Lin = {ψm(i) ∪ l̂ | i ∈ Vin},

Lm = {ψm(i) ∪ lm ∪ l̂ | i ∈ Vm}.
It is evident that any l ∈ N0 can be represented in one of the two following forms:

l = l′ ∪ (l̂∗ ∪ l̂) ∪ · · · ∪ (l̂∗ ∪ l̂)︸ ︷︷ ︸
k times

,

l = l′ ∪ (l̂∗ ∪ l̂) ∪ · · · ∪ (l̂∗ ∪ l̂)︸ ︷︷ ︸
k times

∪ l0,

where k ∈ N ∪ {0} and l′ ∈ P = S ∪ L0 ∪ Lin ∪ Lm.

Proposition 6. Let π be an irreducible ∗-representation, P0P1 6= 0, and Pm−1Pm 6= 0.
Then P0D

∗PmDP0 6= 0.

Proof. Since P0P1 6= 0, there exists x0 such that P0x0 = x0, P1P0x0 6= 0. Suppose that
P0D

∗PmDP0 = 0. Then π(Πl̂∗∪l̂) = 0, so π(Πl̂) = 0. This means that π(Πl) = 0 for any
path l ∈ N0 such that Πl contains Πl̂ as a subword.

Consider a linear span H′ of a finite set of vectors {π(Πl)x0}l∈N ′0 , where N ′0 ⊂ N0 is

a set of paths l which do not contain l̂ as a subword. It is evident that H′ is invariant
with respect to the representation π. So it is equal to Hilbert space H.

Let us show that for any path l ∈ N ′0 the identity PmPm−1π(Πl)x0 = 0 holds. Indeed,
Pm−1π(Πl) 6= 0 if and only if the initial vertex of the path l is m − 1 or it is connected
with the vertex m− 1 by an edge. So,

l = ψ0(j), l = ψ0(j) ∪ l0,
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where either j = m − 1 or j is connected with the vertex m − 1 by an edge of type 3.
If j = m − 1 or j = m − 2, then PmPm−1π(Πl) = π(Πl̂) = 0 and PmPm−1π(Πl) =
π(Πl̂)P0P1P0 = 0. If j is a vertex, other than m − 2, connected with the vertex m −
1 by an edge of type 3, then PmPm−1π(Πl) = τj,m−1π(Πl̂) = 0 or PmPm−1π(Πl) =
τj,m−1π(Πl̂)P0P1P0 = 0. Thus

PmPm−1H = {0},

which contradicts to PmPm−1 6= 0. �

Denote

P̂ =


S ∪ Lin, s1 = 4, s2 = 4;

S ∪ L0 ∪ Lin, s1 = 5, s2 = 4;

S ∪ Lin ∪ Lm, s1 = 4, s2 = 5;

S ∪ L0 ∪ Lin ∪ Lm, s1 = 5, s2 = 5.

Proposition 7. Let P0D
∗PmDP0 6= 0 then the linear span of the set of vectors, {π(Πl)x}l∈P̂ ,

is invariant with respect to the representation π.

Proof. Let P = S ∪ L0 ∪ Lin ∪ Lm and H′ be the linear span of the set of vec-
tors {π(Πl)x}l∈P , then

H′ =
∑
i∈V
H′i,

where H′i is the linear span of the pair of vectors {π(Πl)x}, where

l ∈ {ψ0(i), ψ0(i) ∪ l0}, i ∈ V0;

l ∈ {ψ0(i), ψm(i) ∪ l̂}, i ∈ Vin;

l ∈ {ψ0(i), ψm(i) ∪ lm ∪ l̂}, i ∈ Vm.

For any path l ∈ N0 there exists a path l′ ∈ P and numbers k ∈ N ∪ {0}, σ ∈ {0, 1}
such that

Πl = Πl′Π
k
l̂∗∪l̂Π

σ
l0 .

Let us show that H′0 is invariant with respect to the set of operators π(Πk
l̂∗∪l̂Π

σ
l0

).

First of all, the vector P1π(Πl0)x belongs to H′1, indeed,

P1P0P1P0x = ξ−1P1P0P1P0P1D
∗PmDP0x

= ξ−1g01(P1P0)P1D
∗PmDP0x

= ξ−1(λ1P1P0D
∗PmDP0x+ λ2D

∗PmDP0x)

= λ1P1P0x+ ξ−1λ2D
∗PmDP0x

= λ1π(Πψ0(1))x+ λ′2π(Πψm(1)∪l̂)x.
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It follows that π(Πl̂∗∪l̂)
k(P0P1P0)σx belongs to H′0,

π(Πl̂∗∪l̂)x = ξτ1,2 . . . τm−2,m−1x,

π(Πl̂∗∪l̂)P0P1P0x = λP0D
∗PmDP1P0P1P0x

= λ′′1P0D
∗PmDP1P0x+ λ′′2P0D

∗PmDD
∗PmDP0x

= λ′′′1 x+ λ′′2P0D
∗Pm−1PmPm−1PmPm−1DP0x

= λ′′′1 x+ λ′′′2 P0D
∗PmDP0x+ λ3P0D

∗Pm−1DP0x

= λ′′′1 x+ λ′′′2 ξx+ λ3P0P1P0x

= λ′′′′1 π(Πψ0(0))x+ λ3π(Πψ0(0)∪l0)x.

Now let us show that π(Πl′)x ∈ H′ for any path l′ ∈ P. The vector π(Πl̂Πl0)x belongs
to H′m, indeed,

π(Πl̂)P0P1P0x = π(Πψ1(m))P1P0P1P0x

= λ1π(Πψ1(m)Πψ0(1))x+ λ′2π(Πψ1(m)Πψm(1)∪l̂)x

= λ1π(Πl̂)x+ λ′′′′2 π(Πlm∪l̂)x.

Furthermore, it is evident that H′0 is invariant with respect to π(Πl0) and H′m is invariant
with respect to π(Πlm), thus, for any path l′ ∈ P, the vector π(Πl′)x belongs to H′i
if i ∈ V0 and i ∈ Vm.

For any vertex i ∈ Vin,

π(Πψ0(i))P0P1P0x = π(Πψ1(i))P1P0P1P0x

= λ1π(Πψ1(i)Πψ0(1))x+ λ′2π(Πψ1(i)Πψm(1)∪l̂)x

= λ1π(Πψ0(i))x+ λ′′′′′2 π(Πψm(i)∪l̂)x,

π(Πψm(i)Πl̂)P0P1P0x = λ1π(Πψm(i))π(Πl̂)x+ λ′′′′′′2 π(Πψm(i))π(Πlm∪l̂)x

= λ′1π(Πψm(i)∪l̂)x+ λ′′5π(Πψ0(i))x,

as far as

π(Πψm(i))π(Πlm∪l̂)x = π(Πψm−1(i))Pm−1PmPm−1PmPm−1π(Πψ0(m−1))x

= λ4π(Πψm−1(i))Pm−1PmPm−1π(Πψ0(m−1))x

+ λ5π(Πψm−1(i))Pm−1π(Πψ0(m−1))x

= λ4π(Πψm(i)∪l̂)x+ λ′5π(Πψ0(i))x,

so the vectors π(Πψ0(i)Πl0)x and π(Πψm(i)∪l̂Πl0)x belong to H′i.
This means that H′ is invariant with respect to the representation π.
Let us show that, in the case of s1 = 4, dimH′i = 1 for any vertex i ∈ V0. Indeed,

P0P1P0x = ξ−1P0P1P0P1D
∗PmDP0x

= ξ−1τ0,1P0P1D
∗PmDP0x = τ0,1x.

If s2 = 4, dimH′i = 1 for any i ∈ Vm as well, indeed,

PmPm−1Pmπ(Πl̂)x = PmPm−1PmPm−1π(Πψ0(m−1))x

= τm−1,mPmPm−1π(Πψ0(m−1))x

= τm−1,mπ(Πl̂)x.

Thus we have proved that the linear span of the set of vectors {π(Πl)x}l∈P̂ coincides
with the Hilbert space H′. �
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The following theorems are corollaries of the previous proposition.

Theorem 8. For any irreducible ∗-representation

π : TLGs1,s2
,f,⊥ → B(H)

the following inequality holds:

dimH 6 2|V |.
Moreover,

dimH 6 |V0|+ 2|Vin|+ |Vm| if s1 = 4 and s2 = 4;

dimH 6 |V0|+ 2|Vin|+ 2|Vm| if s1 = 4 and s2 = 5;

dimH 6 2|V0|+ 2|Vin|+ |Vm| if s1 = 5 and s2 = 4.

Theorem 9. For any non trivial irreducible ∗-representation

π : TLGs1,s2 ,f,⊥ → B(H)

the following inequality holds:

rankPi 6 2.

Moreover, rankPi = 1 in the cases of i ∈ V0, s1 = 4, and i ∈ Vm, s2 = 4.

Proof. For any l ∈ P̂ the vector Piπ(Πl)x belongs to H ′i which was defined in the proof
of Proposition 7. So, rankPi = dimH ′i �

2. ∗-Representations of a pair of projections connected with an edge of
type 3, 4, or 5

The results here are not new, but they will be needed when we describe irreducible
proper ∗-representations of the algebras TLG5,s,f,⊥.

Let P0, P1 be nonzero projections on a finite dimensional Hilbert space H related with
one of the next types (8), (9) or (12). As earlier Hi = ImPi, i = 0, 1. We describe H0

and H1 in each case.
1. Let f(x) = x− τ , where τ ∈ (0; 1). And relations f(P0P1)P0 = 0, f(P1P0)P1 = 0

hold, i.e.,

(8) P0P1P0 = τP0, P1P0P1 = τP1.

This means that P0, P1 correspond to vertices joined with an edge of type 3.
Consider the operators

Ai,j =
PiPj√
τ

⌈
Hj

: Hj → Hi, i, j = 0, 1, i 6= j.

Proposition 10. The subspaces H0 and H1 are isomorphic, and the operators A0,1, A1,0

are unitary.

Proof. Relations (8) imply that dimH0 = dimH1. Then

A∗0,1 =

(
P0P1√
τ

⌈
H1

)∗
=
P1P0√
τ

⌈
H0

= A1,0.

We have

A∗0,1A0,1 = A1,0A0,1 = IdH1
, A0,1A

∗
0,1 = A0,1A1,0 = IdH0

,

so,

A∗0,1 = A−10,1, A∗1,0 = A−11,0.

�
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2. Let f(x) = (x− τ)x, where τ ∈ (0; 1]. And the relations f(P0P1) = 0, f(P1P0) = 0
hold, i.e.,

(9) (P0P1P0 − τP0)P0P1 = 0, (P1P0P1 − τP1)P1P0 = 0.

This means that P0, P1 correspond to the vertices joined with an edge of type 4.

Proposition 11. The subspaces H0,H1 can be decomposed as

(10) H0 = H0,0 ⊕H0,1 and H1 = H1,0 ⊕H1,1

such that

A0,1 =
P0P1√
τ

⌈
H1,0

: H1,0 → H0,0(11)

is correctly defined and is unitary, where

H0,1 = ker(P1P0) ∩H0,

H1,1 = ker(P0P1) ∩H1.

Proof. We define

H0,0 = ker(P0P1P0 − τP0) ∩H0,

H1,0 = ker(P1P0P1 − τP1) ∩H1.

Let us show that H0,0 ⊥ H0,1. Indeed, let x ∈ H0,0 and y ∈ H0,1. Then

〈x, y 〉 =
1

τ
〈P0P1P0x, y 〉 =

1

τ
〈x, P0P1P0y 〉 = 0.

In the same way we have H1,0 ⊥ H1,1.
It is clear that H0,0 ⊕ H0,1 6= {0} and H1,0 ⊕ H1,1 6= {0}. We prove that H0 =

H0,0 ⊕H0,1. If not, then there exists z ∈ H0, z 6= 0 and z ⊥ H0,0 ⊕H0,1.
Then (P0P1P0 − τP0)z 6= 0. Put z1 = (P0P1P0 − τP0)z. Then z1 ⊥ H0,1, indeed, for

any x ∈ H0,1,

〈 z1, x 〉 = 〈 z, (P0P1P0 − τP0)x 〉 = −τ〈 z, x 〉 = 0.

Then P1P0z1 6= 0, so

P1P0z1 = P1P0(P0P1P0 − τP0)z = (P1P0P1P0 − τP1P0)z 6= 0,

which is a contradiction. So, H0 = H0,0 ⊕H0,1. Similarly H1 = H1,0 ⊕H1,1.
We prove that P0P1(H1,0) ⊂ H0,0. Indeed, for any y ∈ H1,0, we have

(P0P1P0 − τP0)P0P1y = 0.

So, the operator A0,1 is correctly defined. Let us prove that it is unitary. we have,

A∗0,1 =
P1P0√
τ

⌈
H0,0

: H0,0 → H1,0 = A1,0,

A0,1A
∗
0,1 =

P0P1√
τ

P1P0√
τ

⌈
H0,0

= P0

⌈
H0,0

= IdH0,0
,

A∗0,1A0,1 =
P1P0√
τ

P0P1√
τ

⌈
H1,0

= P1

⌈
H1,0

= IdH1,0
.

�

3. Let f(x) = (x− τ0)(x− τ1), where τ0, τ1 ∈ (0; 1] and τ0 6= τ1. And the relations
f(P0P1)P0 = 0, f(P1P0)P1 = 0 hold, i.e.,

(12) (P0P1P0 − τ0P0)(P0P1P0 − τ1P0) = 0, (P1P0P1 − τ0P1)(P1P0P1 − τ1P1) = 0.

This means that the projections correspond to the vertices joined with an edge of type 5.



262 N. D. POPOVA AND A. V. STRELETS

Proposition 12. There are the decompositions

(13) H0 = H0,0 ⊕H0,1 and H1 = H1,0 ⊕H1,1

such that the operators

A0
0,1 =

P0P1√
τ0

⌈
H1,0

: H1,0 → H0,0,

A1
0,1 =

P0P1√
τ1

⌈
H1,1

: H1,1 → H0,1

are correctly defined and unitary.

Proof. We define

H0,i = ker(P0P1P0 − τ iP0) ∩H0,

H1,i = ker(P1P0P1 − τ iP1) ∩H1, i = 0, 1.

Obviously, H0,0 ⊥ H0,1. Indeed, let x ∈ H0,0 and y ∈ H0,1. Then

〈x, y 〉 =
1

τ0
〈P0P1P0x, y 〉 =

1

τ0
〈x, P0P1P0y 〉 =

τ1

τ0
〈x, y 〉,

so 〈x, y 〉 = 0. Similarly, H1,0 ⊥ H1,1.
Notice that H0,0 ⊕ H0,1 6= {0}. We prove H0 = H0,0 ⊕ H0,1. Otherwise there exists

z ∈ H0, z 6= 0 and z ⊥ H0,0 ⊕ H0,1. Put z1 = (P0P1P0 − τ1P0)z, then z1 6= 0 and
z1 ⊥ H0,1. Then z1 ⊥ H0,0. Indeed, for any x ∈ H0,0 we have

〈 z1, x 〉 = 〈 z, (P0P1P0 − τ1P0)x 〉 = (τ0 − τ1)〈 z, x 〉 = 0.

We obtain z1 ⊥ H0,0 ⊕H0,1, which implies that (P0P1P0 − τ0P0)z1 6= 0 and (P0P1P0 −
τ0P0)(P0P1P0−τ1P0)z 6= 0, which is a contradiction. So, H0 = H0,0⊕H0,1. In a similar
way, H1 = H1,0 ⊕H1,1.

Let us prove P0P1(H1,i) ⊂ H0,i where i = 0, 1. For x ∈ H1,i, we define y = P0P1x.
Then

(P0P1P0 − τ iP0)y = (P0P1P0 − τ iP0)P0P1x = P0(P1P0P1 − τ iP1)x = 0.

Similarly, P1P0(H0,i) ⊂ H1,i, i = 0, 1.
We have shown that Ai0,1, i = 0, 1 was defined correctly. Obviously,

(Ai0,1)∗ = Ai1,0 =
P1P0√
τ i

⌈
H0,i

: H0,i → H1,i, i = 0, 1.

For any x ∈ H0,i, we have

Ai0,1(Ai0,1)∗x =
P0P1√
τ i

P1P0√
τ i
x =

τ i

τ i
x = x.

And for any y ∈ H1,i, we obtain

(Ai0,1)∗Ai0,1y =
P1P0√
τ i

P0P1√
τ i
y =

τ i

τ i
y = y.

Which implies that Ai0,1, i = 0, 1 are unitary. �
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3. A description of proper ∗-representations of the algebras TLG5,s,f,⊥
where s = 4 or s = 5.

As earlier, G5,s is a tree where the edge γ0,1 has type 5 and γm−1,m has type s,
s ∈ {4, 5}.

We call a ∗-representation π of the algebra TLG5,s,f,⊥ proper, if any of next relations
does not hold:

P0P1P0 = τ00,1P0, P1P0P1 = τ00,1P1,

P0P1P0 = τ10,1P0, P1P0P1 = τ10,1P1,

PmPm−1Pm = τ0m−1,mPm, Pm−1PmPm−1 = τ0m−1,mPm−1,

PmPm−1 = 0, Pm−1Pm = 0, if s = 4,

PmPm−1Pm = τ1m−1,mPm, Pm−1PmPm−1 = τ1m−1,mPm−1, if s = 5.

If any of these relations holds then the irreducible ∗-representation is a lifting of some
∗-representation of the corresponding quotient algebra, which is finite dimensional (for
representations of finite dimensional algebras TLG,f,⊥, see [10]). For example, relations
between p0 and p1 imply that, if p0p1p0 = τ i0,1p0 holds, then p1p0p1 = τ i0,1p1, i = 0, 1

holds too (and vice versa). And quotient algebra TLG5,s,f,⊥/〈p0p1p0 − τ i0,1p0, p1p0p1 −
τ i0,1p1〉 is finite dimensional.

Note that in the case s = 4, if for an irreducible ∗-representation Pm−1Pm 6= 0 holds,
then PmPm−1Pm = τ0m−1,mPm is true (can be proved using 7).

We consider a linear space L generated by |P̂| vectors x̂i, ŷj , where i ∈ V , j ∈ Ṽ ,

where Ṽ is the following subset of the set of vertices:

Ṽ =

{
V0 ∪ Vin, s = 4,

V, s = 5.

For any ν ∈ (0; 1), we consider, on L, a sesquilinear form BνG5,s,f
defined on the vectors

of basis in the following way:

BνG5,s,f (x̂i, x̂i) = BνG5,s,f (ŷj , ŷj) = 1, i ∈ V, j ∈ Ṽ ;

BνG5,s,f (x̂i, x̂j) = BνG5,s,f (x̂j , x̂i) =


√
τi,j , γi,j ∈ R3,√
τ00,1, γi,j = γ0,1,√
ντ0m−1,m, γi,j = γm−1,m;

BνG5,s,f (ŷi, ŷj) = BνG5,s,f (ŷj , ŷi) =


√
τi,j , γi,j ∈ R3,√
τ10,1, γi,j = γ0,1,

−
√
ντ1m−1,m, γi,j = γm−1,m, s = 5;

BνG5,s,f (x̂i, ŷj) = BνG5,s,f (ŷj , x̂i) =


√

(1− ν)τ1m−1,m, (i, j) = (m− 1,m), s = 5,√
(1− ν)τ0m−1,m, (i, j) = (m,m− 1),

0, otherwise.

On the other pairs of basis vectors, BνG5,s,f
equals to 0.

Let ΣG5,s,f be the set of those ν for which the form BνG5,s,f
is non-negative definite.
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For ν ∈ ΣG5,s,f , denote by Hν the Hilbert space obtained by equipping the linear
space L/L0,ν , where L0,ν is the set of those x̂ ∈ L that BνG5,s,f

(x̂, x̂) = 0, with the scalar

product 〈 x̂+ L0,ν , ŷ + L0,ν 〉 = BνG5,s,f
(x̂, ŷ).

Denote by xν = x = x̂ + L0,ν . Since, by the definition of BνG5,s,f
, any x̂i, ŷj , i ∈

V, j ∈ Ṽ , are not in L0,ν , the corresponding xi = x̂i + L0,ν , yj = ŷj + L0,ν generate the
space Hν . But in the case when the form is not positive definite, the set xi, yj , where

i ∈ V, j ∈ Ṽ , is not the set of linearly independent vectors.
For an arbitrary vertex i ∈ V define an operator Pi,ν = Pi to be the orthogonal

projection onto the linear span of the pair of vectors xi, yi, if i ∈ Ṽ , and for an arbitrary
vertex i ∈ V \Ṽ the operator Pi,ν = Pi is defined to be an orthogonal projection onto the
linear span of vector xi.

Proposition 13. For any x ∈ Hν , we have the formula

Pix =

{
〈x, xi 〉xi + 〈x, yi 〉yi, i ∈ Ṽ ,
〈x, xi 〉xi, i ∈ V \Ṽ .

Proof. It sufficient to notice that 〈Pix, xi 〉 = 〈x, xi 〉 for any i ∈ V , and 〈Pix, yi 〉 =

〈x, yi 〉 for any i ∈ Ṽ . �

We denote Hi = ImPi, and fix the basis {xi, yi}, if i ∈ Ṽ , and {xi}, if i ∈ V \Ṽ . The
operator Xi,j : Hj → Hi, i 6= j is defined to be the restriction of PiPj to Hj . By simple
calculations, we have that, in the fixed basis,

(1) Xi,j = 0, if the vertices i and j are not connected with an edge;
(2) Xi,j =

(√
τi,j
)
, if s = 4 and i, j ∈ Vm;

(3) Xi,j =

(√
τi,j 0
0

√
τi,j

)
, i, j ∈ Ṽ , γij ∈ R3;

(4) X0,1 =

√τ00,1 0

0
√
τ10,1

;

(5) Xm−1,m =

 √
ντ0m−1,m√

(1− ν)τ0m−1,m

 =
√
τ0m−1,m

( √
ν√

1− ν

)
, if s = 4;

(6) Xm−1,m =

 √
ντ0m−1,m

√
(1− ν)τ1m−1,m√

(1− ν)τ0m−1,m −
√
ντ1m−1,m

, if s = 5.

Notice that, if we denote

D̃ =

(
τ0m−1,m 0

0 τ1m−1,m

)
, U =

( √
ν

√
1− ν√

1− ν −
√
ν

)
,

then Xm−1,m = U
√
D̃, for the case of s = 5. It is clear that U is a unitary, self-adjoint

matrix and X∗i,j = Xj,i.

Lemma 14. For each ν ∈ ΣG5,s,f , the mapping

πν : TLG5,s,f,⊥ → B(Hν) : pi 7→ Pi

is an irreducible proper ∗-representation.

Proof. Let us show that πν is a ∗-representation.
It is clear that P 2

i x = Pix, since 〈xi, yi 〉 = 0.
Any relation of the form f(PiPj) = 0, f(0) = 0, or f(PjPi)Pj = 0 is sufficient to be

verified on the vectors of Hj , since on the vectors of H⊥j they are clearly satisfied. Let
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us fix some vector x ∈ Hj . We denote by α = 〈x, xj 〉, j ∈ V , and β = 〈x, yj 〉, j ∈ Ṽ ,
the coordinates of x in the basis of Hj .

If the vertices i and j are not connected with an edge, then

PiPjx = Xi,jα = 0, s = 4, j ∈ Vm;

PiPjx = Xi,j

(
α
β

)
= 0, j ∈ Ṽ .

Let now the vertices i and j be connected with an edge of type 3, then the following
relations hold:

(PjPiPj − τijPj)x = (Xj,iXi,j − τij)α = 0, s = 4, j ∈ Vm;

(PjPiPj − τijPj)x = (Xj,iXi,j − τijIj)
(
α
β

)
= 0, j ∈ Ṽ .

Let i = 1, j = 0, then, for the projections P0, P1, the following is true:

(P0P1P0−τ00,1P0)(P0P1P0 − τ10,1P0)x

= (X0,1X1,0 − τ00,1I0)(X0,1X1,0 − τ10,1I0)

(
α
β

)
=

(
0 0
0 τ10,1 − τ00,1

)(
τ00,1 − τ10,1 0

0 0

)(
α
β

)
= 0.

Notice, that

P0P1P0 − τ00,1P0 6= 0, P0P1P0 − τ10,1P0 6= 0.

The case i = 0, j = 1 is similar.
Let s = 4 and i = m− 1, j = m. Then

(PmPm−1Pm−τ0m−1,mPm)x = (Xm,m−1Xm−1,m − τ0m−1,m)α

= (τ0m−1,m
(√
ν
√

1− ν
)( √

ν√
1− ν

)
− τ0m−1,m)α = 0.

Which implies that

PmPm−1PmPm−1 − τ0m−1,mPmPm−1 = 0,

Pm−1PmPm−1Pm − τ0m−1,mPm−1Pm = 0.

But

(Pm−1PmPm−1−τ0m−1,mPm−1)xm−1 = (Xm−1,mXm,m−1 − τ0m−1,mIm−1)

(
1
0

)
= τ0m−1,m

(( √
ν√

1− ν

)(√
ν
√

1− ν
)
− Im−1

)(
1
0

)
= τ0m−1,m

(
ν − 1√
ν(1− ν)

)
6= 0.

Let s = 5, i = m, j = m− 1, then

(Pm−1PmPm−1 − τ0m−1,mPm−1)(Pm−1PmPm−1 − τ1m−1,mPm−1)x

= (Xm−1,mXm,m−1 − τ0m−1,mIm−1)(Xm−1,mXm,m−1 − τ1m−1,mIm−1)

(
α
β

)
= (UD̃U − τ0m−1,mIm−1)(UD̃U − τ1m−1,mIm−1)

(
α
β

)
= U(D̃ − τ0m−1,mIm−1)(D̃ − τ1m−1,mIm−1)U

(
α
β

)
= 0.
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Notice, that

Pm−1PmPm−1 − τ0m−1,mPm−1 6= 0, Pm−1PmPm−1 − τ1m−1,mPm−1 6= 0.

In the case of s = 5, i = m− 1, j = m, we have

(PmPm−1Pm − τ0m−1,mPm)(PmPm−1Pm − τ1m−1,mPm)x

= (Xm,m−1Xm−1,m − τ0m−1,mIm)(Xm,m−1Xm−1,m − τ1m−1,mIm)

(
α
β

)
= (D̃ − τ0m−1,mIm)(D̃ − τ1m−1,mIm)

(
α
β

)
= 0

and
PmPm−1Pm − τ0m−1,mPm 6= 0, PmPm−1Pm − τ1m−1,mPm 6= 0.

So, we have shown that πν is a proper ∗-representation.
Let us prove that πν is irreducible. Assume that an operator C ∈ B(H) commutes

with all Pi, i ∈ V . We are going to show that C is a multiple of the identity. Since
CPi = PiC, we have C(Hi) ⊂ Hi, i ∈ V . So that

P0P1P0Cx0 = CP0P1P0x0 =
√
τ00,1CP0x1 = τ00,1Cx0,

P0P1P0Cy0 = CP0P1P0y0 =
√
τ10,1CP0y1 = τ10,1Cy0

and Cx0 = λ0x0 and Cy0 = λ1y0 for some λ0, λ1 ∈ C.
From √

τ00,1Cx1 = CP1x0 = P1Cx0 = λ0P1x0 = λ0

√
τ00,1x1,√

τ10,1Cy1 = CP1y0 = P1Cy0 = λ1P1y0 = λ1

√
τ10,1y1,

it follows that Cx1 = λ0x1 and Cy1 = λ1y1.
Let the vertices i and j be joined with an edge of type 3 and we have Cxi = λ0xi and

Cyi = λ1yi. Then PjPixi =
√
τi,jxj , PjPiyi =

√
τi,jyj , and

√
τi,jCxj = CPjxi = PjCxi = λ0Pjxi = λ0

√
τi,jxj ,(14)

√
τi,jCyj = CPjyi = PjCyi = λ1Pjyi = λ1

√
τi,jyj ,(15)

which implies that Cxj = λ0xj and Cyj = λ1yj .
In the coordinates of the subspace Hm−1,

Pm−1PmPm−1xm−1 = Xm−1,mXm,m−1

(
1
0

)
=

(
α
β

)
,

it can be shown by a simple calculation that α 6= 0 and β 6= 0 in the both cases s = 4
and s = 5. And in the coordinates of the subspace Hm−1, we have(

λ0α
λ1β

)
= CPm−1PmPm−1xm−1 = λ0Pm−1PmPm−1xm−1 =

(
λ0α
λ0β

)
,

which implies that λ0 = λ1.
We have shown that Cxm−1 = λ0xm−1 and Cym−1 = λ0ym−1. Let us prove that

Cxm = λ0xm and Cym = λ0ym. If s = 4, then in the coordinates of the subspace Hm−1
we put

x̃ =

( √
ν√

1− ν

)
∈ Hm−1,

then

Pmx̃ = PmPm−1x̃ = Xm,m−1

( √
ν√

1− ν

)
=
√
τ0m−1,mxm.
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In the case where s = 5, we consider the vectors x̃m−1 = Uxm−1, ỹm−1 = Uym−1, then

Pmx̃m−1 = PmPm−1x̃m−1 = Xm,m−1U

(
1
0

)
=
√
D̃

(
1
0

)
=
√
τ0m−1,mxm,

Pmỹm−1 = PmPm−1ỹm−1 = Xm,m−1U

(
0
1

)
=
√
D̃

(
0
1

)
=
√
τ1m−1,mym.

As earlier in (14) and (15) we obtain that Cxm = λ0xm and Cym = λ0ym. So, we have
shown that C = λ0I, which means that πν is irreducible. �

Proposition 15. ∗-Representations πν1 and πν2 are unitary equivalent if and only if
ν1 = ν2.

Proof. Let πν1 be unitary equivalent to πν2 , i.e., there exists a unitary operator Ũ :

Hν1 → Hν2 , such that Ũπν1(a) = πν2(a)Ũ for any a ∈ TLG5,s,f,⊥. Since Ũπν1(pm−1) =

πν2(pm−1)Ũ , the restriction of operator Ũ onto Hm−1,ν1 is correctly defined,

Ũm−1 : Hm−1,ν1 → Hm−1,ν2 .

The operator Pm−1Pm−2 . . . P1P0P1 . . . Pm−2Pm−1 in the coordinates of Hm−1 has a
diagonal form,

Xm−1,m−2 . . . X1,0X1,0 . . . Xm−2,m−1 =

m−2∏
k=1

τk,k+1

(
τ00,1 0
0 τ10,1

)
.

It is easy to show that in the bases of Hm−1,ν1 , Hm−1,ν2 the unitary operator Ũm−1 is
of the form (

eiϕ1 0
0 eiϕ2

)
, ϕ1, ϕ2 ∈ [0, 2π).

On the other hand, Pm−1,ν2Pm,ν2Pm−1,ν2 = Ũm−1Pm−1,ν1Pm,ν1Pm−1,ν1Ũ
∗
m−1. In a

coordinate representation there are 2× 2-matrices on the left- the right-hand sides, by a
direct computation of the value in the first row and the first column, in the case of s = 4,
we obtain ν1τ

0
m−1,m = ν2τ

0
m−1,m, and in the case of s = 5 we have the equality

ν1τ
0
m−1,m + (1− ν1)τ1m−1,m = ν2τ

0
m−1,m + (1− ν2)τ1m−1,m,

i.e.,

ν1(τ0m−1,m − τ1m−1,m) = ν2(τ0m−1,m − τ1m−1,m).

Since τ0m−1,m 6= 0 and τ0m−1,m 6= τ1m−1,m, in the two cases we have ν1 = ν2. �

4. A description of all irreducible proper ∗-representations of the
algebra TLG5,s,f,⊥

Let π be an irreducible proper ∗-representation of the algebra TLG5,s,f,⊥. We will
show that there exists a number ν ∈ ΣG5,s,f such that the ∗-representation π is unitarily
equivalent to the ∗-representation πν .

Proposition 16. Let π be an irreducible proper ∗-representation of the algebra TLG5,s,f,⊥
on a Hilbert space H. Then there exist a number ν ∈ (0, 1) and vectors ui, vj ∈ H, i ∈ V ,

j ∈ Ṽ , such that Pi is an orthogonal projection on a subspace of H generated by a pair
of vectors ui and vi if i ∈ Ṽ or generated by the vector ui if i ∈ V \ Ṽ . Moreover, the
Hilbert space H is a linear span of the set of vectors {ui, vj}i∈V,j∈Ṽ and the Gram matrix
of this set of vectors is equal to the matrix of sesquilinear form BνG5,s,f

.
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Proof. If the vertices i and j are connected with an edge of type 3 then, by Proposition 10,

the operator Ai,j =
PiPj√
τi,j
�Hj

: Hj → Hi is unitary. Consider the case of i, j ∈ Ṽ . Suppose

uj , vj ∈ Hj , uj ⊥ vj , and ‖uj‖ = ‖vj‖ = 1. Define ui = Ai,juj and vi = Ai,jvj . Then
ui ⊥ vi, ‖ui‖ = ‖vi‖ = 1 and the following identities hold:

〈ui, uj〉 = 〈 PiPj√
τi,j

uj , uj〉 =
√
τi,j〈uj , uj〉 =

√
τi,j ,

〈vi, vj〉 = 〈 PiPj√
τi,j

vj , vj〉 =
√
τi,j〈vj , vj〉 =

√
τi,j ,

〈ui, vj〉 = 〈 PiPj√
τi,j

uj , vj〉 =
√
τi,j〈uj , vj〉 = 0,

〈vi, uj〉 = 〈 PiPj√
τi,j

vj , uj〉 =
√
τi,j〈vj , uj〉 = 0.

The same reasoning applied to the case of i, j ∈ V \Ṽ allows us to define ui = Ai,juj ∈ Hi,
‖ui‖ = 1, if we have already defined uj ∈ Hj , ‖uj‖ = 1.

So, to construct a set of vectors ui, i ∈ V and vj , j ∈ Ṽ , it is enough to find vectors ui,

i ∈ {0, 1,m} and vj , j ∈ {0, 1,m} ∩ Ṽ .

By Theorem 9 for an irreducible ∗-representation, rankPi = 1 for i ∈ V \ Ṽ , and
rankPi 6 2 otherwise. If rankP0 = 1, then P0P1P0 = λP0 for some λ ∈ C, on the other
hand (P0P1P0 − τ00,1P0)(P0P1P0 − τ10,1P0) = 0, and so either λ = τ00,1 or λ = τ10,1. This
means that if rankP0 = 1 then the representation cannot be proper. Thus rankP0 = 2
and so rankPi = 2, i ∈ Ṽ , as far as all projections Pi have the same rank for i ∈ Ṽ .

By Proposition 12, the projection P1 has two eigenvectors u1 ∈ H1,0 and v1 ∈ H1,1

such that ‖u1‖ = ‖v1‖ = 1 and u1 ⊥ v1. Let u0 = A0
0,1u1 and v0 = A1

0,1v1. Then
u0 ∈ H0,0, v0 ∈ H0,1 and u0 ⊥ v0, ‖u0‖ = ‖v0‖ = 1. It is evident that the following
identities hold:

〈u0, u1〉 =

〈
P0P1√
τ00,1

u1, u1

〉
=
√
τ00,1〈u1, u1〉 =

√
τ00,1,

〈v0, v1〉 =

〈
P0P1√
τ10,1

v1, v1

〉
=
√
τ10,1〈v1, v1〉 =

√
τ10,1,

〈u0, v1〉 =

〈
P0P1√
τ00,1

u1, v1

〉
=
√
τ00,1〈u1, v1〉 = 0,

〈u1, v0〉 =

〈
u1,

P0P1√
τ10,1

v1

〉
=
√
τ10,1〈u1, v1〉 = 0.

a) Let us now consider the case of s = 5. By Proposition 12 there exists a pair
of vectors ũm−1 ∈ Hm−1,0 and ṽm−1 ∈ Hm−1,1 such that ‖ũm−1‖ = ‖ṽm−1‖ = 1 and
ũm−1 ⊥ ṽm−1. Then, for some numbers ν ∈ [0, 1], ϕ,ψ, θ ∈ [0, 2π], the following identities
hold:

ũm−1 = e−iϕ
√
νum−1 + eiψ

√
1− νvm−1,

ṽm−1 = (e−iψ
√

1− νum−1 − eiϕ
√
νvm−1)eiθ.

Define um and vm by the formulas

um =
PmPm−1√
τ0m−1,m

ũm−1, vm =
PmPm−1√
τ1m−1,m

ṽm−1,
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then, evidently, ‖um‖ = ‖vm‖ = 1 and um ⊥ vm.
If ν = 1, then the set of vectors {ui}, i ∈ V , is invariant with respect to the ∗-

representation. If ν = 0, then the set of vectors {ui} ∪ {vj}, i ∈ V \ Vm, j ∈ Vm, is
invariant with respect to the ∗-representation. So, in both cases, the linear span of the
set does not coincide with H thus the ∗-representation π cannot be irreducible and we
obtained a contradiction. So ν 6= 0 and ν 6= 1.

Evidently, ũm−1 and ṽm−1 can be chosen in such a way that

ũm−1 =
√
νum−1 + ei(ϕ+ψ)

√
1− νvm−1,

ṽm−1 =
√

1− νum−1 − ei(ϕ+ψ)
√
νvm−1.

Moreover, replacing v1 with ei(ϕ+ψ)v1 we will get that following identities hold:

ũm−1 =
√
νum−1 +

√
1− νvm−1,

ṽm−1 =
√

1− νum−1 −
√
νvm−1.

Then

〈um−1, um〉 = 〈um−1,
Pm−1PmPm−1√

τ0m−1,m

ũm−1〉 =
√
τ0m−1,mν,

〈um−1, vm〉 = 〈um−1,
Pm−1PmPm−1√

τ1m−1,m

ṽm−1〉 =
√
τ1m−1,m(1− ν),

〈vm−1, um〉 = 〈vm−1,
Pm−1PmPm−1√

τ0m−1,m

ũm−1〉 =
√
τ0m−1,m(1− ν),

〈vm−1, vm〉 = 〈vm−1,
Pm−1PmPm−1√

τ1m−1,m

ṽm−1〉 = −
√
τ1m−1,mν.

So we have found a set of vectors {ui, vi}i∈V such that their Gram matrix is equal to
the matrix of the sesquilinear form BνG5,5,f

and the image of the projection Pi is a linear

span of the pair of vectors {ui, vi}. Since the linear span of the set is invariant with
respect to the ∗-representation, it coincides with H.

b) The case of s = 4 is almost the same. In this case, rankPm = 1 and, by Propo-
sition 11, there exist vectors ũm−1 ∈ Hm−1,0 and ṽm−1 ∈ Hm−1,1 such that ‖ũm−1‖ =
‖ṽm−1‖ = 1 and ũm−1 ⊥ ṽm−1. Then for some numbers ν ∈ [0, 1], ϕ,ψ ∈ [0, 2π], the
following identity holds:

ũm−1 = e−iϕ
√
νum−1 + eiψ

√
1− νvm−1.

Define um by the formula

um =
PmPm−1√
τ0m−1,m

ũm−1,

then, evidently, ‖um‖ = 1.
In the same way as in the case of s = 5, we can show that, for an irreducible ∗-

representation, ν ∈ (0, 1) and the vectors ũm−1 and v1 can be selected in such a way that

ũm−1 =
√
νum−1 +

√
1− νvm−1.
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Then um ∈ Hm,0 and

〈um−1, um〉 = 〈um−1,
Pm−1PmPm−1√

τ0m−1,m

ũm−1〉 =
√
τ0m−1,mν,

〈vm−1, um〉 = 〈vm−1,
Pm−1PmPm−1√

τ0m−1,m

ũm−1〉 =
√
τ0m−1,m(1− ν).

So, we have found a set of vectors {ui, vj}i∈V,j∈Ṽ such that their Gram matrix is equal
to the matrix of the sesquilinear form BνG5,4,f

and the image of the projection Pi is a

linear span of the pair of vectors {ui, vi} for i ∈ Ṽ or the single vector ui for i ∈ Vm.
Because the linear span of the set is invariant with respect to the ∗-representation, it
coincides with H. �

Theorem 17. For any proper irreducible ∗-representation π of the algebra TLG5,s,f,⊥
there exists ν ∈ ΣG5,s,f such that π is unitarily equivalent to πν .

Proof. For any proper irreducible ∗-representation π, according to the previous proposi-
tion there exists a number ν ∈ (0, 1) and a set of vectors {ui, vj}i∈V,j∈Ṽ such that their
Gram matrix equals to the matrix of the sesquilinear form BνG5,s,f

. So, the sesquilinear

form BνG5,s,f
is non-negative definite, i.e., ν ∈ ΣG5,s,f . Let us show that π is unitarily

equivalent to πν .
We define an operator C : H → Hν by Cui = xi, Cvj = yj , i ∈ V , j ∈ Ṽ . It is clear,

that C is a unitary operator.
Then, for any uk, vk and i ∈ Ṽ , the next relations hold:

CPiuk = 〈uk, ui〉Cui + 〈uk, vi〉Cvi = 〈xk, xi〉xi + 〈xk, yi〉yi,
CPivk = 〈vk, ui〉Cui + 〈vk, vi〉Cvi = 〈yk, xi〉xi + 〈yk, yi〉yi,

Pi,νCuk = Pi,νxk = 〈xk, xi〉xi + 〈xk, yi〉yi,
Pi,νCvk = Pi,νyk = 〈yk, xi〉xi + 〈yk, yi〉yi.

And for any uk, vk and i ∈ V \ Ṽ , we have

CPiuk = 〈uk, ui〉Cui = 〈xk, xi〉xi,
CPivk = 〈vk, ui〉Cui = 〈yk, xi〉xi,

Pi,νCuk = Pi,νxk = 〈xk, xi〉xi,
Pi,νCvk = Pi,νyk = 〈yk, xi〉xi.

So, we have shown that CPi = Pi,νC for any i ∈ V , which implies that the ∗-
representations π and πν are unitarily equivalent. �

5. Examples

As examples we consider the graphs Ĝ5,4 and Ĝ5,5 such that the sets of their vertices
consist of precisely three elements {0, 1, 2}. For these algebras we will describe the
sets ΣĜ5,4,f

and ΣĜ5,5,f
.

For Ĝ5,4, the matrix of the related sesquilinear form in the basis {x0, y0, x1, y1, x2} is
1 0

√
τ001 0 0

0 1 0
√
τ101 0√

τ001 0 1 0
√
ντ012

0
√
τ101 0 1

√
(1− ν)τ012

0 0
√
ντ012

√
(1− ν)τ012 1
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and, for Ĝ5,5, the matrix of the related sesquilinear form in the basis {x0, y0, x1, y1, x2, y2}
is 

1 0
√
τ001 0 0 0

0 1 0
√
τ101 0 0√

τ001 0 1 0
√
ντ012

√
(1− ν)τ112

0
√
τ101 0 1

√
(1− ν)τ012 −

√
ντ112

0 0
√
ντ012

√
(1− ν)τ012 1 0

0 0
√

(1− ν)τ112 −
√
ντ112 0 1


.

To find when these matrices are nonnegative definite let us calculate the principal
diagonal minors of these matrices. Note that the principal diagonal minors of the first
matrix are principal diagonal minors of the second one as well. Let us denote the minors
by Mi, i = 1, . . . , 5 (i = 1, . . . , 6 for the second matrix).

To calculate the determinants, we use the fact that if to some row we add a linear
combination of others rows then the determinant of the matrix does not change. Such a
transformation of the matrix will be called an allowed transformation.

First of all, consider the case of τ001 = 1. Then, evidently, M1 = M2 = 1, M3 = M4 = 0.
Furthermore, by using allowed transformations, we will get the identity

M5 = det


1 0 1 0 0

0 1 0
√
τ101 0

0 0 0 0
√
ντ012

0 0 0 1− τ101
√

(1− ν)τ012
0 0

√
ντ012

√
(1− ν)τ012 1

 .

So M5 = −ν(1 − τ101)τ012 < 0, because 1 = τ001 > τ101, τ012 > 0, ν ∈ (0, 1). This means
that in the case of τ001 = 1 the matrices of these forms cannot be nonnegative definite,
so, there do not exist proper representations.

If τ001 < 1 then, evidently, M1 = M2 = 1, M3 = 1 − τ101 > 0, M4 = 1 − τ101 > 0, and
using the allowed transformations we can get the identities

M5 = det


1 0

√
τ001 0 0

0 1 0
√
τ101 0

0 0 1− τ001 0
√
ντ012

0 0 0 1− τ101
√

(1− ν)τ012
0 0 0 0 1− ντ0

12

1−τ0
01
− (1−ν)τ0

12

1−τ1
01


and

M6 = det



1 0
√
τ001 0 0 0

0 1 0
√
τ101 0 0

0 0 1− τ001 0
√
ντ012

√
(1− ν)τ112

0 0 0 1− τ101
√

(1− ν)τ012 −
√
ντ112

0 0 0 0 X0 Y
0 0 0 0 Y X1

 ,

correspondingly, where

Xi = 1− ντ i12
1− τ i01

− (1− ν)τ i12
1− τ1−i01

, i = 0, 1,

Y =

√
ν(1− ν)τ012τ

1
12

1− τ101
−
√
ν(1− ν)τ012τ

1
12

1− τ001
.
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Thus the first form is nonnegative definite if and only if

X0 = 1− ντ012
1− τ001

− (1− ν)τ012
1− τ101

> 0,

i.e.,
1− τ101 − τ012

1− τ101
− ντ012

τ001 − τ101
(1− τ001)(1− τ101)

> 0,

which is equivalent to the inequality

ν 6
(1− τ101 − τ012)(1− τ001)

τ012(τ001 − τ101)
= ν0 = ν0(f).

Moreover, it is positive definite if and only if ν < ν0.
For the second form in the case of M5 = 0, we will get the identity

M6 = −Y 2(1− τ001)(1− τ101)

= −ν(1− ν)τ012τ
1
12(1− τ001)(1− τ101)

(
1

1− τ101
− 1

1− τ001

)2

.

So M6 < 0 and the condition ν < ν0 is required for the second form to be nonnegative
definite. In the case of ν < ν0, the form is nonnegative definite if and only if

(16) X0X1 − Y 2 > 0.

It is evident that

Xi = τ i12

(
1

τ i12
− 1

1− τ1−i01

)
− τ i12ν

(
1

1− τ i01
− 1

1− τ1−i01

)
, i = 0, 1,

Y 2 = ν(1− ν)τ012τ
1
12

(
1

1− τ101
− 1

1− τ001

)2

.

Let us introduce

X ′i =
1

τ i12
− 1

1− τ1−i01

=
1− τ1−i01 − τ i12
τ i12(1− τ1−i01 )

, i = 0, 1,

Z =
1

1− τ001
− 1

1− τ101
,

then inequality (16) is equivalent to the following inequalities:

(X ′0 − νZ)(X ′1 + νZ)− ν(1− ν)Z2 > 0,

X ′0X
′
1 − νZ(X ′1 −X ′0 + Z) > 0.

Because

Z(X ′1 −X ′0 + Z) =

(
1

1− τ001
− 1

1− τ101

)(
1

τ112
− 1

τ012

)
=

(τ001 − τ101)(τ012 − τ112)

τ001τ
1
01(1− τ001)(1− τ101)

> 0,

inequality (16) is equivalent to

ν 6
X ′0X

′
1

Z(X ′1 −X ′0 + Z)
,

or

ν 6
(1− τ101 − τ012)(1− τ001 − τ112)

(τ001 − τ101)(τ012 − τ112)
= ν1 = ν1(f).
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So we have shown that ΣĜ5,4,f
= (0, ν0(f)]∩(0, 1) and ΣĜ5,5,f

= (0, ν0(f))∩(0, ν1(f)]∩
(0, 1).

Note that ΣĜ5,4,f
is an empty set if and only if ν0(f) 6 0 and ΣĜ5,5,f

is empty if and

only if ν0(f) 6 0 or ν1(f) 6 0. Thus we have proved the following proposition.

Theorem 18. 1. The algebra TLĜ5,4,f,⊥ has no proper irreducible ∗-representations in

the case where
τ001 = 1 or τ101 + τ012 > 1.

Otherwise, all proper irreducible unitarily nonequivalent ∗-representations are πν , where

ν ∈ (0, 1) ∩ (0, ν0(f)].

2. The algebra TLĜ5,5,f,⊥ has no proper irreducible ∗-representations in the case where

τ101 + τ012 > 1 or τ001 + τ112 > 1.

Otherwise, all proper irreducible unitarily nonequivalent ∗-representations are πν , where

ν ∈ (0, 1) ∩ (0, ν0(f)) ∩ (0, ν1(f)].
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