\hat{g} -CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

J. ANTONY REX RODRIGO, O. RAVI, AND A. NALINIRAMALATHA

ABSTRACT. Characterizations and properties of $\mathcal{I}_{\hat{g}}$ -closed sets and $\mathcal{I}_{\hat{g}}$ -open sets are given. A characterization of normal spaces is given in terms of $\mathcal{I}_{\hat{g}}$ -open sets. Also, it is established that an $\mathcal{I}_{\hat{g}}$ -closed subset of an \mathcal{I} -compact space is \mathcal{I} -compact.

1. Introduction and Preliminaries

An ideal \mathcal{I} on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A \Rightarrow B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$. Given a topological space (X,τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [9] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [8, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\mathcal{I},\tau)$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I},\tau)$ [18]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$. If \mathcal{I} is an ideal on X, then (X,τ,\mathcal{I}) is called an ideal space. X is the ideal of all nowhere dense subsets in X, X, X subset X of an ideal space X, X, X is X-closed [8] (resp. *-dense in itself [6]) if X if X is X (resp. X is X and X is open.

By a space, we always mean a topological space (X,τ) with no separation properties assumed. If $A \subseteq X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X,τ) and $int^*(A)$ will denote the interior of A in (X,τ^*) . A subset A of a space (X,τ) is an α -open [15] (resp. semi-open [10], preopen [12]) set if $A \subseteq int(cl(int(A)))$ (resp. $A \subseteq cl(int(A))$, $A \subseteq int(cl(A))$). The family of all α -open sets in (X,τ) , denoted by τ^{α} , is a topology on X finer than τ . The closure of A in (X,τ^{α}) is denoted by $cl_{\alpha}(A)$. A subset A of a space (X,τ) is said to be g-closed [11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A subset A of a space (X,τ) is said to be \hat{g} -closed [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. A subset A of a space (X,τ) is said to be \hat{g} -open [19] if its complement is \hat{g} -closed. The family of all \hat{g} -open sets in (X,τ) is a topology on X. The semi-closure [2] of a subset A of X, denoted by cl(A), is defined to be the intersection of all semi-closed sets containing A. An ideal \mathcal{I} is said to be codense [4] or τ -boundary [14] if $\tau \cap \mathcal{I} = \{\emptyset\}$. \mathcal{I} is said to be completely codense [4] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X,τ) . Every completely codense ideal is codense but not the converse [4]. The following Lemmas will be useful in the sequel.

Lemma 1.1. Let (X,τ,\mathcal{I}) be an ideal space and $A \subseteq X$. If $A \subseteq A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$ [17, Theorem 5].

Lemma 1.2. Let (X,τ,\mathcal{I}) be an ideal space. Then \mathcal{I} is codense if and only if $G \subseteq G^*$ for every semi-open set G in X [17, Theorem 3].

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A05; Secondary 54D15, 54D30. Key words and phrases. \hat{g} -closed set, $\mathcal{I}_{\hat{g}}$ -closed set and \mathcal{I} -compact space.

Lemma 1.3. Let (X,τ,\mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subseteq \tau^{\alpha}$ [17, Theorem 6].

Result 1.4. If (X,τ) is a topological space, then every closed set is \hat{g} -closed but not conversely [1, Theorem 2.3].

Lemma 1.5. If (X,τ,\mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and A is an \mathcal{I}_g -closed set, then A is a \star -closed set [13, Corollary 2.2].

Lemma 1.6. Every g-closed set is \mathcal{I}_q -closed but not conversely [3, Theorem 2.1].

2. $\mathcal{I}_{\hat{q}}$ -CLOSED SETS

Definition 2.1. A subset A of an ideal space (X,τ,\mathcal{I}) is said to be $\mathcal{I}_{\hat{g}}$ -closed if $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

Definition 2.2. A subset A of an ideal space (X,τ,\mathcal{I}) is said to be $\mathcal{I}_{\hat{g}}$ -open if X-A is $\mathcal{I}_{\hat{g}}$ -closed.

Theorem 2.3. If (X,τ,\mathcal{I}) is any ideal space, then every $\mathcal{I}_{\hat{g}}$ -closed set is \mathcal{I}_{g} -closed but not conversely.

Example 2.4. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then $\mathcal{I}_{\hat{g}}$ -closed sets are $\emptyset,X,\{a,b\}$ and \mathcal{I}_{g} -closed sets $\emptyset,X,\{a\},\{b\},\{a,c\},\{b,c\}$. It is clear that $\{a\}$ is \mathcal{I}_{g} -closed but it is not $\mathcal{I}_{\hat{g}}$ -closed.

The following theorem gives characterizations of $\mathcal{I}_{\hat{q}}$ -closed sets.

Theorem 2.5. If (X,τ,\mathcal{I}) is any ideal space and $A\subseteq X$, then the following are equivalent.

- (a) A is $\mathcal{I}_{\hat{q}}$ -closed.
- (b) $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (c) For all $x \in cl^*(A)$, $scl(\{x\}) \cap A \neq \emptyset$.
- (d) $cl^*(A)-A$ contains no nonempty semi-closed set.
- (e) A^*-A contains no nonempty semi-closed set.

Proof. (a) \Rightarrow (b) If A is $\mathcal{I}_{\hat{g}}$ -closed, then $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X and so $cl^*(A)=A \cup A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X. This proves (b).

- (b) \Rightarrow (c) Suppose $x \in cl^*(A)$. If $scl(\{x\}) \cap A = \emptyset$, then $A \subseteq X scl(\{x\})$. By (b), $cl^*(A) \subseteq X scl(\{x\})$, a contradiction, since $x \in cl^*(A)$.
- (c) \Rightarrow (d) Suppose $F \subseteq cl^*(A)-A$, F is semi-closed and $x \in F$. Since $F \subseteq X-A$ and F is semi-closed, then $A \subseteq X-F$ and F is semi-closed, $scl(\{x\}) \cap A = \emptyset$. Since $x \in cl^*(A)$ by (c), $scl(\{x\}) \cap A \neq \emptyset$. Therefore $cl^*(A)-A$ contains no nonempty semi-closed set.
- (d) \Rightarrow (e) Since cl*(A)-A=(A \cup A*)-A= (A \cup A*) \cap A^c=(A \cap A^c) \cup (A* \cap A^c)=A* \cap A^c= A*-A. Therefore A*-A contains no nonempty semi-closed set.
- (e) \Rightarrow (a) Let $A \subseteq U$ where U is semi-open set. Therefore $X-U \subseteq X-A$ and so $A^* \cap (X-U) \subseteq A^* \cap (X-A) = A^* A$. Therefore $A^* \cap (X-U) \subseteq A^* A$. Since A^* is always closed set, so $A^* \cap (X-U)$ is a semi-closed set contained in $A^* A$. Therefore $A^* \cap (X-U) = \emptyset$ and hence $A^* \subseteq U$. Therefore A is $\mathcal{I}_{\hat{g}}$ -closed.

Theorem 2.6. Every \star -closed set is $\mathcal{I}_{\hat{q}}$ -closed but not conversely.

Proof. Let A be a \star -closed, then $A^* \subseteq A$. Let $A \subset U$ where U is semi-open. Hence $A^* \subseteq U$ whenever $A \subseteq U$ and U is semi-open. Therefore A is $\mathcal{I}_{\hat{q}}$ -closed.

Example 2.7. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{a\},\{b,c\}\}$ and $\mathcal{I} = \{\emptyset,\{c\}\}$. Then $\mathcal{I}_{\hat{g}}$ -closed sets are powerset of X and \star -closed sets are $\emptyset,X,\{a\},\{c\},\{a,c\},\{b,c\}$. It is clear that $\{b\}$ is $\mathcal{I}_{\hat{g}}$ -closed set but it is not \star -closed.

Theorem 2.8. Let (X,τ,\mathcal{I}) be an ideal space. For every $A \in \mathcal{I}$, A is $\mathcal{I}_{\hat{g}}$ -closed.

Proof. Let $A \subseteq U$ where U is semi-open set. Since $A^* = \emptyset$ for every $A \in \mathcal{I}$, then $cl^*(A) = A \cup A^* = A \subseteq U$. Therefore, by Theorem 2.5, A is $\mathcal{I}_{\hat{q}}$ -closed.

Theorem 2.9. If (X,τ,\mathcal{I}) is an ideal space, then A^* is always $\mathcal{I}_{\hat{g}}$ -closed for every subset A of X.

Proof. Let $A^* \subseteq U$ where U is semi-open. Since $(A^*)^* \subseteq A^*$ [8], we have $(A^*)^* \subseteq U$ whenever $A^* \subseteq U$ and U is semi-open. Hence A^* is $\mathcal{I}_{\hat{q}}$ -closed.

Theorem 2.10. Let (X,τ,\mathcal{I}) be an ideal space. Then every $\mathcal{I}_{\hat{g}}$ -closed, semi-open set is \star -closed set.

Proof. Since A is $\mathcal{I}_{\hat{g}}$ -closed and semi-open. Then $A^* \subseteq A$ whenever $A \subseteq A$ and A is semi-open. Hence A is \star -closed.

Corollary 2.11. If (X,τ,\mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and A is an $\mathcal{I}_{\hat{g}}$ -closed set, then A is \star -closed set.

Corollary 2.12. Let (X,τ,\mathcal{I}) be an ideal space and A be an $\mathcal{I}_{\hat{g}}$ -closed set. Then the following are equivalent.

- a) A is a \star -closed set.
- b) $cl^*(A)-A$ is a semi-closed set.
- c) A^*-A is a semi-closed set.

Proof. (a) \Rightarrow (b) If A is \star -closed, then $A^* \subseteq A$ and so $cl^*(A) - A = (A \cup A^*) - A = \emptyset$. Hence $cl^*(A) - A$ is semi-closed set.

- (b) \Rightarrow (c) Since $cl^*(A) A = A^* A$ and so $A^* A$ is semi-closed set.
- (c) \Rightarrow (a) If A*-A is a semi-closed set, since A is $\mathcal{I}_{\hat{g}}$ -closed set, by Theorem 2.5, A*-A= \emptyset and so A is \star -closed.

Theorem 2.13. Let (X,τ,\mathcal{I}) be an ideal space. Then every \hat{g} -closed set is an $\mathcal{I}_{\hat{g}}$ -closed set but not conversely.

Proof. Let A be a \hat{g} -closed set. Then $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. We have $cl^*(A) \subseteq cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. Hence A is $\mathcal{I}_{\hat{g}}$ -closed. \square

Example 2.14. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{a\},\{a,c\}\}$ and $\mathcal{I} = \{\emptyset,\{a\}\}$. Then $\mathcal{I}_{\hat{g}}$ -closed sets are $\emptyset,X,\{a\},\{b\},\{a,b\},\{b,c\}$ and \hat{g} -closed sets are $\emptyset,X,\{b\},\{b,c\}$. It is clear that $\{a\}$ is $\mathcal{I}_{\hat{g}}$ -closed set but it is not \hat{g} -closed.

Theorem 2.15. If (X,τ,\mathcal{I}) is an ideal space and A is a \star -dense in itself, $\mathcal{I}_{\hat{g}}$ -closed subset of X, then A is \hat{g} -closed.

Proof. Suppose A is a ★-dense in itself, $\mathcal{I}_{\hat{g}}$ -closed subset of X. Let $A \subseteq U$ where U is semi-open. Then by Theorem 2.5 (b), $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. Since A is ★-dense in itself, by Lemma 1.1, $cl(A)=cl^*(A)$. Therefore $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. Hence A is \hat{g} -closed.

Corollary 2.16. If (X,τ,\mathcal{I}) is any ideal space where $\mathcal{I}=\{\emptyset\}$, then A is $\mathcal{I}_{\hat{g}}$ -closed if and only if A is \hat{g} -closed.

Proof. From the fact that for $\mathcal{I}=\{\emptyset\}$, $A^*=\operatorname{cl}(A)\supseteq A$. Therefore A is \star -dense in itself. Since A is $\mathcal{I}_{\hat{g}}$ -closed, by Theorem 2.15, A is \hat{g} -closed. Conversely, by Theorem 2.13, every \hat{g} -closed set is $\mathcal{I}_{\hat{g}}$ -closed set.

Corollary 2.17. If (X,τ,\mathcal{I}) is any ideal space where \mathcal{I} is codense and A is a semi-open, $\mathcal{I}_{\hat{g}}$ -closed subset of X, then A is \hat{g} -closed.

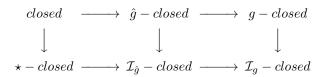
Proof. By Lemma 1.2, A is \star -dense in itself. By Theorem 2.15, A is \hat{g} -closed.

Example 2.18. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{a\},\{a,c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then g-closed sets are $\emptyset,X,\{b\},\{a,b\},\{b,c\}$ and $\mathcal{I}_{\hat{g}}$ -closed sets are $\emptyset,X,\{b\},\{b,c\}$. It is clear that $\{a,b\}$ is g-closed set but it is not $\mathcal{I}_{\hat{g}}$ -closed.

Example 2.19. Let $X = \{a,b,c\}$, $\tau = \{\emptyset,X,\{a\},\{a,c\}\}\}$ and $\mathcal{I} = \{\emptyset,\{a\}\}\}$. Then g-closed sets are $\emptyset,X,\{b\},\{a,b\},\{b,c\}\}$ and $\mathcal{I}_{\hat{g}}$ -closed sets are $\emptyset,X,\{a\},\{b\},\{a,b\},\{b,c\}\}$. It is clear that $\{a\}$ is $\mathcal{I}_{\hat{g}}$ -closed set but it is not g-closed.

Remark 2.20. By Example 2.18 and Example 2.19, g-closed sets and $\mathcal{I}_{\hat{g}}$ -closed sets are independent.

Remark 2.21. We have the following implications for the subsets stated above.



Theorem 2.22. Let (X,τ,\mathcal{I}) be an ideal space and $A \subseteq X$. Then A is $\mathcal{I}_{\hat{g}}$ -closed if and only if A=F-N where F is \star -closed and N contains no nonempty semi-closed set.

Proof. If A is $\mathcal{I}_{\hat{g}}$ -closed, then by Theorem 2.5 (e), N=A*-A contains no nonempty semi-closed set. If F=cl*(A), then F is \star -closed such that F-N=(A \cup A*)-(A*-A)=(A \cup A*) \cap (A* \cap A^c)^c=(A \cup A*) \cap ((A*)^c \cup A)=(A \cup A*) \cap (A \cup (A*)^c)=A \cup (A* \cap (A*)^c)=A.

Conversely, suppose A=F-N where F is \star -closed and N contains no nonempty semi-closed set. Let U be a semi-open set such that $A\subseteq U$. Then $F-N\subseteq U\Rightarrow F\cap (X-U)\subseteq N$. Now $A\subseteq F$ and $F^*\subseteq F$ then $A^*\subseteq F^*$ and so $A^*\cap (X-U)\subseteq F^*\cap (X-U)\subseteq F$ $\cap (X-U)\subseteq N$. By hypothesis, since $A^*\cap (X-U)$ is semi-closed, $A^*\cap (X-U)=\emptyset$ and so $A^*\subseteq U$. Hence A is $\mathcal{I}_{\widehat{g}}$ -closed.

Theorem 2.23. Let (X,τ,\mathcal{I}) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq A^*$, then $A^*=B^*$ and B is \star -dense in itself.

Proof. Since $A \subseteq B$, then $A^* \subseteq B^*$ and since $B \subseteq A^*$, then $B^* \subseteq (A^*)^* \subseteq A^*$. Therefore $A^*=B^*$ and $B \subseteq A^* \subseteq B^*$. Hence proved.

Theorem 2.24. Let (X,τ,\mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq cl^*(A)$ and A is $\mathcal{I}_{\hat{g}}\text{-closed}$, then B is $\mathcal{I}_{\hat{g}}\text{-closed}$.

Proof. Since A is $\mathcal{I}_{\hat{g}}$ -closed, then by Theorem 2.5 (d), $cl^*(A)-A$ contains no nonempty semi-closed set. Since $cl^*(B)-B \subseteq cl^*(A)-A$ and so $cl^*(B)-B$ contains no nonempty semi-closed set. Hence B is $\mathcal{I}_{\hat{g}}$ -closed.

Corollary 2.25. Let (X,τ,\mathcal{I}) be an ideal space. If A and B are subsets of X such that $A \subseteq B \subseteq A^*$ and A is $\mathcal{I}_{\hat{g}}$ -closed, then A and B are \hat{g} -closed sets.

Proof. Let A and B be subsets of X such that $A \subseteq B \subseteq A^* \Rightarrow A \subseteq B \subseteq A^* \subseteq cl^*(A)$ and A is $\mathcal{I}_{\hat{g}}$ -closed. By the above Theorem, B is $\mathcal{I}_{\hat{g}}$ -closed. Since $A \subseteq B \subseteq A^*$, then $A^*=B^*$ and so A and B are \star -dense in itself. By Theorem 2.15, A and B are \hat{g} -closed.

The following theorem gives a characterization of $\mathcal{I}_{\hat{q}}$ -open sets.

Theorem 2.26. Let (X,τ,\mathcal{I}) be an ideal space and $A \subseteq X$. Then A is $\mathcal{I}_{\hat{g}}$ -open if and only if $F \subseteq int^*(A)$ whenever F is semi-closed and $F \subseteq A$.

Proof. Suppose A is $\mathcal{I}_{\hat{g}}$ -open. If F is semi-closed and $F \subseteq A$, then $X-A \subseteq X-F$ and so $cl^*(X-A) \subseteq X-F$ by Theorem 2.5 (b). Therefore $F \subseteq X-cl^*(X-A)=int^*(A)$. Hence $F \subseteq int^*(A)$.

Conversely, suppose the condition holds. Let U be a semi-open set such that $X-A \subseteq U$. Then $X-U \subseteq A$ and so $X-U \subseteq int^*(A)$. Therefore $cl^*(X-A) \subseteq U$. By Theorem 2.5 (b), X-A is $\mathcal{I}_{\hat{g}}$ -closed. Hence A is $\mathcal{I}_{\hat{g}}$ -open.

Corollary 2.27. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. If A is $\mathcal{I}_{\hat{g}}$ -open, then $F\subseteq int^*(A)$ whenever F is closed and $F\subseteq A$.

The following theorem gives a property of $\mathcal{I}_{\hat{g}}$ -closed.

Theorem 2.28. Let (X,τ,\mathcal{I}) be an ideal space and $A \subseteq X$. If A is $\mathcal{I}_{\hat{g}}$ -open and $int^*(A) \subseteq B \subseteq A$, then B is $\mathcal{I}_{\hat{g}}$ -open.

Proof. Since A is $\mathcal{I}_{\hat{g}}$ -open, then X-A is $\mathcal{I}_{\hat{g}}$ -closed. By Theorem 2.5 (d), $cl^*(X-A)-(X-A)$ contains no nonempty semi-closed set. Since $int^*(A) \subseteq int^*(B)$ which implies that $cl^*(X-B) \subseteq cl^*(X-A)$ and so $cl^*(X-B)-(X-B) \subseteq cl^*(X-A)-(X-A)$. Hence B is $\mathcal{I}_{\hat{g}}$ -open.

The following theorem gives a characterization of $\mathcal{I}_{\hat{g}}$ -closed sets in terms of $\mathcal{I}_{\hat{g}}$ -open sets.

Theorem 2.29. Let (X,τ,\mathcal{I}) be an ideal space and $A\subseteq X$. Then the following are equivalent.

- (a) A is $\mathcal{I}_{\hat{g}}$ -closed.
- (b) $A \cup (\bar{X}-A^*)$ is $\mathcal{I}_{\hat{g}}$ -closed.
- (c) A^*-A is $\mathcal{I}_{\hat{q}}$ -open.

Proof. (a) ⇒ (b) Suppose A is $\mathcal{I}_{\hat{g}}$ -closed. If U is any semi-open set such that A \cup (X-A*) \subseteq U, then X-U \subseteq X-(A \cup (X-A*))=X \cap (A \cup (A*) c) c =A* \cap A c =A*-A. Since A is $\mathcal{I}_{\hat{g}}$ -closed, by Theorem 2.5 (e), it follows that X-U= \emptyset and so X=U. Therefore A \cup (X-A*) \subseteq U \Rightarrow A \cup (X-A*) \subseteq X and so (A \cup (X-A*))* \subseteq X* \subseteq X=U. Hence A \cup (X-A*) is $\mathcal{I}_{\hat{g}}$ -closed.

(b) \Rightarrow (a) Suppose A \cup (X-A*) is $\mathcal{I}_{\hat{g}}$ -closed. If F is any semi-closed set such that F \subseteq A*-A, then F \subseteq A* and F \nsubseteq A \Rightarrow X-A* \subseteq X-F and A \subseteq X-F. Therefore A \cup (X-A*) \subseteq A \cup (X-F)= X-F and X-F is semi-open. Since (A \cup (X-A*))* \subseteq X-F \Rightarrow A* \cup (X-A*)* \subseteq X-F and so A* \subseteq X-F \Rightarrow F \subseteq X-A*. Since F \subseteq A*, it follows that F= \emptyset . Hence A is $\mathcal{I}_{\hat{g}}$ -closed.

(b)
$$\Leftrightarrow$$
 (c) Since X-(A*-A)=X \cap (A* \cap A^c)^c=X \cap ((A*)^c \cup A)=(X \cap (A*)^c) \cup (X \cap A)=A \cup (X-A*).

Theorem 2.30. Let (X,τ,\mathcal{I}) be an ideal space. Then every subset of X is $\mathcal{I}_{\hat{g}}$ -closed if and only if every semi-open set is \star -closed.

Proof. Suppose every subset of X is $\mathcal{I}_{\hat{g}}$ -closed. If $U \subseteq X$ is semi-open, then U is $\mathcal{I}_{\hat{g}}$ -closed and so $U^* \subseteq U$. Hence U is \star -closed. Conversely, suppose that every semi-open set is \star -closed. If U is semi-open set such that $A \subseteq U \subseteq X$, then $A^* \subseteq U^* \subseteq U$ and so A is $\mathcal{I}_{\hat{g}}$ -closed.

The following theorem gives a characterization of normal spaces in terms of $\mathcal{I}_{\hat{g}}$ -open sets.

Theorem 2.31. Let (X,τ,\mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

- (a) X is normal.
- (b) For any disjoint closed sets A and B, there exist disjoint $\mathcal{I}_{\hat{g}}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (c) For any closed set A and open set V containing A, there exists an $\mathcal{I}_{\hat{g}}$ -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq V$.
- *Proof.* (a) \Rightarrow (b) The proof follows from the fact that every open set is $\mathcal{I}_{\hat{\sigma}}$ -open.
- (b) \Rightarrow (c) Suppose A is closed and V is an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint $\mathcal{I}_{\hat{g}}$ -open sets U and W such that $A \subseteq U$ and X-V \subseteq W. Since X-V is semi-closed and W is $\mathcal{I}_{\hat{g}}$ -open, X-V \subseteq int*(W) and so X-int*(W) \subseteq V. Again $U \cap W = \emptyset \Rightarrow U \cap \operatorname{int}^*(W) = \emptyset$ and so $U \subseteq X \operatorname{int}^*(W) \Rightarrow \operatorname{cl}^*(U) \subseteq X \operatorname{int}^*(W) \subseteq V$. U is the required $\mathcal{I}_{\hat{g}}$ -open sets with $A \subseteq U \subseteq \operatorname{cl}^*(U) \subseteq V$.
- (c) \Rightarrow (a) Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an $\mathcal{I}_{\hat{g}}$ -open set U such that $A \subseteq U \subseteq cl^*(U) \subseteq X-B$. Since U is $\mathcal{I}_{\hat{g}}$ -open, $A \subseteq int^*(U)$. Since \mathcal{I} is completely codense, by Lemma 1.3, $\tau^* \subseteq \tau^{\alpha}$ and so $int^*(U)$ and $X-cl^*(U)in \tau^{\alpha}$. Hence $A \subseteq int^*(U) \subseteq int(cl(int(int^*(U))))=G$ and $B \subseteq X-cl^*(U) \subseteq int(cl(int(X-cl^*(U))))=H$. G and H are the required disjoint open sets containing A and B respectively, which proves (a).

A subset A of an ideal space (X,τ,\mathcal{I}) is said to be an α gs-closed set [16] if $cl_{\alpha}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open. The complement of α gs-closed is said to be an α gs-open set. If $\mathcal{I} = \mathcal{N}$, then $\mathcal{I}_{\hat{g}}$ -closed sets coincide with α gs-closed sets and so we have the following Corollary.

Corollary 2.32. Let (X,τ,\mathcal{I}) be an ideal space where $\mathcal{I} = \mathcal{N}$. Then the following are equivalent.

- (a) X is normal.
- (b) For any disjoint closed sets A and B, there exist disjoint αgs -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (c) For any closed set A and open set V containing A, there exists an αgs -open set U such that $A \subseteq U \subseteq cl_{\alpha}(U) \subseteq V$.

A subset A of an ideal space is said to be \mathcal{I} -compact [5] or compact modulo \mathcal{I} [14] if for every open cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of A, there exists a finite subset Δ_0 of Δ such that $A - \cup \{U_{\alpha} \mid \alpha \in \Delta_0\} \in \mathcal{I}$. The space (X, τ, \mathcal{I}) is \mathcal{I} -compact if X is \mathcal{I} -compact as a subset.

Theorem 2.33. Let (X,τ,\mathcal{I}) be an ideal space. If A is an \mathcal{I}_g -closed subset of X, then A is \mathcal{I} -compact [13, Theorem 2.17].

Corollary 2.34. Let (X,τ,\mathcal{I}) be an ideal space. If A is an $\mathcal{I}_{\hat{g}}$ -closed subset of X, then A is \mathcal{I} -compact.

Proof. The proof follows from the fact that every $\mathcal{I}_{\hat{g}}$ -closed set is \mathcal{I}_{g} -closed.

References

- M. E. Abd El-Monsef, S. Rose Mary and M. L. Thivagar, αĜ-closed sets in topological spaces, Assiut Univ. J. of Mathematics and Computer Science 36 (2007), no. 1, 43–51.
- 2. S. G. Crossley and S. K. Hilderbrand, Semi-closure, Texas J. Sci. 22 (1971), 99–112.
- J. Dontchev, M. Ganster and T. Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica 49 (1999), 395–401.
- J. Dontchev, M. Ganster and D. Rose, *Ideal resolvability*, Topology and its Applications 93 (1999), 1–16.
- T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. U. M. I. (7) 4-B (1990), 849–861.

- 6. E. Hayashi, Topologies defined by local properties, Math. Ann. 156 (1964), 205–215.
- S. Jafari, T. Noiri, N. Rajesh and M. L. Thivagar, Another generalization of closed sets, Kochi J. Math. 3 (2008), 25–38.
- D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295–310.
- 9. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- 11. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89-96.
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta. Math. Hungar. 119 (2008), 365–371.
- R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation, University of California, Santa Barbara, California, 1967.
- 15. O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- 16. M. Rajamani and K. Viswanathan, On αgs -closed sets in topological spaces, Acta Ciencia Indica, Math. **30** (2004), no. 3, 21–25.
- 17. V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar. 108 (2005), no. 3, 197–205.
- 18. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1946.
- M. K. R. S. Veera Kumar, On ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc. 18 (2003), 99–112.

Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India $E\text{-}mail\ address:}$ antonyrexrodrigo@yahoo.co.in

DEPARTMENT OF MATHEMATICS, P. M. THEVAR COLLEGE, USILAMPATTI, MADURAI DT, TAMILNADU, INDIA

 $E ext{-}mail\ address: siingam@yahoo.com}$

DEPARTMENT OF MATHEMATICS, YADAVA COLLEGE, MADURAI, TAMILNADU, INDIA

 $E ext{-}mail\ address: mpjayasankarmp@gmail.com}$

Received 24/01/2011