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g-CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

J. ANTONY REX RODRIGO, O. RAVI, AND A. NALINIRAMALATHA

ABSTRACT. Characterizations and properties of Zj-closed sets and Zg-open sets are
given. A characterization of normal spaces is given in terms of Zg-open sets. Also, it
is established that an Zj-closed subset of an Z-compact space is Z-compact.

1. INTRODUCTION AND PRELIMINARIES

An ideal Z on a topological space (X,7) is a nonempty collection of subsets of X which
satisfies () A€eZandBCA=BeZand (i) AeZandBeZ=AUBeZ. Givena
topological space (X,7) with an ideal Z on X and if p(X) is the set of all subsets of X, a
set operator (.)* : p(X) — p(X), called a local function [9] of A with respect to 7 and T
is defined as follows: for A C X, A*(Z,7)={x € X | UN A ¢ T for every U € 7(x)} where
7(x)={U € 7 | x € U}. We will make use of the basic facts about the local functions [8,
Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl*(.) for
a topology 7 *(Z,7), called the x-topology, finer than 7 is defined by cl*(A)=A U A*(Z,7)
[18]. When there is no chance for confusion, we will simply write A* for A*(Z,7) and 7*
for 7*(Z,r). If Z is an ideal on X, then (X,7,Z) is called an ideal space. N is the ideal
of all nowhere dense subsets in (X,7). A subset A of an ideal space (X,7,7) is *-closed
[8] (resp. x-dense in itself [6]) if A* C A (resp. A C A*). A subset A of an ideal space
(X,7,Z) is Zg-closed [3] if A* C U whenever A C U and U is open.

By a space, we always mean a topological space (X,7) with no separation properties
assumed. If A C X, cl(A) and int(A) will, respectively, denote the closure and interior
of A in (X,7) and int*(A) will denote the interior of A in (X,7 *). A subset A of a space
(X,7) is an a-open [15] (resp. semi-open [10], preopen [12]) set if A C int(cl(int(A)))
(resp. A C cl(int(A)), A C int(cl(A))). The family of all a-open sets in (X,7), denoted
by 7%, is a topology on X finer than 7 . The closure of A in (X,7*) is denoted by cl,(A).
A subset A of a space (X,7) is said to be g-closed [11] if cl(A) C U whenever A C U and
U is open. A subset A of a space (X,7) is said to be g-closed [19] if cl(A) C U whenever
A C U and U is semi-open. A subset A of a space (X,7) is said to be g-open [19] if its
complement is g-closed. The family of all g-open sets in (X,7) is a topology on X. The
semi-closure [2] of a subset A of X, denoted by scl(A), is defined to be the intersection of
all semi-closed sets containing A. An ideal Z is said to be codense [4] or T-boundary [14]
if 7 N Z={0}. Z is said to be completely codense [4] if PO(X) N Z={0}, where PO(X)
is the family of all preopen sets in (X,7). Every completely codense ideal is codense but
not the converse [4]. The following Lemmas will be useful in the sequel.

Lemma 1.1. Let (X,7,Z) be an ideal space and A C X. If A C A*, then A* =cl(A*)
=cl(A)=cl*(A) [17, Theorem 5].

Lemma 1.2. Let (X,7,Z) be an ideal space. Then T is codense if and only if G C G*
for every semi-open set G in X [17, Theorem 3J.
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Lemma 1.3. Let (X,7,Z) be an ideal space. If T is completely codense, then 7 * C 7%
[17, Theorem 6].

Result 1.4. If (X,7) is a topological space, then every closed set is g-closed but not
conversely [1, Theorem 2.5].

Lemma 1.5. If (X,7,7) is a Tz ideal space and A is an I,-closed set, then A is a
*-closed set [13, Corollary 2.2].

Lemma 1.6. Every g-closed set is I -closed but not conversely [3, Theorem 2.1].

2. 14-CLOSED SETS

Definition 2.1. A subset A of an ideal space (X,7,T) is said to be Ty-closed if A* C U
whenever A C U and U is semi-open.

Definition 2.2. A subset A of an ideal space (X,7,T) is said to be Iy-open if X—A is
Z;-closed.

Theorem 2.3. If (X,7,Z) is any ideal space, then every Iy-closed set is Ly-closed but
not conversely.

Example 2.4. Let X={a,b,c}, 7={0,X,{c}} and Z={0}. ThenZ;-closed sets are 9, X,{a,b}
and Z,-closed sets 0,X,{a},{b},{a,b} {a,c}.{b,c}. It is clear that {a} is Z,-closed but it
15 not Ly-closed.

The following theorem gives characterizations of Z;-closed sets.

Theorem 2.5. If (X,7,7) is any ideal space and A C X, then the following are equivalent.
(a) A is Ly-closed.
(b) cl* (A) C U whenever A C U and U is semi-open in X.
(c) For all x € cl*(A), scl({z}) N A#0.
(d) cl*(A)—A contains no nonempty semi-closed set.
(e) A*—A contains no nonempty semi-closed set.

Proof. (a) = (b) If A is Zj-closed, then A* C U whenever A C U and U is semi-open in
X and so cl*(A)=A U A* C U whenever A C U and U is semi-open in X. This proves
(b).

(b) = (c) Suppose x € cl*(A). If scl({x}) N A= 0, then A C X—scl({x}). By (b), cI*(A)
C X—scl({x}), a contradiction, since x € cl*(A).

(¢) = (d) Suppose F C cl*(A)—A, F is semi-closed and x € F. Since F C X—A and F is
semi-closed, then A C X—F and F is semi-closed, scl({x}) N A = (). Since x € cI*(A) by
(¢), scl({x}) N A#£D. Therefore cl*(A)—A contains no nonempty semi-closed set.

(d) = (e) Since cI*(A)—A=(A U A*)—A= (AU A*) N A=A N A°) U (A* N A%)=A"
N A°= A*—A. Therefore A*—A contains no nonempty semi-closed set.

(e) = (a) Let A C U where U is semi-open set. Therefore X—U C X—A and so A* N
(X-U) € A* N (X—A)=A*"—A. Therefore A* N (X—U) C A*—A. Since A* is always
closed set, so A* N (X—U) is a semi-closed set contained in A*—A. Therefore A* N
(X—U)=0 and hence A* C U. Therefore A is Zy-closed. O

Theorem 2.6. Every x-closed set is Ty-closed but not conversely.

Proof. Let A be a x-closed, then A* C A. Let A C U where U is semi-open. Hence A*
C U whenever A C U and U is semi-open. Therefore A is Zs-closed. O

Example 2.7. Let X={a,b,c}, 7 ={0,X.{a},{b,c}} and T={0,{c}}. Then Z;-closed sets
are powerset of X and x-closed sets are 0,X,{a},{c},{a,c},{b,c}. It is clear that {b} is
Z;-closed set but it is not x-closed.
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Theorem 2.8. Let (X,7,7) be an ideal space. For every A € I, A is T;-closed.

Proof. Let A C U where U is semi-open set. Since A*= () for every A € Z, then cl*(A)=A
U A*=A C U. Therefore, by Theorem 2.5, A is Z;-closed. O

Theorem 2.9. If (X,7,7) is an ideal space, then A* is always Ts-closed for every subset
A of X.

Proof. Let A* C U where U is semi-open. Since (A*)* C A* [8], we have (A*)* C U
whenever A* C U and U is semi-open. Hence A* is Z;-closed. |

Theorem 2.10. Let (X,7,Z) be an ideal space. Then every I;-closed, semi-open set is
*-closed set.

Proof. Since A is Ty-closed and semi-open. Then A* C A whenever A C A and A is
semi-open. Hence A is *-closed. O

Corollary 2.11. If (X,7,Z) is a Tz ideal space and A is an Ty-closed set, then A is
*-closed set.

Corollary 2.12. Let (X,7,Z) be an ideal space and A be an Iy-closed set. Then the
following are equivalent.

a) A is a *-closed set.

b) cl*(A)—A is a semi-closed set.

c) A*—A is a semi-closed set.

Proof. (a) = (b) If A is %-closed, then A* C A and so cl*(A)—A=(A U A*)—A= 0.
Hence cl*(A)—A is semi-closed set.

(b) = (c) Since cl*(A)—A=A*—A and so A*—A is semi-closed set.

(c) = (a) If A*—A is a semi-closed set, since A is Zs-closed set, by Theorem 2.5, A*—A=
() and so A is *-closed. O

Theorem 2.13. Let (X,7,Z) be an ideal space . Then every g-closed set is an Ly-closed
set but not conversely.

Proof. Let A be a g-closed set. Then cl(A) C U whenever A C U and U is semi-open. We
have cI*(A) C cl(A) C U whenever A C U and U is semi-open. Hence A is Zy-closed. O

Example 2.14. Let X={a,b,c}, 7={0,X.{a}.{a,c}} and Z={0 ,{a}}. Then Z;-closed
sets are 0,X,{a},{b},{a,b},{b,c} and g-closed sets are 0,X,{b},{b,c}. It is clear that {a}

s Lg-closed set but it is not g-closed.

Theorem 2.15. If (X,7,7) is an ideal space and A is a x-dense in itself, Ts-closed subset
of X, then A is g-closed.

Proof. Suppose A is a %-dense in itself, Z;-closed subset of X. Let A C U where U is
semi-open. Then by Theorem 2.5 (b), cI*(A) C U whenever A C U and U is semi-open.
Since A is x-dense in itself, by Lemma 1.1, cl(A)=cl*(A). Therefore cl(A) C U whenever
A C U and U is semi-open. Hence A is g-closed. |

Corollary 2.16. If (X,7,Z) is any ideal space where T={0}, then A is Ly-closed if and
only if A is g-closed.

Proof. From the fact that for Z={(0}, A*=cl(A) D A. Therefore A is x-dense in itself.
Since A is Z4-closed, by Theorem 2.15, A is g-closed. Conversely, by Theorem 2.13, every
g-closed set is Zz-closed set. |

Corollary 2.17. If (X,7,Z) is any ideal space where I is codense and A is a semi-open,
Zy-closed subset of X, then A is g-closed.
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Proof. By Lemma 1.2, A is x-dense in itself. By Theorem 2.15, A is g-closed. (]

Example 2.18. Let X={a,b,c}, 7={0,X,{a},{a,c}} and Z={0}. Then g-closed sets are
0,X,{b}.{a,b}.{b,c} and Zy-closed sets are 0, X,{b},{b,c}. It is clear that {a,b} is g-closed
set but it is not Ly-closed.

Example 2.19. Let X={a,b,c}, 7={0,X,{a},{a,c}} and T={0,{a}}. Then g-closed sets
are 0,X,{b},{a,b},{b,c} and I;-closed sets are 0,X {a},{b}.{a,b},{b,c}. It is clear that
{a} is Ty-closed set but it is not g-closed.

Remark 2.20. By Ezxample 2.18 and Example 2.19, g-closed sets and L;-closed sets are
independent.

Remark 2.21. We have the following implications for the subsets stated above.

closed —— §—closed —— g — closed

! l l

* — closed —— 1 — closed —— 1, — closed

Theorem 2.22. Let (X,7,Z) be an ideal space and A C X. Then A is Ty-closed if and
only if A=F— N where F is x-closed and N contains no nonempty semi-closed set.

Proof. If A is Z;-closed, then by Theorem 2.5 (e), N=A*—A contains no nonempty semi-
closed set. If F=cl*(A), then F is x-closed such that F—N=(A U A*)—(A*—A)=(A
UA )N (A*NA)=AUA )N (A ) UA)=AUA )N (AU (A")=A U (A* n
(A")9)=A.

Conversely, suppose A=F—N where F is x-closed and N contains no nonempty semi-
closed set. Let U be a semi-open set such that A C U. Then F-N C U = F N (X-U)
C N.Now A C F and F* C F then A* C F* andso A* N (X-U) CF*n (X-U)CF
N (X-U) C N. By hypothesis, since A* N (X—U) is semi-closed, A* N (X—U)=0 and so
A* C U. Hence A is Zj-closed. O

Theorem 2.23. Let (X,7,Z) be an ideal space and A C X. If A C B C A*, then A*=B*
and B is x-dense in itself.

Proof. Since A C B, then A* C B* and since B C A*, then B* C (A*)* C A*. Therefore
A*=B* and B C A* C B*. Hence proved. O

Theorem 2.24. Let (X,7,7) be an ideal space. If A and B are subsets of X such that A
C B C cl*(A) and A is Ty-closed, then B is L;-closed.

Proof. Since A is Ty-closed, then by Theorem 2.5 (d), cI*(A)—A contains no nonempty
semi-closed set. Since cI*(B)—B C cl*(A)—A and so c1*(B)—B contains no nonempty
semi-closed set. Hence B is Zs-closed. O

Corollary 2.25. Let (X,7,Z) be an ideal space. If A and B are subsets of X such that
A C BC A* and A is Zy-closed, then A and B are §-closed sets.

Proof. Let A and B be subsets of X such that A CB C A* = A CB C A* C ¢I*(A) and
A is Tj-closed. By the above Theorem, B is Zy-closed. Since A C B C A*, then A*=B*
and so A and B are x-dense in itself. By Theorem 2.15, A and B are g-closed. a

The following theorem gives a characterization of Zs-open sets.

Theorem 2.26. Let (X,7,Z) be an ideal space and A C X. Then A is Ly-open if and
only if F C int*(A) whenever F is semi-closed and F C A.
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Proof. Suppose A is Zs-open. If F is semi-closed and F C A, then X—A C X—F and so
cl*(X—A) C X—F by Theorem 2.5 (b). Therefore F C X—cl*(X—A)=int*(A). Hence F
C int*(A).

Conversely, suppose the condition holds. Let U be a semi-open set such that X—A C
U. Then X—U C A and so X—U C int*(A). Therefore c1*(X—A) C U. By Theorem 2.5
(b), X—A is Z;-closed. Hence A is Z;-open. O

Corollary 2.27. Let (X,7,Z) be an ideal space and A C X. If A is Ty-open, then F C
int* (A) whenever F is closed and F C A.

The following theorem gives a property of Zs-closed.

Theorem 2.28. Let (X,7,Z) be an ideal space and A C X. If A is Ty-open and int*(A)
C B C A, then B is I;-open.

Proof. Since A is Z;-open, then X—A is Z;-closed. By Theorem 2.5 (d), cI*(X—A)—(X—A)
contains no nonempty semi-closed set. Since int*(A) C int*(B) which implies that
cl*(X—B) C cI*(X—A) and so cI*(X—B)—(X—-B) C cI*(X—A)—(X—A). Hence B is Z;-
open. O

The following theorem gives a characterization of Zj-closed sets in terms of Z;-open
sets.

Theorem 2.29. Let (X,7,Z) be an ideal space and A C X. Then the following are
equivalent.

(a) A is Ty-closed.

(b) AU (X—A*) is Tj-closed.

(c) A*—A is Ty-open.

Proof. (a) = (b) Suppose A is Ty-closed. If U is any semi-open set such that A U (X—A*)
C U, then X—U C X—(A U (X—A")=XN (AU (A*)°)°=A* N A°=A*—A. Since A is T-
closed, by Theorem 2.5 (e), it follows that X—U=f) and so X=U. Therefore A U (X—A*)
CU=AUX-A*) CXandso (AU (X=A*))* C X* C X=U. Hence A U (X—A*) is
Zs-closed.

(b) = (a) Suppose A U (X—A*) is Z;-closed. If F is any semi-closed set such that F C
A*—A then F C A* and F QZ A= X-A* CX-Fand A C X—F. Therefore A U (X—A*)
C AU (X-F)= X—F and X-F is semi-open. Since (A U (X—A*))* C X—-F = A* U
(X—A*)* C X—F and so A* C X—F = F C X—A*. Since F C A* it follows that F=.
Hence A is Z;-closed.

(b) & (c¢) Since X—(A*—A)=X N (A* N A%)°=X N ((A*)° U A)=X N (A")) U (XN
A)=A U (X—A*). O

Theorem 2.30. Let (X,7,7) be an ideal space. Then every subset of X is Ty-closed if
and only if every semi-open set is x-closed.

Proof. Suppose every subset of X is Zs-closed. If U C X is semi-open, then U is Z-closed
and so U* C U. Hence U is x-closed. Conversely, suppose that every semi-open set is
*-closed. If U is semi-open set such that A C U C X, then A* C U* C U and so A is
Z;-closed. ([l

The following theorem gives a characterization of normal spaces in terms of Z;-open
sets.
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Theorem 2.31. Let (X,7,Z) be an ideal space where T is completely codense. Then the
following are equivalent.

(a) X is normal.

(b) For any disjoint closed sets A and B, there exist disjoint Iy-open sets U and V
such that A C U and B C V.

(c¢) For any closed set A and open set V containing A, there exists an Lz-open set U
such that A C U C el*(U) C V.

Proof. (a) = (b) The proof follows from the fact that every open set is Z;-open.

(b) = (c) Suppose A is closed and V is an open set containing A. Since A and X—V are
disjoint closed sets, there exist disjoint Zs-open sets U and W such that A C U and X-V
C W. Since X—V is semi-closed and W is Zg-open, X—V C int* (W) and so X—int*(W) C
V. Again UN W= = U N int*(W)=0 and so U C X—int*(W) = cI*(U) C X—int*(W)
C V. U is the required Zz-open sets with A C U C ¢I*(U) C V.

(¢) = (a) Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an
Zs-open set U such that A C U C clI*(U) € X—B. Since U is Zz-open, A C int*(U). Since Z
is completely codense, by Lemma 1.3, 7 * C 7% and so int*(U) and X—cl*(U)in 7. Hence
A C int*(U) C int(cl(int(int*(U))))=G and B C X—cl*(U) C int(cl(int(X—cl*(U))))=H.
G and H are the required disjoint open sets containing A and B respectively, which
proves (a). O

A subset A of an ideal space (X,7,Z) is said to be an ags-closed set [16] if clo(A) C
U whenever A C U and U is semi-open. The complement of ags-closed is said to be an
ags-open set. If Z =N, then Zy-closed sets coincide with ags-closed sets and so we have
the following Corollary.

Corollary 2.32. Let (X,7,Z) be an ideal space where T =N. Then the following are
equivalent.

(a) X is normal.

(b) For any disjoint closed sets A and B, there exist disjoint ags-open sets U and 'V
such that A C U and BC V.

(¢) For any closed set A and open set V containing A, there exists an cags-open set U
such that A C U C ¢l (U) C V.

A subset A of an ideal space is said to be Z-compact [5] or compact modulo Z [14] if
for every open cover {U, | & € A} of A, there exists a finite subset Ag of A such that A—
U{Uqs | @ € Ap} € Z. The space (X,7, Z) is Z-compact if X is Z-compact as a subset.

Theorem 2.33. Let (X,7,Z) be an ideal space. If A is an Zy-closed subset of X, then A
is Z-compact [13, Theorem 2.17].

Corollary 2.34. Let (X,7 ,7) be an ideal space. If A is an Ly-closed subset of X, then
A is T-compact.

Proof. The proof follows from the fact that every Zj-closed set is Z,-closed. O
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