DUNFORD-PETTIS PROPERTY OF THE PRODUCT OF SOME OPERATORS

BELMESNAOUI AQZZOUZ, OTHMAN ABOUTAFAIL, AND AZIZ ELBOUR

ABSTRACT. We establish a sufficient condition under which the product of an order bounded almost Dunford-Pettis operator and an order weakly compact operator is Dunford-Pettis. And we derive some consequences.

1. Definitions and Notation

Recall that a vector lattice E is an ordered vector space in which $x \lor y := \sup(x, y)$ and $x \wedge y := \inf(x, y)$ exists for every $x, y \in E$. For any vector x in a vector lattice, the element $x^+ := x \vee 0$ is called the *positive part*, $x^- := (-x) \vee 0$ is called the *negative part*, and $|x| := x \lor (-x)$ called the *absolute value* of x. Note that $x = x^+ - x^-$ and $|x| = x^+ + x^-$. A sequence (x_n) in a vector space is said to be *disjoint* whenever $|x_n| \wedge |x_m| = 0$ holds for $n \neq m$. A subset A of a vector lattice E is said to be *solid* if it follows from $|y| \leq |x|$ with $x \in A$ and $y \in E$ that $y \in A$. The solid hull of a subset W of E is the smallest solid set including W and is exactly the set $Sol(W) := \{x \in E : \exists y \in A \text{ with } |x| \le |y|\}$. An order ideal of a vector lattice E is a solid subspace. Let E be a vector lattice, for each $x, y \in E$ with $x \leq y$, the set $[x, y] := \{z \in E : x \leq z \leq y\}$ is called an order interval. A subset of E is said to be *order bounded* if it is included in some order interval. A Banach *lattice* is a Banach space $(E, \|\cdot\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \leq |y|$, we have $||x|| \leq ||y||$. If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice. A norm $\|\cdot\|$ of a Banach lattice E is order continuous if for each generalized sequence (x_{α}) such that $x_{\alpha} \downarrow 0$ for E, the sequence (x_{α}) converges to 0 for the norm $\|\cdot\|$ where the notation $x_{\alpha} \downarrow 0$ means that the sequence (x_{α}) is decreasing, its infimum exists and $\inf(x_{\alpha}) = 0$. A Banach lattice E is said to have weakly sequentially continuous *lattice operations* whenever $x_n \to 0$ for $\sigma(E, E')$ implies $|x_n| \to 0$ for $\sigma(E, E')$.

We will use the term operator $T: E \longrightarrow F$ between two Banach lattices to mean a bounded linear mapping. It is *positive* if $T(x) \ge 0$ for F whenever $x \ge 0$ for E. The operator T is *regular* if $T = T_1 - T_2$ where T_1 and T_2 are positive operators from Einto F. Note that each positive linear mapping on a Banach lattice is continuous. An operator $T: E \longrightarrow F$ is said to be *order bounded* if it maps order bounded subsets of Eto order bounded subsets of E.

We refer reader to [1] for unexplained terminology on Banach lattice theory and positive operators.

2. Main results

Recall that an operator T from a Banach lattice E into a Banach space X is called almost Dunford-Pettis if $||T(x_n)|| \to 0$ for every disjoint sequence $(x_n) \subset E$ satisfying

²⁰⁰⁰ Mathematics Subject Classification. 46A40, 46B40, 46B42.

Key words and phrases. Almost Dunford-Pettis operator, Dunford-Pettis operator, order weakly compact operator.

 $x_n \to 0$ for the topology $\sigma(E, E')$. It follows from a Remark of Wnuk ([5], Remark 1, p. 228) that T is almost Dunford-Pettis if and only if $||T(x_n)|| \to 0$ for every weakly null disjoint sequence (x_n) in E^+ .

An operator between two Banach spaces is called *Dunford-Pettis*, whenever it maps weakly null sequences into norm null sequences. It is evident that every Dunford-Pettis operator from a Banach lattice E into a Banach space F is almost Dunford-Pettis, but the converse is false in general. In fact, In fact, the identity operator of $L^1([0,1])$ is almost Dunford-Pettis, but it is not Dunford-Pettis.

Also, an operator T from a Banach lattice E into a Banach space X is said to be order weakly compact if for each $x \in E^+$, the subset T([0, x]) is relatively weakly compact in X. Note that each almost Dunford-Pettis operator T from a Banach lattice E into a Banach space X is order weakly compact (In fact, if (x_n) is an order bounded disjoint sequence of E then $x_n \to 0$ for the topology $\sigma(E, E')$ ([1], p. 192) and so $||T(x_n)|| \to 0$. Hence, Dodds's Theorem ([1], Theorem 5.57) implies that T is order weakly compact). But an order weakly compact operator is not necessary almost Dunford-Pettis. In fact, the identity operator $Id_{c_0} : c_0 \to c_0$ is order weakly compact (because the norm of c_0 is order continuous and hence each order interval of c_0 is weakly compact (see [1], Theorem 12.9)) but it fails to be almost Dunford-Pettis.

Let ρ be a lattice seminorm on a Banach lattice E. A subset A of E is said to be ρ -almost order bounded (see Zaanen [6], p. 525) (or approximately order bounded with respect to ρ (see [3], Remark, p. 73)) if for every $\varepsilon > 0$ there exists $u \in E^+$ such that $A \subset [-u, u] + \varepsilon B_{\rho}$ where $B_{\rho} = \{x \in E : \rho(x) \leq 1\}$ is the closed unit ball associated to ρ . Since B_{ρ} is a solid subset of E, then it follows from [3, p. 73] that

$$A \subset [-u, u] + \varepsilon B_{\rho}$$
 if and only if $\rho((|y| - u)^+) \leq \varepsilon$ for all $y \in A$.

Let T be an operator from a Banach lattice E into a Banach space X. We will need the lattice seminorm q_T on E, which is defined in ([3], p. 192), by the following formula:

$$q_T(x) := \sup \{ \|T(y)\| : |y| \le |x| \}, \quad x \in E$$

It is easy to see that $||T(x)|| \le q_T(x) \le ||T|| \cdot ||x||$ holds for each $x \in E$. So, the lattice seminorm q_T is continuous for the norm of E.

Proposition 2.1. Let T be an almost Dunford-Pettis operator from a Banach lattice E into a Banach space X. Then each weakly relatively compact subset W of E is approximately order bounded with respect to the lattice seminorm q_T .

If, in addition, T is order bounded, then T(W) is an almost order bounded subset of F, i.e., for every $\varepsilon > 0$ there exists some $v \in F^+$ such that $\| (|T(x)| - v)^+ \| \le \varepsilon$ holds for all $x \in W$.

Proof. Let W be a weakly relatively compact subset of E and let $\varepsilon > 0$. It follows from Theorem 4.34 of [1] that every disjoint sequence, in the solid hull A of W, converges weakly to zero. Let (x_n) be a disjoint sequence (x_n) in A. We claim that $q_T(x_n) \to 0$. From $q_T(x_n) = \sup\{||T(y)|| : |y| \le |x_n|\}$, it follows that for each n there exists an element y_n in A such that $|y_n| \le |x_n|$ and

$$q_T(x_n) \le 2 \left\| T\left(y_n\right) \right\|$$

We note that the sequence $(y_n) \subset A$ is disjoint and hence it converges weakly to zero. Next, as the operator $T: E \to X$ is almost Dunford-Pettis, we obtain $||T(y_n)|| \to 0$, and hence $q_T(x_n) \to 0$ holds, as desired.

After that, if $Id_E : E \to E$ is the identity operator of E, then $q_T (Id_E (x_n)) \to 0$ holds for each disjoint sequence (x_n) in A. Thus, by Theorem 4.36 of [1], there exists some $u \in E^+$, lying in the order ideal generated by A, such that

$$q_T \left(Id_E \left(|x| - u \right)^+ \right) \le \varepsilon$$

297

for all $x \in A$, i.e., $q_T((|x|-u)^+) \leq \varepsilon$ for all $x \in A$ (and hence for all $x \in W$). This implies that W is approximately order bounded with respect to the lattice seminorm q_T .

If, in addition, T is order bounded, then there exists some $v \in F^+$ such that $T([0, u]) \subseteq [-v, v]$. Let first $0 \le x \in A$. It follows from $x = x \wedge u + (x - u)^+$ and $|T(x \wedge u)| \le v$ that

$$|T(x)| - v \le |T(x)| - |T(x \land u)| \le |T(x) - T(x \land u)| = |T((x - u)^{+})|.$$

Then $(|T(x)| - v)^+ \le |T((x - u)^+)|$ and hence

$$\| (|T(x)| - v)^+ \| \le \| T((x - u)^+) \| \le q_T((x - u)^+) \le \varepsilon$$

If $x \in A$ is arbitrary, then

$$|T(x)| - 2v \le (|T(x^{+})| - v) + (|T(x^{-})| - v),$$

and so $\|(|T(x)| - 2v)^+\| \le 2\varepsilon$. This shows that T(W) is an almost order bounded subset of F.

Our result gives a generalization of Example 4 of ([5], p. 230).

Theorem 2.2. Let E and F be two Banach lattices and let X be a Banach space. Suppose that F has weakly sequentially continuous lattice operations. If $T : E \to F$ is an order bounded almost Dunford-Pettis operator and $S : F \to X$ is an order weakly compact operator, then $S \circ T$ is Dunford-Pettis.

Proof. Let (x_n) be a weakly null sequence of E. To this end, we have to show that $||S[T(x_n)]|| \to 0$. Let $y_n = [T(x_n)]^+$ and $z_n = [T(x_n)]^-$. It suffices to show that $||S(y_n)|| \to 0$ and $||S(z_n)|| \to 0$. To this end, let $\varepsilon > 0$ be given. Since $W := \{x_n : n \in \mathbb{N}\}$ is a weakly relatively compact subset of E, it follows from Proposition 2.1 that there exists some $v \in F^+$ such that $||(|T(x_n)| - v)^+|| \le \varepsilon$ holds for all n. From the inequalities $(y_n - v)^+ \le (|T(x_n)| - v)^+$, we see that $||(y_n - v)^+|| \le ||(|T(x_n)| - v)^+|| \le \varepsilon$ holds for all n.

On the other hand, it is clear that $T(x_n) \to 0$ for the topology $\sigma(F, F')$. Since F has weakly sequentially continuous lattice operations, then $|T(x_n)| \to 0$ for the topology $\sigma(F, F')$. Next, from the inequalities $0 \leq y_n \wedge v \leq y_n \leq |T(x_n)|$ for each n, we see that $y_n \wedge v \to 0$ for the topology $\sigma(F, F')$. Hence $(y_n \wedge v)$ is an order bounded weakly null sequence of F^+ . Now, since $S: F \to X$ is order weakly compact, it follows from Corollary 3.4.9 of [3] that $||S(y_n \wedge v)|| \to 0$. So, there exists some n_0 such that $||S(y_n \wedge v)|| < \varepsilon$ holds for all $n \geq n_0$.

Finally, from the identity $y_n = (y_n - v)^+ + (y_n \wedge v)$, we see that

$$||S(y_n)|| \leq ||S(y_n - v)^+|| + ||S(y_n \wedge v)|| \leq ||S|| \cdot ||(y_n - v)^+|| + \varepsilon \leq (||S|| + 1)\varepsilon$$

holds for all $n \ge n_0$. And this implies that $||S(y_n)|| \to 0$.

Similarly, it can be shown that $||S(z_n)|| \to 0$. Since $S[T(x_n)] = S(y_n) - S(z_n)$ holds for all n, we see that $||S[T(x_n)]|| \to 0$ and this completes the proof of the Theorem. \Box

A Banach lattice E has the positive Schur property if weakly null sequences with positive terms are norm null. For example, the Banach lattice $L^1([0,1])$ has the positive Schur property.

Note that if E has the positive Schur property, then every operator T from E into an arbitrary Banach space is almost Dunford-Pettis.

Remark 2.3. The order boundedness of the operator T in the Theorem 2.2 is essential. In fact, if we take $E = L^1[0,1]$ and $F = c_0$, and if we consider the operator $T : L^1[0,1] \rightarrow c_0$ defined by the equality

$$T\left(f\right) = \left(\int_{0}^{1} f\left(t\right) \sin\left(nt\right) dt\right)_{n=1}^{\infty}$$

Note that T is not order bounded (see Exercise 10, p. 289 of [1]). Since $L^1[0,1]$ has the positive Schur property, it follows from Proposition 3.7.24 of [3] that T is not Dunford-Pettis. However, T is almost Dunford-Pettis.

Also, note that the identity operator $Id_{c_0} : c_0 \to c_0$ is order weakly compact but the composed $Id_{c_0} \circ T = T$ is not Dunford-Pettis.

Recall from [1] that an operator $T: X \longrightarrow Y$ between two Banach spaces is said to be *weak Dunford-Pettis* whenever $x_n \longrightarrow 0$ weakly in X and $f_n \longrightarrow 0$ weakly in Y' imply $f_n(T(x_n)) \longrightarrow 0$. On the other hand, we say that a Banach space X has the *Dunford-Pettis property* whenever $x_n \longrightarrow 0$ weakly in X and $f_n \longrightarrow 0$ weakly in X' imply $f_n(x_n) \longrightarrow 0$.

A weak Dunford-Pettis operator $T: E \to Y$ from a Banach lattice E into a Banach space X is not necessary almost Dunford-Pettis operator. In fact, the identity operator $Id_{c_0}: c_0 \to c_0$ is weak Dunford-Pettis but it fails to be almost Dunford-Pettis. Conversely, there exists an almost Dunford-Pettis operator which is not weak Dunford-Pettis. In fact, it follows from the Remark 3 of Wnuk ([4], p. 19) that the Lorenz space $E = \Lambda(w, 1)$ has the positive Schur property but it fails to have the Dunford-Pettis property. Hence, the identity operator $Id_{\Lambda(w,1)}: \Lambda(w, 1) \to \Lambda(w, 1)$ is almost Dunford-Pettis but it fails to be weak Dunford-Pettis.

As a consequence of Theorem 2.2 and Theorem 5.99 of [1], we obtain

Corollary 2.4. Let E and F be two Banach lattices. If F has weakly sequentially continuous lattice operations, then each order bounded almost Dunford-Pettis operator $T: E \to F$ is weak Dunford-Pettis.

Proof. Assume that F has weakly sequentially continuous lattice operations and let $T : E \to F$ be an order bounded almost Dunford-Pettis operator. It follows from Theorem 2.2 that for every weakly compact operator S from F into an arbitrary Banach space X, the composed operator $S \circ T$ is Dunford-Pettis. Thus, we deduce that $T : E \to F$ is a weak Dunford-Pettis operator (by using the equivalence $(1) \iff (3)$ of Theorem 5.99 of [1]).

Recall that a nonzero element x of a vector lattice E is *discrete* if the order ideal generated by x equals the subspace generated by x. The vector lattice E is *discrete*, if it admits a complete disjoint system of discrete elements.

Recall from Wnuk ([5], Example 4, p. 230) that if F is a discrete Banach lattice with an order continuous norm, then a positive operator $T: E \to F$ is almost Dunford-Pettis iff T is Dunford-Pettis.

Another a consequence of Theorem 2.2, we give a generalization of this result of Wnuk [5].

Corollary 2.5. Let E and F be two Banach lattices. If F is discrete with an order continuous norm, then an order bounded operator $T : E \to F$ is almost Dunford-Pettis if and only if T is Dunford-Pettis.

Proof. Assume that $T: E \to F$ is an order bounded almost Dunford-Pettis operator. It follows from Proposition 2.5.23 of [3] that F has weakly sequentially continuous lattice operations.

On the other hand, since the norm of F is order continuous, then each order interval of F is weakly compact (see [1], Theorem 4.9), and hence its identity operator $Id_F : F \to F$ is order weakly compact. So, by Theorem 2.2, the composed $T = Id_F \circ T$ is Dunford-Pettis. This completes the proof.

Remark 2.6. We can changed the assumption "F is discrete with an order continuous norm" of Corollary 2.5 by the assumption "F has weakly sequentially continuous lattice operations and the norm of F is order continuous". Because these two assumptions are equivalent. In fact, it follows from Corollary 2.3 of Chen-Wickstead [2] that if the norm of F is order continuous, then F is discrete if and only if F has weakly sequentially continuous lattice operations.

References

- C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Reprint of the 1985 original, Springer-Verlag, Dordrecht, 2006.
- Z. L. Chen and A. W. Wickstead, Relative weak compactness of solid hulls in Banach lattices, Indag. Math. (N.S.) 9 (1998), no. 2, 187–196.
- 3. P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991.
- W. Wnuk, Banach lattices with properties of the Schur type a survey, Confer. Sem. Mat. Univ. Bari (1993), no. 249, 25 pages.
- W. Wnuk, Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236.
- 6. A. C. Zaanen, Riesz spaces II, North-Holland Publishing Company, Amsterdam, 1983.

UNIVERSITÉ MOHAMMED V-SOUISSI, FACULTÉ DES SCIENCES ECONOMIQUES, JURIDIQUES ET SOCIALES, DÉPARTEMENT D'ECONOMIE, B.P. 5295, SALAALJADIDA, MOROCCO

E-mail address: baqzzouz@hotmail.com

UNIVERSITÉ IBN TOFAIL, FACULTÉ DES SCIENCES, DÉPARTEMENT DE MATHÉMATIQUES, B.P. 133, KÉNITRA, MOROCCO

UNIVERSITÉ IBN TOFAIL, FACULTÉ DES SCIENCES, DÉPARTEMENT DE MATHÉMATIQUES, B.P. 133, KÉNITRA, MOROCCO

Received 31/03/2011; Revised 25/07/2011