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DUNFORD-PETTIS PROPERTY OF THE PRODUCT OF SOME

OPERATORS

BELMESNAOUI AQZZOUZ, OTHMAN ABOUTAFAIL, AND AZIZ ELBOUR

Abstract. We establish a sufficient condition under which the product of an order

bounded almost Dunford-Pettis operator and an order weakly compact operator is
Dunford-Pettis. And we derive some consequences.

1. Definitions and Notation

Recall that a vector lattice E is an ordered vector space in which x∨y := sup(x, y) and
x∧y := inf(x, y) exists for every x, y ∈ E. For any vector x in a vector lattice, the element
x+ := x ∨ 0 is called the positive part, x− := (−x) ∨ 0 is called the negative part, and
|x| := x∨ (−x) called the absolute value of x. Note that x = x+−x− and |x| = x++x−.
A sequence (xn) in a vector space is said to be disjoint whenever |xn| ∧ |xm| = 0 holds
for n 6= m. A subset A of a vector lattice E is said to be solid if it follows from |y| ≤ |x|
with x ∈ A and y ∈ E that y ∈ A. The solid hull of a subset W of E is the smallest solid
set including W and is exactly the set Sol(W ) := {x ∈ E : ∃y ∈ A with |x| ≤ |y|}. An
order ideal of a vector lattice E is a solid subspace. Let E be a vector lattice, for each
x, y ∈ E with x ≤ y, the set [x, y] := {z ∈ E : x ≤ z ≤ y} is called an order interval. A
subset of E is said to be order bounded if it is included in some order interval. A Banach
lattice is a Banach space (E, ‖ · ‖) such that E is a vector lattice and its norm satisfies
the following property: for each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. If E is
a Banach lattice, its topological dual E′, endowed with the dual norm, is also a Banach
lattice. A norm ‖ · ‖ of a Banach lattice E is order continuous if for each generalized
sequence (xα) such that xα ↓ 0 for E, the sequence (xα) converges to 0 for the norm
‖ · ‖ where the notation xα ↓ 0 means that the sequence (xα) is decreasing, its infimum
exists and inf(xα) = 0. A Banach lattice E is said to have weakly sequentially continuous
lattice operations whenever xn → 0 for σ (E,E′) implies |xn| → 0 for σ (E,E′).

We will use the term operator T : E −→ F between two Banach lattices to mean a
bounded linear mapping. It is positive if T (x) ≥ 0 for F whenever x ≥ 0 for E. The
operator T is regular if T = T1 − T2 where T1 and T2 are positive operators from E

into F . Note that each positive linear mapping on a Banach lattice is continuous. An
operator T : E −→ F is said to be order bounded if it maps order bounded subsets of E
to order bounded subsets of E.

We refer reader to [1] for unexplained terminology on Banach lattice theory and po-
sitive operators.

2. Main results

Recall that an operator T from a Banach lattice E into a Banach space X is called
almost Dunford-Pettis if ‖T (xn)‖ → 0 for every disjoint sequence (xn) ⊂ E satisfying
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xn → 0 for the topology σ (E,E′). It follows from a Remark of Wnuk ([5], Remark 1,
p. 228) that T is almost Dunford-Pettis if and only if ‖T (xn)‖ → 0 for every weakly null
disjoint sequence (xn) in E+.

An operator between two Banach spaces is called Dunford-Pettis, whenever it maps
weakly null sequences into norm null sequences. It is evident that every Dunford-Pettis
operator from a Banach lattice E into a Banach space F is almost Dunford-Pettis, but
the converse is false in general. In fact, In fact, the identity operator of L1 ([0, 1]) is
almost Dunford-Pettis, but it is not Dunford-Pettis.

Also, an operator T from a Banach lattice E into a Banach space X is said to be order
weakly compact if for each x ∈ E+, the subset T ([0, x]) is relatively weakly compact in X.
Note that each almost Dunford-Pettis operator T from a Banach lattice E into a Banach
space X is order weakly compact (In fact, if (xn) is an order bounded disjoint sequence
of E then xn → 0 for the topology σ (E,E′) ([1], p. 192) and so ‖T (xn)‖ → 0. Hence,
Dodds’s Theorem ([1], Theorem 5.57) implies that T is order weakly compact). But
an order weakly compact operator is not necessary almost Dunford-Pettis. In fact, the
identity operator Idc0 : c0 → c0 is order weakly compact (because the norm of c0 is order
continuous and hence each order interval of c0 is weakly compact (see [1], Theorem 12.9))
but it fails to be almost Dunford-Pettis.

Let ρ be a lattice seminorm on a Banach lattice E. A subset A of E is said to be
ρ-almost order bounded (see Zaanen [6], p. 525) (or approximately order bounded with
respect to ρ (see [3], Remark, p. 73)) if for every ε > 0 there exists u ∈ E+ such that
A ⊂ [−u, u] + εBρ where Bρ = {x ∈ E : ρ (x) ≤ 1} is the closed unit ball associated to
ρ. Since Bρ is a solid subset of E, then it follows from [3, p. 73] that

A ⊂ [−u, u] + εBρ if and only if ρ
(

(|y| − u)
+ )

≤ ε for all y ∈ A.

Let T be an operator from a Banach lattice E into a Banach space X. We will need
the lattice seminorm qT on E, which is defined in ([3], p. 192), by the following formula:

qT (x) := sup {‖T (y)‖ : |y| ≤ |x|} , x ∈ E.

It is easy to see that ‖T (x)‖ ≤ qT (x) ≤ ‖T‖ · ‖x‖ holds for each x ∈ E. So, the lattice
seminorm qT is continuous for the norm of E.

Proposition 2.1. Let T be an almost Dunford-Pettis operator from a Banach lattice E

into a Banach space X. Then each weakly relatively compact subset W of E is approxi-
mately order bounded with respect to the lattice seminorm qT .

If, in addition, T is order bounded, then T (W ) is an almost order bounded subset of

F , i.e., for every ε > 0 there exists some v ∈ F+ such that
∥

∥ (|T (x)| − v)
+ ∥

∥ ≤ ε holds
for all x ∈ W .

Proof. Let W be a weakly relatively compact subset of E and let ε > 0. It follows from
Theorem 4.34 of [1] that every disjoint sequence, in the solid hull A of W , converges
weakly to zero. Let (xn) be a disjoint sequence (xn) in A. We claim that qT (xn) →
0. From qT (xn) = sup {‖T (y)‖ : |y| ≤ |xn|}, it follows that for each n there exists an
element yn in A such that |yn| ≤ |xn| and

qT (xn) ≤ 2 ‖T (yn)‖ .

We note that the sequence (yn) ⊂ A is disjoint and hence it converges weakly to zero.
Next, as the operator T : E → X is almost Dunford-Pettis, we obtain ‖T (yn)‖ → 0, and
hence qT (xn) → 0 holds, as desired.

After that, if IdE : E → E is the identity operator of E, then qT (IdE (xn)) → 0 holds
for each disjoint sequence (xn) in A. Thus, by Theorem 4.36 of [1], there exists some
u ∈ E+, lying in the order ideal generated by A, such that

qT
(

IdE (|x| − u)
+ )

≤ ε
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for all x ∈ A, i.e., qT
(

(|x| − u)
+ )

≤ ε for all x ∈ A (and hence for all x ∈ W ). This
implies that W is approximately order bounded with respect to the lattice seminorm qT .

If, in addition, T is order bounded, then there exists some v ∈ F+ such that T ([0, u]) ⊆

[−v, v]. Let first 0 ≤ x ∈ A. It follows from x = x ∧ u + (x− u)
+

and |T (x ∧ u)| ≤ v

that

|T (x)| − v ≤ |T (x)| − |T (x ∧ u)| ≤ |T (x)− T (x ∧ u)| =
∣

∣T
(

(x− u)
+ )∣

∣.

Then (|T (x)| − v)
+
≤

∣

∣T
(

(x− u)
+ )

∣

∣ and hence

∥

∥ (|T (x)| − v)
+ ∥

∥ ≤
∥

∥T
(

(x− u)
+ )

∥

∥ ≤ qT
(

(x− u)
+ )

≤ ε.

If x ∈ A is arbitrary, then

|T (x)| − 2v ≤
(∣

∣T
(

x+
)∣

∣− v
)

+
(∣

∣T
(

x−
)∣

∣− v
)

,

and so
∥

∥ (|T (x)| − 2v)
+ ∥

∥ ≤ 2ε. This shows that T (W ) is an almost order bounded
subset of F . �

Our result gives a generalization of Example 4 of ([5], p. 230).

Theorem 2.2. Let E and F be two Banach lattices and let X be a Banach space.
Suppose that F has weakly sequentially continuous lattice operations. If T : E → F is
an order bounded almost Dunford-Pettis operator and S : F → X is an order weakly
compact operator, then S ◦ T is Dunford-Pettis.

Proof. Let (xn) be a weakly null sequence of E. To this end, we have to show that

‖S [T (xn)]‖ → 0. Let yn = [T (xn)]
+

and zn = [T (xn)]
−

. It suffices to show that
‖S (yn)‖ → 0 and ‖S (zn)‖ → 0. To this end, let ε > 0 be given. SinceW := {xn : n ∈ N}
is a weakly relatively compact subset of E, it follows from Proposition 2.1 that there exists
some v ∈ F+ such that

∥

∥ (|T (xn)| − v)
+ ∥

∥ ≤ ε holds for all n. From the inequalities

(yn − v)
+

≤ (|T (xn)| − v)
+
, we see that

∥

∥ (yn − v)
+ ∥

∥ ≤
∥

∥ (|T (xn)| − v)
+ ∥

∥ ≤ ε holds
for all n.

On the other hand, it is clear that T (xn) → 0 for the topology σ (F, F ′). Since F

has weakly sequentially continuous lattice operations, then |T (xn)| → 0 for the topo-
logy σ (F, F ′). Next, from the inequalities 0 ≤ yn ∧ v ≤ yn ≤ |T (xn)| for each n, we
see that yn ∧ v → 0 for the topology σ (F, F ′). Hence (yn ∧ v) is an order bounded
weakly null sequence of F+. Now, since S : F → X is order weakly compact, it follows
from Corollary 3.4.9 of [3] that ‖S (yn ∧ v)‖ → 0. So, there exists some n0 such that
‖S (yn ∧ v)‖ < ε holds for all n ≥ n0.

Finally, from the identity yn = (yn − v)
+
+ (yn ∧ v), we see that

‖S (yn)‖ ≤
∥

∥S (yn − v)
+ ∥

∥+ ‖S (yn ∧ v)‖

≤ ‖S‖ ·
∥

∥ (yn − v)
+ ∥

∥+ ε ≤ (‖S‖+ 1) ε

holds for all n ≥ n0. And this implies that ‖S (yn)‖ → 0.
Similarly, it can be shown that ‖S (zn)‖ → 0. Since S [T (xn)] = S (yn)−S (zn) holds

for all n, we see that ‖S [T (xn)]‖ → 0 and this completes the proof of the Theorem. �

A Banach lattice E has the positive Schur property if weakly null sequences with
positive terms are norm null. For example, the Banach lattice L1 ([0, 1]) has the positive
Schur property.

Note that if E has the positive Schur property, then every operator T from E into an
arbitrary Banach space is almost Dunford-Pettis.
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Remark 2.3. The order boundedness of the operator T in the Theorem 2.2 is essential.
In fact, if we take E = L1 [0, 1] and F = c0, and if we consider the operator T : L1 [0, 1] →
c0 defined by the equality

T (f) =

(
∫ 1

0

f (t) sin (nt) dt

)∞

n=1

.

Note that T is not order bounded (see Exercise 10, p. 289 of [1]). Since L1 [0, 1] has the
positive Schur property, it follows from Proposition 3.7.24 of [3] that T is not Dunford-
Pettis. However, T is almost Dunford-Pettis.

Also, note that the identity operator Idc0 : c0 → c0 is order weakly compact but the
composed Idc0 ◦ T = T is not Dunford-Pettis.

Recall from [1] that an operator T : X −→ Y between two Banach spaces is said
to be weak Dunford-Pettis whenever xn −→ 0 weakly in X and fn −→ 0 weakly in Y ′

imply fn (T (xn)) −→ 0. On the other hand, we say that a Banach space X has the
Dunford-Pettis property whenever xn −→ 0 weakly in X and fn −→ 0 weakly in X ′

imply fn (xn) −→ 0.
A weak Dunford-Pettis operator T : E → Y from a Banach lattice E into a Banach

space X is not necessary almost Dunford-Pettis operator. In fact, the identity ope-
rator Idc0 : c0 → c0 is weak Dunford-Pettis but it fails to be almost Dunford-Pettis.
Conversely, there exists an almost Dunford-Pettis operator which is not weak Dunford-
Pettis. In fact, it follows from the Remark 3 of Wnuk ([4], p. 19) that the Lorenz space
E = Λ(w, 1) has the positive Schur property but it fails to have the Dunford-Pettis
property. Hence, the identity operator IdΛ(w,1) : Λ (w, 1) → Λ (w, 1) is almost Dunford-
Pettis but it fails to be weak Dunford-Pettis.

As a consequence of Theorem 2.2 and Theorem 5.99 of [1], we obtain

Corollary 2.4. Let E and F be two Banach lattices. If F has weakly sequentially
continuous lattice operations, then each order bounded almost Dunford-Pettis operator
T : E → F is weak Dunford-Pettis.

Proof. Assume that F has weakly sequentially continuous lattice operations and let T :
E → F be an order bounded almost Dunford-Pettis operator. It follows from Theorem 2.2
that for every weakly compact operator S from F into an arbitrary Banach space X,
the composed operator S ◦ T is Dunford-Pettis. Thus, we deduce that T : E → F is
a weak Dunford-Pettis operator (by using the equivalence (1)⇐⇒(3) of Theorem 5.99
of [1]). �

Recall that a nonzero element x of a vector lattice E is discrete if the order ideal
generated by x equals the subspace generated by x. The vector lattice E is discrete, if it
admits a complete disjoint system of discrete elements.

Recall from Wnuk ([5], Example 4, p. 230) that if F is a discrete Banach lattice with
an order continuous norm, then a positive operator T : E → F is almost Dunford-Pettis
iff T is Dunford-Pettis.

Another a consequence of Theorem 2.2, we give a generalization of this result of
Wnuk [5].

Corollary 2.5. Let E and F be two Banach lattices. If F is discrete with an order
continuous norm, then an order bounded operator T : E → F is almost Dunford-Pettis
if and only if T is Dunford-Pettis.

Proof. Assume that T : E → F is an order bounded almost Dunford-Pettis operator. It
follows from Proposition 2.5.23 of [3] that F has weakly sequentially continuous lattice
operations.
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On the other hand, since the norm of F is order continuous, then each order interval of
F is weakly compact (see [1], Theorem 4.9), and hence its identity operator IdF : F → F

is order weakly compact. So, by Theorem 2.2, the composed T = IdF ◦ T is Dunford-
Pettis. This completes the proof. �

Remark 2.6. We can changed the assumption “F is discrete with an order continuous
norm” of Corollary 2.5 by the assumption “F has weakly sequentially continuous lattice
operations and the norm of F is order continuous”. Because these two assumptions are
equivalent. In fact, it follows from Corollary 2.3 of Chen-Wickstead [2] that if the norm
of F is order continuous, then F is discrete if and only if F has weakly sequentially
continuous lattice operations.
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