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A q-DIFFERENCE OPERATOR WITH DISCRETE AND SIMPLE

SPECTRUM

MIRON B. BEKKER, MARTIN J. BOHNER, AND HRISTO VOULOV

Abstract. We continue our study of a q-difference version of a second-order differen-

tial operator which depends on a real parameter. This version was introduced in our
previous article. For values of the parameter for which the difference operator is self
adjoint, we show that the spectrum of the operator is discrete and simple. When q

approaches 1, the spectrum fills the whole positive or negative semiaxis.

1. Introduction

During the last decade, the investigation of pairs of operators {A,B} that satisfy the
formal algebraic relation

AB = qBA, where q > 1,

has received a considerable interest. These studies were motivated by the development
of the theory of quantum groups and quantum algebras (see, e.g., [12, 13, 22]) and, of
course, by the development of operator theory [18, 19].

In [20], the case B = A∗ was considered. The corresponding operators A satisfying

AA∗ = qA∗A, where q > 1,

are called q-normal. Such operators as well as some other classes of q-deformed operators
(q-quasinormal, q-hyponormal) were also investigated in [20]. In that article, it was
pointed out, in particular, that the case of pairs {A,B} with unitary A and self-adjoint
B can be reduced to that of q-normal operators.

In [9], the authors considered a one-parameter family {Us} (s ∈ S ⊂ R) of unitary
operators acting in some Hilbert space H and a linear operator A ( 6= 0) acting in H such
that

UsA = p(s)AUs, s ∈ S,

where p is a real-valued function. In [9], such operators were called p(s)-homogeneous.
In the particular case S = Z, {Us} is a group, p(s) = rs for s ∈ Z, where r 6= 1 is a
constant, while in the case S = R, {Us} is a group, and p(s) = es, and hence one obtains
a scale-invariant operator A.

Positive symmetric scale-invariant operators were considered in [15], and using ‘real’
Caley transforms in [2, 3]. In those articles, it was proved that a positive symmetric
scale-invariant operator always admits a positive scale-invariant self-adjoint extension.
In particular, the extreme extensions, the so-called Friedrichs and Krĕın extensions, are
scale-invariant. Moreover, in [2, 3], it was proved that if the index of defect of a positive
scale-invariant symmetric operator is (1, 1), then only the extreme self-adjoint extensions
are scale-invariant and if S = R, then any positive scale-invariant symmetric operator
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with index of defect (1, 1) is unitarily equivalent to the operator on L2(R+, dx) defined
by means of the differential expression

H0f = −d2x

dt2
+
α

t2
x

for some α that satisfies the condition −1/4 ≤ α < 3/4 (see [2]).
In our previous article [4], we constructed a discrete version of the aforementioned

differential operator (see also [6, 7, 10]) and showed that our model closely resembles some
properties of that operator. The operator constructed in that article is scale invariant
with S = Z. Below we briefly repeat our arguments from [4]. Let M be the linear space
of all sequences x = {xn}n∈Z with complex entries. Select a number q > 1 and consider
the points tn = qn, n ∈ Z, as points of discretization. The first and second derivatives of
a function x, defined on (0,∞), such that x = {xn}n∈Z = {x(qn)}n∈Z are replaced by

(Dqx)n =
xn+1 − xn
qn+1 − qn

=
xn+1 − xn
qn(q − 1)

and

(D2
qx)n−1 =

(Dqx)n − (Dqx)n−1

qn − qn−1
=
xn+1 − (1 + q)xn + qxn−1

q2n−1(q − 1)2
,

respectively. For α ∈ R and β = 1 + q + (q − 1)2α, we consider a linear mapping
L : M → M defined as

(1) (Lx)n = −(D2
qx)n−1 +

α

qn−1qn
xn = −xn+1 − βxn + qxn−1

q2n−1(q − 1)2
.

Instead of L2(R+), we consider the linear subset of M consisting of sequences {xn} that
satisfy condition

(2) ‖x‖2 =
q − 1

q

∞
∑

n=−∞

qn|xn|2 <∞.

The set H of all such sequences is a Hilbert space with inner product 〈x, y〉 defined as

(3) 〈x, y〉 = q − 1

q

∞
∑

n=−∞

qnxnȳn.

We denote this Hilbert space by l2(Z; q). The vectors {e(k)}∞k=−∞ with

e(k) =
{

e(k)n

}∞

n=−∞
=

{

q−(k−1)/2

√
q − 1

δkn

}∞

n=−∞

form an orthonormal basis in the space H = l2(Z; q).
The difference expression (1) defines some unbounded linear operator L in l2(Z; q).

Some of the properties of this operator that depend on β (whether the operator symmetric
or self adjoint, semibounded or not semibounded) were investigated in [4]. In [4], it was
proved that the operator L generated by the expression (1) for

β ≥ β+ = 2
√
q and β ≤ β− = −2

√
q,

i.e.,

α ≥ α+ = − 1
(√
q + 1

)2 and α ≤ α− = − 1
(√
q − 1

)2 ,

is positive semibounded and negative semibounded, respectively, and is self adjoint for

β ≥ β++ =
q2 + 1√

q
and β ≤ β−− = −q

2 + 1√
q
,
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i.e.,

α ≥ α++ =

√
q + 1 + 1√

q
(√
q + 1

)2 and α ≤ α−− = −
√
q − 1 + 1√

q
(√
q − 1

)2 .

It was proved that

(4) D(L) = {x ∈ H : Lx ∈ H}
and

(5) Lx = Lx, x ∈ D(L),

where D(L) denotes the domain of the operator L. It was also proved that for β ≥ β++,
one has 〈Lx, x〉 ≥ 0 (x ∈ D(L)), while for β ≤ β−−, the operator L is negative, that is,
〈Lx, x〉 ≤ 0.

Denote by U the operator on H defined by

(6) (Ux)n =
1√
q
xn−1.

The operator U∗ is then given by

(7) (U∗x)n =
√
qxn+1.

The operator U is unitary (U∗U = UU∗ = I), UD(L) = D(L) and satisfies the relation

(8) ULx = q2LUx, x ∈ D(L).

In [4], operators L that satisfy (8) were called (q2, U)-invariant (see also [2, 3]).

Remark 1. Let us show that the commutative relation (8) and the unitary operator U
define the three-term difference expression (1) (bi-infinite Jacobi matrix) in an essentially
unique way. For the sake of simplification we start from the space l2(Z) of all sequences
{xn}n∈Z with complex entries such that

∞
∑

n=−∞

|xn|2 <∞.

Let Û be the bilateral shift operator on l2(Z), that is,

(Ûx)n = xn−1.

Let Ĵ be the bi-infinite symmetric Jacobi matrix given by

Ĵ =



















. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 b−2 a−1 b−1 0 . . . . . .

. . . . . . 0 b−1 a0 b0 0 . . .

. . .
. . .

. . . 0 b0 a1 b1 0 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .



















,

where all ak and bk, k ∈ Z, are real. This matrix Ĵ defines some linear (symmetric or

self adjoint) operator L̂ on the Hilbert space l2(Z). The domain of this operator includes
all sequences with finite support. On such sequences, we have

(L̂x)n = bn−1xn−1 + anxn + bnxn+1.

We want to select the entries of Ĵ in such a way that

Û L̂x = q2L̂Ûx, where q > 1.

Thus, for all sequences x with finite support, the equality

bn−2xn−2 + an−1xn−1 + bn−1xn = q2(bn−1xn−2 + anxn−1 + bnxn)
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holds, from which one deduces

bn+1 = q−2bn, an+1 = q−2an, n ∈ Z,

i.e.,

an = a0q
−2n, bn = b0q

−2n, n ∈ Z.

Taking a0 = β and b0 = −q1/2, we obtain the Jacobi matrix considered, in fact, in
Section 2 below. It only remains to make a unitary transform from l2(Z) onto l2(Z; q).
The additional coefficients in the definition of the norm in l2(Z; q) are such that for q → 1,
the values of α+ and α++ tend to the known values of α+ and α++ for the differential
operator, while the values of α− and α−− disappear.

In this article, we investigate the spectrum of the operator L in the self-adjoint case,
that is, for β ≥ β++ or for β ≤ β−−. Since the arguments for both cases are similar,
we provide them only for the case β ≥ β++. For the case β ≤ β−−, we only state the
corresponding results.

The setup of this paper is as follows. In Section 2, we consider polynomials associ-
ated with the q-difference operator under consideration, together with convergence or
divergence of the corresponding series. In Section 3, we discuss the general structure of
(q2, U)-invariant operators, while we show in Section 4 that the operator under consi-
deration has simple spectrum. Finally, in Section 5, we prove that the operator under
consideration has discrete spectrum.

2. Associated polynomials

Denote by P (z) = {Pn(z)}n∈Z the set of polynomials of z that satisfy the difference
equation LP = zP , that is,

(9) − q

(q − 1)2
Pn+1(z)− βPn(z) + qPn−1(z)

q2n
= zPn(z),

together with the “initial” condition

(10) P−1(z) = 0, P0(z) = 1.

For n ∈ N, each Pn is a polynomial of degree n. In particular,

P1(z) = β − (q − 1)2

q
z,

P2(z) =

(

β − q2
(q − 1)2

q
z

)(

β − (q − 1)2

q
z

)

− q,

and so on. For n ∈ Z such that n ≤ −2, the polynomials Pn have degree |n| − 2. In
particular,

P−2 = −1

q
,

P−3 = − 1

q2

(

β − q−4 (q − 1)2

q
z

)

,

and so on. Each polynomial Pn (n 6∈ {−2,−1, 0}) has real and simple roots. For n ∈ N,
the roots of two consecutive polynomials Pn and Pn+1 alternate, that is, between any
two consecutive roots of the polynomial Pn+1, there is exactly one root of the polynomial
Pn. The same property is fulfilled for the polynomials Pn with negative n ∈ Z. Indeed,
denote by Yn(z), n ∈ Z, the polynomials defined by Yn(z) = qn/2Pn(z). Then Y−1 = 0,
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Y0 = 1, and it is easily seen that the polynomials Yn, n ∈ N0, are associated with the
infinite Jacobi matrix

















β −1/
√
q 0 0 . . . . . .

−1/
√
q β/q2 −1/

√

q5 0 . . . . . .

0 −1/
√

q5 β/q4 −1/
√

q9 0 . . .

...
. . .

. . .
. . .

. . .
. . .

















while Yn, n ≤ −2, are associated with the infinite Jacobi matrix
















βq4 −q11/2 0 0 . . . . . .

−q11/2 βq6 −q15/2 0 . . . . . .

0 −q15/2 βq8 −q19/2 0 . . .

...
. . .

. . .
. . .

. . .
. . .

















.

Therefore, polynomials {Yn} for n ∈ N0 and {Yn} for n ≤ −2 are orthogonal with respect
to some measures from which the declared properties about their roots follow (see, for
example, [1, Chap. 1, Sec. 2]). Note also that since the operator L is positive, all roots
of polynomials Pn are located on positive semi-axis.

Denote by Q(z) = {Qn(z)}n∈Z the set of polynomials that satisfies the equation
LQ = zQ and the “initial condition”

(11) Q−1(z) = 1, Q0(z) = 0.

There are some algebraic relations between the polynomials Pn and Qn. Denote by Wn

the expression

(12) Wn(z) = Pn(z)Qn−1(z)− Pn−1(z)Qn(z).

Multiplying

−Pn+1(z)− βPn(z) + qPn−1(z)

q2n
=

(q − 1)2

q
zPn(z)

by Qn(z), multiplying the corresponding equation for Qn(z) by Pn(z), and subtracting,
one obtains Wn+1(z) = qWn(z). The formulas (10) and (11) show that W0(z) = 1.
Therefore Wn =Wn(z) does not depend on z and

(13) Wn = qn, n ∈ Z.

The following formulas (14) and (15) algebraically relate the values of the polynomials
Pn and Qn outside the annulus {z ∈ C : 0 < a ≤ |z| < aq2} with their values on this
annulus. These relations may be viewed as the algebraic expression of the fact that the
operator generated by the difference expression (1) is scale invariant.

Theorem 1. For n, k ∈ Z, the polynomials Pn and Qn are related by the equations

(14) Pn−k(z) =
Qk−1(z/q

2k)Pn(z/q
2k)− Pk−1(z/q

2k)Qn(z/q
2k)

qk

and

(15) Qn−k(z) =
Pk(z/q

2k)Qn(z/q
2k)−Qk(z/q

2k)Pn(z/q
2k)

qk
.
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Proof. Fix k ∈ Z and denote by P̂ (z) = {P̂n(z)}n∈Z the sequence of polynomials defined

by P̂n(z) = Pn−k(z). Then

− P̂n+1(z)− βP̂n(z) + qP̂n−1(z)

q2n
=

(q − 1)2

q

z

q2k
P̂n(z),

which means that there exist a(z) and b(z) such that

P̂ (z) = a(z)P (z/q2k) + b(z)Q(z/q2k),

that is,

(16) Pn−k(z) = a(z)Pn(z/q
2k) + b(z)Qn(z/q

2k).

Put now n = k and n = k − 1 and obtain

1 = a(z)Pk(z/q
2k) + b(z)Qk(z/q

2k),

0 = a(z)Pk−1(z/q
2k) + b(z)Qk−1(z/q

2k).

Solving this system (observe (13)) for a(z) and b(z) and substituting into (16), one
obtains (14). The proof of (15) is similar. �

From relations (14) and (15), it follows, for example, that

Pk−1(z) = −Qk(z/q
2)

q
,(17)

P−k(z) =
Qk−1(z/q

2k)

qk
,(18)

Q−k(z) = −Qk(z/q
2k)

qk
.(19)

Now the properties of the polynomials Qn can be obtained from the corresponding
properties of the polynomials Pn. In particular, all roots of the polynomial Qn (n 6∈
{−1, 0, 1}) are real and simple. Any two consecutive polynomials Qn and Qn+1 have
alternating roots. The roots of Qn are located on the positive semi-axis.

Observe that P+(z) = {Pn(z)}n∈N0
is a solution of the equation

−xn+1 − βxn + qxn−1

q2n−1(q − 1)2
= zxn, n ∈ N

with initial conditions

x0 = P0(z) = 1 and x1 = P1(z) = β − (q − 1)2

q
z.

The operator A on l2(N0; q) defined by that difference expression is compact, self adjoint,
and positive (see [4, Formula (4.1)]). In the proof of [4, Lemma 4.1], it was shown that

∥

∥

∥Ae(k)
∥

∥

∥ =
C

q2k
, where C =

√

q(1 + β2q + q4)

(q − 1)2
.

Thus
∞
∑

k=0

∥

∥

∥
Ae(k)

∥

∥

∥

p

<∞

for any p > 0, that is, the operator A belongs to the von Neumann–Schatten class for
any p > 0 (see, for example, [8, Chap. 3]). Therefore

(20)
∞
∑

n=0

qn|Pn(z)|2 = ∞
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for all but countably many values of z = λs > 0. Those values of λs satisfy the condition
∑

λps <∞

for any p > 0.
Now the relation (17) gives

∞
∑

n=0

qn|Qn(λs/q
2)|2 <∞.

Since the operator L is self adjoint and positive, for z /∈ [0,∞) one has

∞
∑

n=−∞

qn|Pn(z)|2 = ∞.

Using [4, Theorem 3.4 and Remark 3.6], one can prove that

−∞
∑

n=−1

qn|Pn(z)|2 = ∞, z < 0.

As a summary, we state the following theorem.

Theorem 2. Let Pk and Qk be the polynomials discussed in this section. Then the

following results hold:

(i) For all z ∈ C, the series

∞
∑

k=−∞

qk|Pk(z)|2 and

∞
∑

k=−∞

qk|Qk(z)|2 diverge.

(ii) For all but countable values of z = λs > 0, s ∈ N0, the series

∞
∑

k=0

qk|Pk(z)|2 and

∞
∑

k=0

qk
∣

∣

∣

∣

Qk

(

z

q2

)∣

∣

∣

∣

2

diverge.

Moreover, we have
∞
∑

s=0

λps <∞.

(iii) For all z ∈ C \ [0,∞), the series

0
∑

k=−∞

qk|Pk(z)|2 and

0
∑

k=−∞

qk|Qk(z)|2 diverge.

3. Scale-invariant self-adjoint operators

From (8) it follows that the spectrum S(L) of the operator L is invariant with respect
to multiplication by q2, q2S(L) = S(L). In particular, if a point λ0 > 0 is an eigenvalue
of L, then all points λk = q2kλ0 are eigenvalues of L of the same multiplicity.

We will use the following generalized Stieltjes inversion formula which was proved by
M. Livsic (see [14, Lemma 2.1]).

Lemma 1. Let σ(λ) = (σ(λ+ 0) + σ(λ− 0))/2 (−∞ < λ <∞) be some function which

is of bounded variation on each finite interval, such that the integral

Φ(z) =

∫ ∞

−∞

dσ(λ)

λ− z
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converges absolutely. Let ϕ(λ) be some function which is analytic on the closed interval

∆ = [α, β]. Denote by ∆ε the broken path of integration consisting of the directed segment

[α− iε, β − iε] and the antiparallel segment [β + iε, α+ iε]. Then

(21) lim
ε→0

1

2πi

∫

∆ε

ϕ(z)Φ(z) dz = −
∫ β

α

ϕ(λ) dσ(λ).

The Stieltjes inversion formula is obtained when ϕ(λ) ≡ 1 in Lemma 1.
Denote by E(λ), λ ∈ R, the resolution of identity of the operator L. Since L is a

positive operator, E(λ) = 0 for λ ≤ 0. We normalize E(λ) in such a way that E(λ) =
[E(λ+ 0) + E(λ− 0)]/2.

Theorem 3. Suppose U is a unitary operator, L is a self-adjoint operator, q > 0, and
B(R) is the Borel field of R. Then the following statements are equivalent:

(i) The operator L is (q2, U)−invariant.

(ii) For any ∆ ∈ B(R), we have

(22) UE(∆) = E(∆/q2)U.

Proof. We first show that (i) implies (ii). It is easy to check that for a (q2, U)-invariant
self-adjoint operator L, we have

U(L− zI)−1 = (q2L− zI)−1U, Im z 6= 0,

which means that for any φ, ψ ∈ H
∫ ∞

0

〈dE(λ)U∗φ,U∗ψ〉
λ− z

=

∫ ∞

0

〈dE(λ)φ, ψ〉
q2λ− z

=

∫ ∞

0

〈

dE(λ/q2)φ, ψ
〉

λ− z
.

Now using Lemma 1, one obtains that (22) is fulfilled for any compact interval ∆ ⊂ R.
To obtain (22) for an arbitrary Borel set ∆ ∈ B(R), we use the standard procedure of
measure extension.

Now we show that (ii) implies (i). From (22), it follows that

U

∫ ∞

0

λ dE(λ)U∗ = q2
∫ ∞

0

λ dE(λ),

and a change of variables gives UL = q2LU , which is (8). �

Recall that for any Borel set ∆, the value of E(∆) is an orthogonal projection on H.
From (22), it follows that the subspaces

Hλ = [E(λ)− E(0)]H = E(λ)H and Hλ/q2 = E(λ/q2)H
have the same dimensions, i.e., dimHλ = dimHλ/q2 . This means that each Hλ = E(λ)H
(λ > 0) is infinite dimensional. Indeed, since q > 1, the subspace Hλ/q2m , m ∈ N, is
contained in Hλ. At the same time, they have the same dimensions since orthogonal
projections onto these subspaces are unitarily equivalent.

Theorem 4. Let L be a positive self-adjoint operator on a Hilbert space H with dense

range. Suppose that the operator L is (q2, U)-invariant. Then there are Hilbert spaces

Hk, k ∈ Z, such that the following statements hold:

(i) Each Hk reduces L.
(ii) Hk = UkH0.

(iii) We have

(23) H =

∞
∑

k=−∞

⊕Hk.
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(iv) With respect to the decomposition (23), the operator L is representable as

(24) L =

∞
∑

k=−∞

⊕q−2kUkL0U
∗k,

where L0 is a positive bounded and invertible self-adjoint operator.

Conversely, if (i)–(iv) are fulfilled, then L is a (q2, U)-invariant positive self-adjoint

operator with dense range.

Remark 2. In the representations (23) and (24), the domain D(L) of the operator L
consists of all f = {fk}k∈Z ⊂ Hk such that

∞
∑

k=−∞

‖fk‖2 <∞ and

∞
∑

k=−∞

q−2k‖L0U
∗kfk‖2 <∞.

Convergence of the series (24) is understood in the sense that

Lf = lim
m→−∞

lim
n→∞

n
∑

k=m

q−2kUkL0U
∗kfk,

where the limits are taken in the norm of the space H.

Proof of Theorem 4. If (i)–(iv) are fulfilled, then

UL =

∞
∑

k=−∞

q−2kUk+1L0U
k = q2

∞
∑

k=−∞

q−2k−2Uk+1L0U
∗(k+1)U = q2LU,

that is, L is (q2, U)-invariant. Positivity of L is obvious. Assume now that L is a positive
(q2, U)-self-adjoint operator. Pick an arbitrary a > 0 and denote ∆k = [aq2k, aq2k+2),
k ∈ Z. One has ∆k ∩ ∆j = ∅ for k 6= j and

⋃∞
k=−∞ ∆k = (0,∞). For the resolution

of identity of the operator L, one has that E(∆k), k ∈ Z, are mutually orthogonal
projections. Because of the hypothesis that L has dense range, hence does not annihilate
any vector, so

I =
∞
∑

k=−∞

E(∆k).

Put Hk = E(∆k)H. Then each Hk reduces L. Denote by Lk the part of L in Hk.
Then each Lk is a positive invertible operator, L =

∑∞
k=−∞ ⊕Lk. From Theorem 3, it

immediately follows that Lk = q−2kUkL0U
∗k. This completes the proof. �

Remark 3. (i) If we remove the assumption that the range of L is dense, then it will
be necessary to add one more term to the right-hand side of (23), namely the
null space of the operator L, and the projection on that space to the right-hand
side of (24).

(ii) If a (q2, U)-invariant operator L is not semibounded, then it is representable as
a direct sum of two semibounded (q2, U)-invariant operators, one of which is
positive and the other is negative.

Let R(z) = (L−zI)−1, z /∈ [0,∞), be the resolvent operator for the operator L. From
(8), it follows that

(25) q2UR(zq2) = R(z)U.

As a consequence of (25), one obtains that in order to calculate action of the resolvent
operator on an arbitrary vector f , it is sufficient to calculate R(z)e(0). Indeed from (6),
it follows that e(k) = Uke(0). Therefore,

R(z)e(k) = R(z)Uke(0) = q2kUkR(zq2k)e(0)



290 MIRON B. BEKKER, MARTIN J. BOHNER, AND HRISTO VOULOV

and

R(z)f =

∞
∑

k=−∞

ckq
2kUkR(zq2k)e(0), f =

∞
∑

k=−∞

cke
(k),

where the series converge in the norm of the space H.
A general approach to the spectral analysis of difference operators generated by bi-

infinite Jacobi matrices is pointed out in [5, Chap. VII, Sec. 3]. Following [5], we introduce

(26) Φ(g;λ) =

∞
∑

n=−∞

qngn

(

Pn(λ)
Qn(λ)

)

, g = {gn}n∈Z has finite support.

For each λ ∈ R, Φ(g;λ) takes values in C
2. Then there exists a 2 × 2 nondecreasing

matrix-valued function σ(λ), σ(λ) = (σ(λ0) + σ(λ + 0))/2, such that for any f, g ∈ H
with finite support, Parseval’s identity

(27) 〈f, g〉 =
∫ ∞

0

〈dσ(λ)Φ(f ;λ),Φ(g;λ)〉

holds, where the inner product inside the integral is taken in the sense of C2. Since the
operator L is self adjoint, the matrix-valued function σ(λ) is uniquely defined. Positivity
of the operator L implies that σ(λ) = 0 for λ ≤ 0. The mapping Φ is extended by
continuity ontoH. Denote by dρ(λ) = dσ11(λ)+dσ22(λ) and by τ(λ) a 2×2 matrix-valued
function whose entries are Radon–Nikodým derivatives of the corresponding entries of
σ with respect to ρ. Note that the matrix-valued function τ(λ) is nonnegative, i.e.,
τ(λ) ≥ 0, and τ11(λ) + τ22(λ) = 1. Then (27) can be written as

(28) 〈f, g〉 =
∫ ∞

0

〈τ(λ)Φ(f ;λ),Φ(g;λ)〉 dρ(λ).

For the detailed construction of a Hilbert space generated by a nondecreasing matrix-
valued function see, for example, [11, 16]. The following two important formulas are
valid (see [14, Theorem 1 and Formula (3.6), respectively]):

(29) Φ(Lf ;λ) = λΦ(f ;λ), f ∈ D(L)

and

〈R(z)f, g〉 =

∫ ∞

0

1

λ− z
〈dσ(λ)Φ(f ;λ),Φ(g;λ)〉(30)

=

∫ ∞

0

1

λ− z
〈τ(λ)Φ(f ;λ),Φ(g;λ)〉 dρ(λ).

4. Multiplicity of the spectrum

We will show that the matrix-valued function τ(λ) is singular ρ-almost everywhere.
According to [16, Definition 4.5], this means that the following theorem is valid.

Theorem 5. The operator L has simple spectrum, that is, the multiplicity of the spectrum

is one.

Proof. From (27), it follows that
〈

e(k), e(l)
〉

=

∫ ∞

0

〈

dσ(λ)Φ(k),Φ(l)
〉

=

∫ ∞

0

〈

τ(λ)Φ(k)(λ),Φ(l)(λ)
〉

dρ(λ) = δkl,

where

(31) Φ(k)(λ) = Φ(e(k);λ) =

√

qk+1

q − 1

(

Pk(λ)
Qk(λ)

)

.
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In particular,

1 =
〈

e(0), e(0)
〉

=
q

q − 1

∫ ∞

0

dσ11(λ),

hence
∫∞
0
dσ11(λ) <∞. Also,

1 =
〈

e(−1), e(−1)
〉

=
1

q − 1

∫ ∞

0

dσ22(λ),

that is,
∫∞
0
dσ22(λ) <∞. Therefore

(32)

∫ ∞

0

dρ(λ) <∞.

From (25), it follows that
〈

R(z)e(0), e(0)
〉

=
q

q − 1

∫ ∞

0

dσ11(λ)

λ− z
=

〈

UkR(z)e(0), Uke(0)
〉

=
1

q2k

〈

R(z/q2k)e(k), e(k)
〉

=
1

q2k
qk+1

q − 1

∫ ∞

0

1

λ− z/q2k

〈

dσ(λ)

(

Pk(λ)
Qk(λ)

)

,

(

Pk(λ)
Qk(λ)

)〉

,

that is,
∫ ∞

0

dσ11(λ)

λ− z
=

∫ ∞

0

1

λ− z
qk

〈

dσ(λ/q2k)

(

Pk(λ/q
2k)

Qk(λ/q
2k)

)

,

(

Pk(λ/q
2k)

Qk(λ/q
2k)

)〉

.

From the last expression, using Lemma 1, one deduces that for any interval ∆ = [a, b)

(33)

∫

∆

dσ11(λ) =

∫

∆/q2k
qk

〈

dσ(λ)

(

Pk(λ)
Qk(λ)

)

,

(

Pk(λ)
Qk(λ)

)〉

.

Pick now an arbitrary a > 0 and put ∆k = [aq2k, aq2k+2) for k ∈ Z. Then ∆k ∩∆j = ∅
for k 6= j and

⋃∞
k=−∞ ∆k = R+ \ {0}. Therefore

∞ >

∫ ∞

0+

dσ11(λ) =

∞
∑

k=−∞

∫

∆k

dσ11(λ)

=
∞
∑

k=−∞

∫

∆0

qk
〈

dσ(λ)

(

Pk(λ)
Qk(λ)

)

,

(

Pk(λ)
Qk(λ)

)〉

.

All terms on the right-hand side of the last equality are nonnegative. According to Beppo
Levi’s theorem (see, e.g., [21, Chap. 2]), the series

∞
∑

k=−∞

qk
〈

τ(λ)

(

Pk(λ)
Qk(λ)

)

,

(

Pk(λ)
Qk(λ)

)〉

converges ρ-almost everywhere on ∆0. Since a > 0 was selected arbitrarily, we conclude
that the series converges for ρ-almost all λ > 0. Now, if the matrix-valued function τ(λ)
is nonsingular on a set of positive ρ-measure, then for any λ0 from this set, there exists
a number c(λ0) > 0 (the smallest eigenvalue of τ(λ0)) such that

〈

τ(λ0)

(

Pk(λ0)
Qk(λ0)

)

,

(

Pk(λ0)
Qk(λ0)

)〉

≥ c(λ0)
[

|Pk(λ0)|2 + |Qk(λ0)|2
]

.

Hence,
∞
∑

k=−∞

qk
[

|Pk(λ0)|2 + |Qk(λ0)|2
]

<∞.
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Since by Theorem 2 the last series diverges, we obtain a contradiction. The matrix τ(λ0)
cannot be invertible. The proof is complete. �

5. Structure of the spectrum

According to Theorem 5, for ρ-almost all λ, there is a 2× 2 unitary matrix Γ(λ) such
that

Γ(λ)∗τ(λ)Γ(λ) =

(

1 0
0 0

)

.

Therefore, Parseval’s identity (27) takes the form

(34) 〈f, g〉 =
∫ ∞

0

Ψ(f ;λ)Ψ(g;λ) dρ(λ),

where

(35) Ψ(f ;λ) =
∞
∑

k=−∞

qkJk(λ)fk with Jk = Γ11Pk + Γ12Qk

and
∫∞
0
dρ(λ) < ∞. The mapping f 7→ Ψ(f ;λ) is a generalized Fourier transform,

generated by the operator L, and can be considered as a discrete version of the Hankel
transform (see [17, Chap. 6, Sec. 21]). Recall that the measure dρ(λ) is defined uniquely
and the spectrum of the operator L coincides with the set of points of growth of the
function ρ. The functions

Ψ(k)(λ) = Ψ(e(k);λ) =

√

qk+1

q − 1
Jk(λ)

form an orthonormal basis of the space L2(dσ,R+). In particular,

1 =
〈

e(k), e(k)
〉

=
qk+1

q − 1

∫ ∞

0

|Jk(λ)|2dρ(λ).

Hence, the functions Jn(λ) are summable with respect to the measure ρ.
Recall that Γ11(λ) and Γ12(λ) form the first row of the unitary matrix Γ(λ). Therefore,

|Γ11(λ)|2+ |Γ12(λ)|2 = 1 for all λ ∈ R+. Another relation between these functions follows
from the fact that the operator L is (q2, U)-invariant. Indeed,

〈

R(z)e(−1), e(−1)
〉

=

∫ ∞

0

1

λ− z
|Ψ(−1)(λ)|2dρ(λ)

=
1

q − 1

∫ ∞

0

|Γ12(λ)|2
λ− z

dρ(λ).

The same arguments as in Section 4 give
〈

R(z)e(−1), e(−1)
〉

=
1

q2

〈

R(z/q2)e(0), e(0)
〉

=
1

q(q − 1)

∫ ∞

0

|Γ11(λ)|2
λ− z/q2

dρ(λ).

From the last expression, the following statement follows.

Theorem 6. For all λ ∈ R+, we have

(36) q

∫ λ/q2

0

|Γ11(s)|2dρ(s) =
∫ λ

0

|Γ12(s)|2dρ(s).

Using the same arguments as in Section 4, one obtains that the series
∞
∑

n=−∞

qn|Jn(λ)|2
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converges for ρ-almost all λ ∈ R
+. Now we invoke [5, Theorem 1.17 from Chap. VII,

Sec. 1]. According to that theorem, we have

(37) ρ(λ+ 0)− ρ(λ) =
q − 1

q

1
∑∞

n=−∞ qn|Jn(λ)|2
.

Aforementioned theorem was proved in [5] for operators generated by infinite Jacobi
matrices, not by bi-infinite ones like in the case under consideration. Nevertheless, the
analysis of the proof shows that the only requirements are summability of Jn(λ) and the
fact that they form an orthogonal basis for L2(R+, dρ).

Combining (37), the fact that ρ(λ) is monotonically nondecreasing and bounded, and

convergence of
∞
∑

n=−∞
qn|Jn(λ)|2 ρ-almost everywhere, one obtains the following theorem.

Theorem 7. The spectrum of the operator L is discrete. Every interval of the form

[a, q2a), a > 0, contains at least one point of the spectrum of L.

A similar statement is true for β ≤ β−−.

Theorem 8. For β ≤ β−− = −q
2 + 1√
q

, the spectrum of the operator L is discrete and

simple. Every interval of the form [aq2, a), a < 0, contains at least one point of the

spectrum.

Remark 4. In Theorems 7 and 8, the cardinalities of the sets

S(L) ∩ [aq2k, aq2(k+1)) and S(L) ∩ [aq2(k+1), aq2k),

respectively, do not depend on k ∈ Z. This is a consequence of Theorem 4.
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20. Schôichi Ôta, Some classes of q-deformed operators, J. Operator Theory 48 (2002), no. 1,
151–186.
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