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FUNCTIONAL EVOLUTIONS FOR HOMOGENEOUS STATIONARY

DEATH-IMMIGRATION SPATIAL DYNAMICS

D. FINKELSHTEIN

Abstract. We discover death-immigration non-equilibrium stochastic dynamics in
the continuum also known as the Surgailis process. Explicit expression for the cor-

relation functions is presented. Dynamics of states and their generating functionals
are studied. Ergodic properties for the evolutions are considered.

1. Introduction

Complex systems theory is a growing interdisciplinary area with a very broad spectrum
of motivations and applications. One may characterize complex systems by properties as
diversity and individuality of components, localization of interactions among components,
and the outcomes of interactions used for replication or enhancement of components.
In the study of these systems, proper language and techniques are delivered by the
interacting particle models which form a rich and powerful direction in modern stochastic
and infinite dimensional analysis. Interacting particle systems have a wide use as models
in condensed matter physics, chemical kinetics, population biology, ecology, sociology
and economics.

Mathematical realizations of such models may be considered as a dynamics of collec-
tions of points in proper spaces. The possible positions of points may be fixed due to the
structure of space, e.g., dynamics on graphs, or, in particular, on lattices. Another area
of models connects with free positions of points in the continuum, say, in the Euclidean
space Rd. However, as was shown in statistical physics, many empirical effects, such as
phase transitions, are impossible in systems with a finite number of points. Due to this,
one can consider infinite point systems as a mathematical approximation for realistic
systems with a high number of elements. The connection with the reality, where infi-
nite systems are absent, is given by the restriction of the study to locally finite systems
(configurations) which have only finite number of elements in any finite volume.

Depending on applications, the points of such a system may be interpreted as molecules
in physics, plants in ecology, animals in biology, infected people in medicine, companies
in economics, market agents in finance, and so on. For study stochastic dynamics of such
systems we may consider different mechanisms of (random) evolutions of their points.
Existing points may disappear from the configuration that is naturally called ‘death’.
Each existing point may change own position due to some moving or hop; this mechanism
traditionally is called ‘emigration’. Each existing point may produce a new one, that is
called ‘birth’. There exists also another possibility for appearing a new element in the
configuration coming from outside; this is called ‘immigration’. Mathematically, the
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random evolution of the system is described by a heuristic Markov generator which
includes parts corresponding to different mechanisms above.

Rigorous mathematical results concerning stochastic dynamics of configurations in
the continuum have not very reach history. One of the pioneering work in this area
was [10]. Special class of models introduced therein have been recently studied in [8, 9].
We mentioned also [20]– [22], and references therein. During the last decade a functional
approach for studying of the stochastic dynamics above was discovered. It was consi-
dered the evolutional equations connected with considered stochastic dynamics, namely,
equations on states of systems and their correlation functions, equations on generating
functionals and so on. Studying this evolutional equations yields not only existence
(in different senses) of dynamics but their qualitative and quantitative properties also.
For general description of this approach see, e.g., [7, 14], and for particular models see,
e.g., [3]– [6], [15]. In the present paper we consider one of the simplest model, where only
independent (constant) death and immigration appear. The corresponding stochastic
process is the well-known Surgailis process [16, 25, 26]. For this model we find explicit
expression for correlation functions that gives us a way to improve general results as well
as to obtain new ones. The structure of the paper is the following. We describe the
model and present necessary knowledge on configuration space techniques in Section 2.
Section 3 is devoted to the evolutions of correlation functions and measures (states) of
the system. The ergodic properties of the dynamics as well as evolution of the generating
functionals are presented in Section 4. Finally, Section 5 deals with the so-called dynamics
of quasi-observables.

We also note that the main results obtained in this work may be generalized to death
and immigration rates whose are independent of other points of a configuration, however,
they may depend on the position of each point and time. We will consider this case of non-
homogeneous non-stationary death-immigration process in a forthcoming publication.

2. Description of model

The simplest economic model in the description of spatial dynamics is the model of
free development when particles (which we may interpret, for instance, as companies
on the market) appears independently without any influence of existing ones. On the
other language, they migrate from the outside without any motivation due to situation
inside the system. Of course, companies on real market never have infinite life time. We
consider model with global regulation. This means that any points of configuration has
exponentially distributed (with some positive parameter m) random life time. Hence,
again a death (bankruptcy) appears due to “request” from the outside.

The state space of this model is the space Γ = ΓRd of all locally finite subsets (configu-
rations) in Rd

Γ :=
{
γ ⊂ Rd

∣∣ |γΛ| < ∞, for all Λ ∈ Bc(R
d)
}
.

Here γΛ = γ ∩Λ, | · | means cardinality of a set, Bc(R
d) denote the system of all bounded

Borel sets in Rd. We consider the σ-algebra B(Γ) as the smallest σ-algebra for which
all the mappings NΛ : Γ → N0 := N ∪ {0}, NΛ(γ) := |γΛ| are measurable for all
Λ ∈ Bc(R

d). For every Λ ∈ Bc(R
d) one can define a projection pΛ : Γ → ΓΛ := {γ ∈ Γ |

γ ⊂ Λ}; pΛ(γ) := γΛ and w.r.t. this projections Γ is the projective limit of the spaces
{ΓΛ}Λ∈Bc(Rd). One can consider also the σ-algebra BΛ(Γ) as the smallest σ-algebra for

which all the mappings NΛ′ : Γ → N0 are measurable for all Λ′ ∈ Bc(R
d), Λ′ ⊂ Λ.

On Γ we consider the set of a cylinder functions FL0(Γ), i.e. the set of all measurable
function F on

(
Γ,B(Γ)

)
which are measurable w.r.t. BΛ(Γ) for some Λ ∈ Bc(R

d). These
functions are characterized by the following relation: F (γ) = F ↾ΓΛ

(γΛ).
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Let M1
fm(Γ) be the set of all probability measures µ on

(
Γ,B(Γ)

)
which have finite

local moments of all orders, i.e.
∫
Γ
|γΛ|

nµ(dγ) < +∞ for all Λ ∈ Bc(R
d) and n ∈ N0.

To describe a (pre-)generator of a dynamics above we consider for fixed m > 0, σ ≥ 0
and for any F ∈ FL0(Γ) the following expression

(2.1) (LF ) (γ) = m
∑

x∈γ

[
F (γ \ x)− F (γ)

]
+ σ

∫

Rd

[F (γ ∪ x)− F (γ)] dx,

which is well-defined since, by the definition of FL0(Γ), there exists Λ ∈ Bb(R
d) such

that F (γ \x) = F (γ) for any x ∈ γΛc and F (γ∪x) = F (γ) for any x ∈ Λc; therefore, sum
and integral in (2.1) are finite. Stress that L is the generator of the (non-equilibrium)
Surgailis process, see [16,25,26].

We consider now the space of finite configurations on Rd. The space of n-point con-
figuration is

Γ(n) :=
{
η ⊂ Rd

∣∣ |η| = n
}
, n ∈ N0.

As a set, Γ(n) is equivalent to the symmetrization of

(̃Rd)n =
{
(x1, . . . , xn) ∈ (Rd)n

∣∣ xk 6= xl if k 6= l
}
.

Hence, Γ
(n)
0 inherits the structure of an n · d-dimensional manifold. Applying this we

can define Borel σ-algebra B(Γ
(n)
0 ). Also one can consider a measure m(n) as image of

product m⊗n of Lebesgue measures dm(x) = dx on
(
Rd,B(Rd)

)
.

The space of finite configurations

Γ0 :=
⊔

n∈N0

Γ
(n)
0

has structure of disjoint union, therefore, one can define the Borel σ-algebra B(Γ0). A
set B ∈ B(Γ0) is called bounded if there exists a Λ ∈ Bc(R

d) and an N ∈ N such that

B ⊂
⊔N

n=0 Γ
(n)
Λ , where Γ

(n)
Λ :=

{
η ⊂ Λ

∣∣ |η| = n
}
.

We will use also the following two classes of functions on Γ0: L0
ls(Γ0) is the set of all

measurable functions on Γ0 which have a local support, i.e. G ∈ L0
ls(Γ0) if there exists

Λ ∈ Bc(R
d) such that G ↾Γ0\ΓΛ

= 0; Bbs(Γ0) is the set of bounded measurable functions
with bounded support: G ↾Γ0\B= 0 for some bounded B ∈ B(Γ0).

The Lebesgue—Poisson measure λz on
(
Γ0,B(Γ0)

)
is defined as

(2.2) λz :=

∞∑

n=0

zn

n!
m(n).

Here z > 0 is the so called activity parameter. The restriction of λz to ΓΛ will be also
denoted by λz. Let λ be the Lebesgue-Poisson measure on Γ0 (and ΓΛ) with activity
parameter equal to 1.

The Poisson measure πz on
(
Γ,B(Γ)

)
is given as the projective limit of the family

of measures {πΛ
z }Λ∈Bc(Rd), where πΛ

z is the measure on ΓΛ defined by πΛ
z := e−zm(Λ)λz.

Again, we will omit index in the case z = 1.
The following mapping between functions on Γ0, e.g. L

0
ls(Γ0), and functions on Γ, e.g.

FL0(Γ), plays an important role in our further considerations:

(2.3) KG(γ) :=
∑

η⋐γ

G(η), γ ∈ Γ,

where G ∈ L0
ls(Γ0), see, e.g., [12, 18, 19]. The summation in the latter expression is

extend over all finite subconfigurations of γ, in symbols η ⋐ γ. The mapping K is linear,
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positivity preserving, and invertible, with

(2.4) K−1F (η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

We consider now a mapping L̂G := K−1LKG which is well-defined on functions
G ∈ L0

ls(Γ0). By, e.g., [7], we have

(2.5)
(
L̂G

)
(η) = −m|η|G(η) + σ

∫

Rd

G (η ∪ x) dx.

Let now C > 1 be fixed. Applying results from [6] to the zero-potential case, we obtain
that (2.5) provides a linear operator on the Banach space of B(Γ0)-measurable functions

(2.6) LC :=
{
G : Γ0 → R

∣∣∣ ‖G‖C :=

∫

Γ0

|G(η)|C |η|dλ(η) < ∞
}

with dense domain L2C ⊂ LC . If additionally,

(2.7) C ≥
σ

m

then
(
L̂,L2C

)
is closable linear operator in LC and its closure

(
L̂,D(L̂)

)
generates a

strongly continuous contraction semigroup T̂ (t) on LC .

3. Correlation functions evolution

3.1. Notion of correlation functions. A measure ρ on
(
Γ0,B(Γ0)

)
is called locally

finite iff ρ(A) < ∞ for all bounded sets A from B(Γ0), the set of such measures is denoted
by Mlf(Γ0). One can define a transform K∗ : M1

fm(Γ) → Mlf(Γ0), which is dual to the
K-transform, i.e., for every µ ∈ M1

fm(Γ), G ∈ Bbs(Γ0) we have
∫

Γ

KG(γ)µ(dγ) =

∫

Γ0

G(η) (K∗µ)(dη).

ρµ := K∗µ we call the correlation measure corresponding to µ.
As shown in [12] for µ ∈ M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series (2.3) is µ-a.s.
absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and

(3.1)

∫

Γ0

G(η) ρµ(dη) =

∫

Γ

(KG)(γ)µ(dγ).

Among the elements in the domain of the K-transform are also the so-called coherent
states eλ(f). By definition, for any B(Rd)-measurable function f ,

eλ(f, η) :=
∏

x∈η

f(x), η ∈ Γ0\{∅}, eλ(f, ∅) := 1.

Then, by (2.2), for f ∈ L1(Rd, dx) we obtain eλ(f) ∈ L1(Γ0, dλ) and

(3.2)

∫

Γ0

eλ(f, η)dλ(η) = exp{〈f〉},

here and below 〈f〉 =

∫

Rd

f(x)dx.

Note that

(3.3)
(
Keλ(f)

)
(γ) =

∏

x∈γ

(
1 + f(x)

)
, µ−a.a. γ ∈ Γ,

for all B(Rd)-measurable functions f such that eλ(f) ∈ L1(Γ0, ρµ), see, e.g., [12].
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Let µ ∈ M1
fm(Γ). If for all Λ ∈ Bc(R

d) the projection µΛ := µ ◦ p−1
Λ is absolutely

continuous with respect to (w.r.t.) πΛ on ΓΛ then ρµ := K∗µ is absolutely continuous
w.r.t. λ on Γ0. The corresponding Radon–Nikodym derivative

kµ(η) :=
dρµ

dλ
(η), η ∈ Γ0

is called a correlation functional of a measure µ. The functions

(3.4) k(n)µ : (Rd)n −→ R+,

given by

k(n)µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n

0, otherwise
,

are well known correlation functions of statistical physics, see e.g [23,24].
Obviously, not any positive function on Γ0 is a correlation functional of a some measure

on Γ. To describe sufficient condition on this we will do in the following manner. Given
G1 and G2 two B(Γ0)-measurable functions, let us consider the ⋆-convolution between
G1 and G2,

(3.5) (G1 ⋆ G2)(η) :=
∑

η1⊔η2⊔η3=η

G1(η1 ∪ η2)G2(η2 ∪ η3),

where sign ⊔ denotes disjoint union (parts may be empty), see [12] for a details. It
is straightforward to verify that the space of all B(Γ0)-measurable functions endowed
with this product has the structure of a commutative algebra with unit element eλ(0).
Furthermore, for every G1, G2 ∈ Bbs(Γ0) we have G1 ⋆ G2 ∈ Bbs(Γ0), and

(3.6) K (G1 ⋆ G2) = (KG1) · (KG2)

cf. [12]. Note that

(3.7) eλ(f) ⋆ eλ(g) = eλ(f + g + fg)

for all B(Rd)-measurable functions f and g.
The following theorem shows when we can reconstruct a measure µ ∈ M1

fm(Γ) by the
system of symmetric functions (3.4).

Theorem 3.1. ( [12]). Let k : Γ0 → R+ be measurable function such that kdλ ∈

Mlf(Γ0), k(∅) = 1, there exists C > 0, ε > 0 such that k(η) ≤ C |η|
(
|η|!

)1−ε
, η ∈ Γ0 and

the function k is positive definite in the sense that for any G ∈ Bbs(Γ0)

(3.8)

∫

Γ0

(G ⋆ Ḡ)(η)k(η)dλ(η) ≥ 0.

Then there exists a unique measure µ ∈ M1
fm(Γ) such that k = kµ.

3.2. Evolution of correlation functions. The space (LC)
′ =

(
L1(Γ0, dλC)

)′
=L∞(Γ0,

dλC) is the topologically dual space to the space LC . The space L∞(Γ0, dλC) is isomet-
rically isomorphic to the Banach space

KC :=
{
k : Γ0 → R

∣∣∣ k · C−|·| ∈ L∞(Γ0, λ)
}

with the norm ‖k‖KC
:= ‖C−|·|k(·)‖L∞(Γ0,λ), where the isomorphism is provided by the

isometry RC

(3.9) (LC)
′ ∋ k 7−→ RCk := k · C |·| ∈ KC .
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In fact, we may say about a duality between Banach spaces LC and KC , which is
given by the following expression

(3.10) 〈〈G, k〉〉 :=

∫

Γ0

G · k dλ, G ∈ LC , k ∈ KC

with

(3.11) |〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC
.

It is clear that for any k ∈ KC

(3.12) |k(η)| ≤ ‖k‖KC
C |η| for λ-a.a. η ∈ Γ0.

Let
(
L̂′, D(L̂′)

)
be an operator in (LC)

′ which is dual to the closed operator
(
L̂,D(L̂)

)
.

We consider also its image in KC under isometry RC , namely, let L̂∗ = RCL̂
′RC−1 with

a domain D(L̂∗) = RCD(L̂′). Then, for any G ∈ LC , k ∈ D(L̂∗)
∫

Γ0

G · L̂∗kdλ =

∫

Γ0

G ·RCL̂
′RC−1kdλ =

∫

Γ0

G · L̂′RC−1kdλC

=

∫

Γ0

L̂G ·RC−1kdλC =

∫

Γ0

L̂G · kdλ,

therefore, L̂∗ is the dual operator to L̂ w.r.t. duality (3.10).

By, e.g., [7], we have the precise form of L̂∗ on D(L̂∗)

(3.13)
(
L̂∗k

)
(η) = −m|η|k(η) + σ

∑

x∈η

k (η \ x) .

In the same way one can consider the adjoint contraction semigroup T̂ ′(t) in (LC)
′

and its image T̂ ∗(t) in KC . Now, we may apply general results about adjoint semigroups

(see, e.g., [1]) onto the contraction semigroup T̂ ∗(t). The last semigroup will be weak*-

continuous, moreover, weak*-differentiable at 0 and L̂∗ will be weak*-generator of T̂ ∗(t).

Here and below we mean “weak*-properties” w.r.t. duality (3.10). Let K̊C =
{
k ∈

KC

∣∣ ∃ limt↓0

∥∥T̂ ∗(t)k − k
∥∥
KC

= 0
}
. Then K̊C is closed, weak*-dense, T̂ ∗(t)-invariant

linear subspace of KC . Moreover, K̊C = D(L̂∗) (the closure is in the norm of KC). Let

T̂⊙(t) denote the restriction of T̂ ∗(t) onto Banach space K̊C . Then T̂⊙(t) is a contraction

C0-semigroup on K̊C and its generator L̂⊙ will be part of L̂∗, namely, D(L̂⊙) =
{
k ∈

D(L̂∗)
∣∣ L̂∗k ∈ D(L̂∗)

}
and L̂∗k = L̂⊙k for any k ∈ D(L̂⊙).

Using simple reccurent structure of the operator (3.13) we may find explicit expression

for the action of the contraction semigroup T̂ ∗(t) from the solution of the Cauchy problem

(3.14)
∂

∂t
kt = L̂∗kt, kt

∣∣
t=0

= k0.

To do this let us define the following associative and commutative convolution on
measurable functions on Γ0

(3.15) (G1 ∗G2)(η) =
∑

ξ⊂η

G1(ξ)G2(η \ ξ), η ∈ Γ0.

One can consider an algebra of measurable functions on Γ0 with such a product and the
unit element 1∗(η) := 0|η|. Note that,

eλ(f) ∗ eλ(g) =eλ(f + g),(3.16)

eλ(f)
(
G1 ∗G2

)
=
(
eλ(f)G1

)
∗
(
eλ(f)G2

)
.(3.17)
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Theorem 3.2. The function

kt (η) = e−tm|η|

(
eλ

( σ

m
(etm − 1)

)
∗ k0

)
(η)(3.18)

=

(
eλ

( σ

m
(1− e−tm)

)
∗
(
eλ(e

−tm)k0
))

(η)(3.19)

is a well-defined point-wise differentiable function which satisfied (3.14).

Proof. By (3.13), (3.14) implies

∂

∂t
k
(1)
t (x1) = −mk

(1)
t (x1) + σ,

that yields

k
(1)
t (x1) = e−mtk

(1)
0 (x1) + σ

∫ t

0

e−m(t−s)ds = e−mt
(
k
(1)
0 (x1) +

σ

m
(emt − 1)

)
.

Suppose that (3.18) holds for |η| = n− 1, namely,

k
(n−1)
t (x1, . . . , xn−1) = e−m(n−1)t

∑

ξ⊂{x1,...,xn−1}

k
(|ξ|)
0 (ξ)

( σ

m
(emt − 1)

)n−1−|ξ|

.

Then, by (3.13) and (3.14) we obtain

k
(n)
t (x1, . . . , xn)

=e−mntk
(n)
0 (x1, . . . , xn) + σ

∫ t

0

e−mn(t−s)
n∑

i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn) ds

= e−mntk
(n)
0 (x1, . . . , xn)

+ σe−mnt

∫ t

0

emns
n∑

i=1

e−m(n−1)s
∑

ξ⊂{x1,...,x̌i,...,xn}

k
(|ξ|)
0 (ξ)

( σ

m
(emt − 1)

)n−1−|ξ|

ds

= e−mntk
(n)
0 (x1, . . . , xn)

+ e−mnt
∑

ξ({x1,...,xn}

(n− |ξ|) k
(|ξ|)
0 (ξ)

( σ

m

)n−|ξ|

m

∫ t

0

(ems − 1)
n−1−|ξ|

emsds

= e−mntk
(n)
0 (x1, . . . , xn) + e−mnt

∑

ξ({x1,...,xn}

k
(|ξ|)
0 (ξ)

( σ

m
(emt − 1)

)n−|ξ|

= e−mnt
∑

ξ⊂{x1,...,xn}

k
(|ξ|)
0 (ξ)

( σ

m
(emt − 1)

)n−|ξ|

=
∑

ξ⊂{x1,...,xn}

e−m|ξ|tk
(|ξ|)
0 (ξ)

( σ

m
(1− e−mt)

)n−|ξ|

.

By a mathematical induction principle, the statement is proved. �

Remark 3.3. Note that, by (3.18), k0(∅) = 1 implies kt(∅) = 1 as well as k0 > 0 implies
kt > 0.

Proposition 3.4. Let k0 ∈ KC and kt is the solution of (3.14). Then kt ∈ KC′ , where
C ′ = max{C; σ

m}. More precisely,

∣∣kt(η)
∣∣ ≤ ‖k0‖KC

(
max

{
C;

σ

m

})|η|

, η ∈ Γ0.
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Proof. By (3.18), (3.12), and (3.16), one get

|kt (η) | ≤ e−tm|η|

(
eλ

( σ

m
(emt − 1)

)
∗
(
‖k0‖KC

eλ(C)
))

(η)

= ‖k0‖KC
e−tm|η|eλ

(
C + σ

etm − 1

m
, η

)

= ‖k0‖KC
eλ

(
Ce−tm + σ

1− e−tm

m
, η

)
≤ ‖k0‖KC

eλ

(
max

{
C;

σ

m

}
, η

)
,

since

(3.20) Ce−tm + σ
1− e−tm

m
=

(
C −

σ

m

)
e−tm +

σ

m
≤ max

{
C;

σ

m

}
.

Hence, this dynamics stays so-called sub-Poissonian (cf. Remark 3.5 below). �

Remark 3.5. Let us stress that if we start in (3.14) from the Poisson distribution
µ0 = πA with kµ0

(η) = k0(η) = A|η|, A > 0 then the distribution stays Poissonian during
dynamics

(3.21) kt(η) =

((
A−

σ

m

)
e−tm +

σ

m

)|η|

.

Corollary 3.6. Let C ≥
σ

m
. Then for any k ∈ KC

(3.22)
(
T̂ ∗(t)k

)
(η) := e−tm|η|

(
eλ

( σ

m
(etm − 1)

)
∗ k

)
(η) , η ∈ Γ0, t > 0.

As was noted in [4], KαC ⊂ D(L̂∗) for any α ∈ (0; 1). Moreover, by Proposition 3.4,

if k ∈ KαC then kt = T̂ ∗(t)k = T̂⊙(t)k ∈ KC′ , where C ′ = max{αC; σ
m}. Therefore, the

following improvement of the result from [4] holds.

Proposition 3.7. Let C >
σ

m
. Then for any α ∈

( σ

mC
; 1
)
the Banach subspace KαC

of the Banach space KC is T̂⊙(t)-invariant. Here closure is taken in the norm of KC .

The restriction T̂⊙α(t) of T̂⊙(t) onto KαC is a contraction C0-semigroup.

As a result, we have that for any C ≥
σ

m
the Cauchy problem (3.14) is solvable on

KC . Moreover, for C >
σ

m
and α ∈

( σ

mC
; 1
)
this problem is solvable on KαC .

At the end let us us find an expression for the resolvent R⊙
z of the generator L̂⊙ of

the semigroup T̂⊙(t).

Proposition 3.8. For any z with Re z > 0 there exists a bounded operator R⊙
z = (z −

L̂⊙)−1 on the space K̊C such that for any k ∈ K̊C

(
R⊙

z k
)
(η) =

1

m

∑

ξ⊂η

( σ

m

)|ξ|

B
( z

m
+ |η| − |ξ| , |ξ|+ 1

)
k (η \ ξ) ,

where B(x, y) =
∫ 1

0
sx−1 (1− s)

y−1
ds is the Euler beta function.
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Proof. We have

(
R⊙

z k
)
(η) =

∫ ∞

0

e−zt e−tm|η|
(
eλ

( σ

m
(etm − 1)

)
∗ k

)
(η) dt

=
∑

ξ⊂η

k (η \ ξ)

∫ ∞

0

e−(z+m|η|)t
( σ

m
(etm − 1)

)|ξ|

dt

=
∑

ξ⊂η

k (η \ ξ)
( σ

m

)|ξ|
∫ ∞

0

e−(z+m|η\ξ|)t (1− e−tm)|ξ|dt.

Using substitution s = e−tm we obtain for Re z > 0

∫ ∞

0

e−(z+m|η\ξ|)t
(
1− e−tm

)|ξ|
dt =

1

m

∫ 1

0

s
z

m
+|η\ξ|−1 (1− s)

|ξ|
ds

=
1

m
B
( z

m
+ |η| − |ξ|, |ξ|+ 1

)
,(3.23)

that proves the assertion. �

3.3. Evolution of measures. In [4], it was shown that dynamics T̂⊙(t) preserves so-

called Lenard-positivity property on the subspace D(L̂∗). We recall that a measurable
function k : Γ0 → R is to be called a positive defined function in the sense of Lenard if for
any G ∈ Bbs (Γ0) such that KG ≥ 0 the following inequality holds

∫
Γ0

G (η) k (η) dλ (η) ≥

0. By (3.6), any such a function will be positive defined in the sense of (3.8) too.
We extend now this preservation of positive-definiteness (in the sense of (3.8)) on the

whole space KC .
We start from the following lemma which is seems to be important itself.

Lemma 3.9. Let µ0 ∈ M1
fm(Γ) and suppose that their correlation function k0 = kµ0

exists and belongs to KC . Let f ∈ L1(Rd, dx) and 0 ≤ f(x) ≤ 1, x ∈ Rd. Then function
k(η) = eλ(f, η)k0(η) is a positive definite in the sense of (3.8).

Proof. Using classical measure theory arguments it is enough to proof (3.8) for function
G : Γ0 → C of the form

(3.24) G(η) =

N∑

i=1

bieλ(gi, η), N ∈ N, bi ∈ C, gi ∈ C0(R
d → C),

where C0(R
d → C) is the space of all complex-valued continuous functions on Rd with

compact supports.
Note that, by (3.12) and (3.2), for any g ∈ C0(R

d → C) ⊂ L1(Rd → C, dx)

(3.25)

∫

Γ0

|eλ(g, η)|k0(η)dλ(η) ≤ ‖k0‖KC

∫

Γ0

eλ(C|g|, η)dλ(η) < ∞.

By (3.3) and (3.1), inequality (3.25) implies
∏

x∈γ(1 + |g(x)|) ∈ L1(Γ, dµ0) for any

g ∈ C0(R
d). Moreover,

∏
x∈γ(1 + |g(x)|) ∈ FL0(Γ), hence,

∫

Γ

∏

x∈γ

(1 + g(x))dµ0(γ) =

∫

ΓΛ

∏

x∈γΛ

(1 + g(x))dµΛ
0 (γΛ),

where Λ is the support of g and the measure µΛ
0 is the projection of the measure µ0

onto ΓΛ.
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Let G has the form (3.24). Then, taking Λ equal to union of the supports of functions
gi, i = 1, . . . , n, we obtain

∫

Γ0

(
G ⋆ Ḡ

)
(η) eλ (f, η) k0 (η) dλ (η)

=
N∑

i,j=1

bib̄j

∫

Γ0

eλ (gi + ḡj + giḡj , η) eλ (f, η) k0 (η) dλ (η)

=
N∑

i,j=1

bib̄j

∫

Γ

K (eλ (fgi + fḡj + fgiḡj)) (γ) dµ0 (γ)

=
N∑

i,j=1

bib̄j

∫

Γ

∏

x∈γ

(
1− f (x) + f (x)

(
1 + gi (x)

)(
1 + ḡj (x)

))
dµ0 (γ)

=

N∑

i,j=1

bib̄j

∫

ΓΛ

∏

x∈γΛ

(
1− f (x) + f (x)

(
1 + gi (x)

)(
1 + ḡj (x)

))
dµΛ

0 (γΛ)

=

N∑

i,j=1

bib̄j

∫

ΓΛ

∑

η⊂γΛ

eλ (1− f, η) eλ (f (1 + gi) (1 + ḡj) , γΛ \ η) dµΛ
0 (γΛ)

=

∫

ΓΛ

∑

η⊂γΛ

eλ (1− f, η)

N∑

i,j=1

bib̄jeλ (1 + gi, γΛ \ η)

× eλ (1 + ḡj , γΛ \ η) eλ (f, γΛ \ η) dµΛ
0 (γΛ)

=

∫

ΓΛ

∑

η⊂γΛ

eλ (1− f, η)

∣∣∣∣
N∑

i=1

bieλ (1 + gi, γΛ \ η)

∣∣∣∣
2

eλ (f, γΛ \ η) dµΛ
0 (γΛ) ≥ 0,

since 0 ≤ f(x) ≤ 1, x ∈ Rd. �

As we noted before not all elements of KC are correlation functions of some measures.
Next theorem shows that we really have correlation functions evolutions and, as a result,
evolution of states (measures) on

(
Γ,B(Γ)

)
.

Theorem 3.10. Let µ0 ∈ M1
fm(Γ) and k0 = kµ0

∈ KC , C > 0 be the corresponding
correlation function on Γ0. Then for any t > 0 the solution kt of (3.14) is a correlation
function of a unique measure µt ∈ M1

fm(Γ).

Proof. By (3.18), kt is positive measurable function and kt(∅) = 1. Proposition 3.4
implies sub-Poissonian bounds for kt. Hence, for apply Theorem 3.1 we should check
(3.8) only.

By Lemma 3.9, e−tm|·|k0 = eλ(e
−tm)k0 is a positive defined function in the sense

of (3.8) (cf. [11, Corollary 3]). Clearly, this function belongs to KC . Therefore, by
Theorem 3.1, there exists a unique measure from M1

fm(Γ) whose correlation function is
eλ(e

−tm)k0.
Next, eλ

(
σ
m (1− e−tm)

)
is the correlation function of the Poisson measure with inten-

sity σ
m (1− e−tm).

By [2], Ruelle convolution of correlation functions eλ
(
σ
m (1− e−tm)

)
and eλ(e

−tm)k0
will be positive defined in the sense of (3.8) too. Hence, the assertion is followed by
Theorem 3.2. �

As it was shown in [2], the ∗-convolution of correlation functions kµ1
and kµ2

is the
correlation function of the convolution of measures µ1 and µ2, where by definition µ =



310 D. FINKELSHTEIN

µ1 ∗ µ2 is the probability measure on
(
Γ,B(Γ)

)
such that for any measurable F with

F̃ ∈ L1(Γ× Γ, dµ1 × dµ2), where

F̃ (γ1, γ2) = F (γ1 ∪ γ2), γ1,2 ∈ Γ,

the following equality holds:
∫

Γ

F (γ)dµ(γ) =

∫

Γ

∫

Γ

F (γ1 ∪ γ2) dµ1(γ1) dµ2(γ2).

Let now µ0 ∈ M1
fm(Γ) and consider weak evolution equation for measures

∂

∂t

∫

Γ

F (γ)dµt(γ) =

∫

Γ

(LF )(γ)dµt(γ)

for any F ∈ FL0(Γ) provided both parts exist and, of course, µt

∣∣
t=0

= µ0. Let νt ∈

M1
fm(Γ) be solution of a corresponding pure death evolution equation

∂

∂t

∫

Γ

F (γ)dνt(γ) = m

∫

Γ

∑

x∈γ

(
F (γ \ x)− F (γ)

)
dνt(γ)

with the same initial condition νt
∣∣
t=0

= µ0. Then, by Theorem 3.2 for the case σ = 0,

we obtain kνt
(η) = e−tm|η|k0(η). As a result,

(3.26) µt = πzt ∗ νt,

where

zt =
σ

m
(1− e−tm).

4. Ergodicity

4.1. Ergodic properties of correlation functions. We recall that a measure µinv ∈
M1

fm(Γ) is called invariant for the operator L if for any F ∈ FL0(Γ)
∫

Γ

(LF )(γ)dµinv(γ) = 0.

If kinv is the corresponding correlation function then for any G ∈ L0
ls(Γ0)

∫

Γ0

(L̂∗kinv)(η)G(η)dλ(η) =

∫

Γ0

(L̂G)(η)kinv(η)dλ(η) = 0,

and, therefore, (L̂∗kinv)(η) = 0, η ∈ Γ0. As a result, by (3.13),

m|η|kinv(η) = σ
∑

x∈η

kinv (η \ x) .

Iterating the last equation, we easily can see that it implies

(4.1) kinv(η) =
( σ

m

)|η|

= eλ

( σ

m
, η
)
.

As result, Poisson measure π σ

m
is a unique invariant measure of our evolution.

Note also that the condition k0(∅) = 1 implies that point-wisely we obtain

kt(η) =

(
σ

m

(
1− e−mt

))|η|

+
∑

ξ(η

k0(η \ ξ)e−mt|η\ξ|
( σ

m

(
1− e−mt

))|ξ|

→
( σ

m

)|η|

as t → ∞. Taking into account (4.1) and Proposition 3.4, we may expect that our non-
equilibrium dynamics are ergodic in the space KC for big enough C. In the next theorem
we explain more exact conditions for this ergodicity.
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Theorem 4.1. Let C >
σ

m
, k0 ∈ KC and k0(∅) = 1. Then

(4.2)
∥∥kt − kinv

∥∥
KC

< ‖k0 − kinv‖KC

e−mt

1−
σ

Cm

, t > 0.

Proof. First of all note that, by (4.1) and Corollary 3.4, for any C >
σ

m

{kt, t > 0; kinv} ⊂ KC .

Next, by (3.16),

kinv = eλ

( σ

m

)
= eλ

( σ

m
(1− e−mt)

)
∗ eλ

( σ

m
e−mt

)
.

Therefore,

kt(η)− kinv(η) =
∑

ξ(η

(
k0(η \ ξ)−

( σ

m

)|η\ξ|
)
e−mt|η\ξ|

( σ

m

(
1− e−mt

))|ξ|

and one can estimate

C−|η|
∣∣∣kt(η)− kinv(η)

∣∣∣(4.3)

≤C−|η|
∑

ξ(η

∣∣∣∣k0(η \ ξ)−
( σ

m

)|η\ξ|
∣∣∣∣ e

−mt|η\ξ|
( σ

m

(
1− e−mt

))|ξ|

≤‖k0 − kinv‖KC
C−|η|

∑

ξ(η

C |η\ξ|e−mt|η\ξ|
( σ

m

(
1− e−mt

))|ξ|

= ‖k0 − kinv‖KC

[(
e−mt +

σ

Cm

(
1− e−mt

))|η|

−
( σ

Cm

(
1− e−mt

))|η|
]
.

Let us recall, that e−mt + σ
Cm

(
1− e−mt

)
< 1, t > 0.

To find uniform, by |η|, estimate for the r.h.s. of (4.3) let us consider for any fixed
0 < a < b < 1, n ∈ N the difference

bn − an =(b− a)

n−1∑

j=0

ajbn−1−j < (b− a)

n−1∑

j=0

aj

=(b− a)
1− an

1− a
<

b− a

1− a
.

As result, using (4.3), obvious estimate
σ

Cm

(
1 − e−mt

)
<

σ

Cm
, t > 0, and the fact

that
1

1− a
is a strictly increasing function of a ∈ (0; 1) we obtain (4.2). �

Remark 4.2. Note that if we consider corresponding general result from [4] in the zero-
potential case and for m = 1 we obtain more weaker inequality

‖kt − kinv‖KC
≤ e−(1−ν)t‖k0 − kinv‖KC

, 1 > ν >
σ

C
.

Let Λ ∈ Bc(R
d) and denote the projection of the measure µt, t ≥ 0 on ΓΛ by µΛ

t .
Then, in the same notations, µΛ

inv = πΛ
σ/m.

Corollary 4.3. Let C >
σ

m
and A =

(
1−

σ

mC

)−1

. Then for any t > 0

(4.4)

∥∥∥∥
dµΛ

t

dλ
−

dµΛ
inv

dλ

∥∥∥∥
KC

≤ Ae−tm exp {C |Λ|} .
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Proof. Since, clearly,
∫
ΓΛ

2|η|kt(η)dλ(η) < +∞, t ≥ 0 then (see, e.g., [12])

(4.5)
dµΛ

t

dλ
(η) =

∫

ΓΛ

(−1)
|ξ|

kt (η ∪ ξ) dλ (ξ) , η ∈ ΓΛ.

Hence, by Theorem 4.1, for C > σ
m , t > 0, we have

∣∣∣∣
dµΛ

t

dλ
(η)−

dµΛ
inv

dλ
(η)

∣∣∣∣

≤

∫

ΓΛ

|kt (η ∪ ξ)− kinv (η ∪ ξ)| dλ (ξ)

=

∫

ΓΛ

|kt (η ∪ ξ)− kinv (η ∪ ξ)|

C |η∪ξ|
C |η∪ξ|dλ (ξ)

≤‖kt − kinv‖KC
C |η| exp {C |Λ|}

≤AC |η|e−tm exp {C |Λ|} ,

that proves the assertion. �

For any η ∈ Γ0, y ∈ Rd, t ≥ 0 we define

(4.6) vt(η, y) := kt(η ∪ y)− kt(η)kt(y).

Clearly, Remark 3.5 implies that if k0(η) = A|η|, A > 0 then vt(η, y) ≡ 0.
Our dynamics at moment t is said to be satisfied the decay of correlation principle if

(4.7) lim
|y|→∞

vt(η, y) = 0, η ∈ Γ0.

Next theorem shows preserving the decay of correlation principle during our dynamics.

Theorem 4.4. Let C >
σ

m
, k0(∅) = 1 and let

a(y) :=
∥∥v0(·, y)

∥∥
KC

∈ [0; ∞), y ∈ Rd.

Then
∥∥vt(·, y)

∥∥
KC

≤ a(y)e−tm, y ∈ Rd.

Proof. Let y ∈ Rd be fixed. Consider the mapping

(4.8) (DyG)(η) := G(η ∪ {y}).

By direct computations, we obtain from (3.15) that Dy is satisfied chain rule

(4.9) Dy(G1 ∗G2) = (DyG1) ∗G2 +G1 ∗ (DyG2).

Therefore,

Dy

(
eλ

( σ

m

(
etm − 1

))
∗ k0

)
=

σ

m

(
etm − 1

) (
eλ

( σ

m

(
etm − 1

))
∗ k0

)

+
(
eλ

( σ

m

(
etm − 1

))
∗ k0(· ∪ y)

)
.

Hence, using equality

(4.10) kt(y) = e−tm
(
k0 (y) +

σ

m

(
etm − 1

))
,
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we obtain

vt (η, y) = e−tm(|η|+1)Dy

(
eλ

( σ

m

(
etm − 1

))
∗ k0

)
(η)

− e−tm|η|
(
eλ

( σ

m

(
etm − 1

))
∗ k0

)
(η) kt (y)

= e−tm(|η|+1) σ

m

(
etm − 1

) (
eλ

( σ

m

(
etm − 1

))
∗ k0

)
(η)

+ e−tm(|η|+1)
(
eλ

( σ

m

(
etm − 1

))
∗ k0 (· ∪ y)

)
(η)

− e−tm(|η|+1)
(
eλ

( σ

m

(
etm − 1

))
∗ k0

)
(η)

[
k0 (y) +

σ

m

(
etm − 1

)]

= e−tm(|η|+1)
(
eλ

( σ

m

(
etm − 1

))
∗ k0 (· ∪ y)

)
(η)

− e−tm(|η|+1)k0 (y)
(
eλ

( σ

m

(
etm − 1

))
∗ k0

)
(η)

= e−tm(|η|+1)
∑

ξ⊂η

( σ

m

(
etm − 1

))|η\ξ|

v0(ξ, y).

Therefore, for any η ∈ Γ0 one has

C−|η|
∣∣vt(η, y)

∣∣ ≤C−|η|e−tm(|η|+1)
∑

ξ⊂η

( σ

m

(
etm − 1

))|η\ξ|

C |ξ|C−|ξ|
∣∣v0(ξ, y)

∣∣

≤ a(y)C−|η|e−tm(|η|+1)
∑

ξ⊂η

( σ

m

(
etm − 1

))|η\ξ|

C |ξ|

= a(y)C−|η|e−tm(|η|+1)
(
C +

σ

m

(
etm − 1

))|η|

= a (y) e−tm
(
e−tm +

σ

Cm

(
1− e−tm

))|η|

≤ a (y) e−tm.

The statement is proved. �

Remark 4.5. From the proof of the Theorem 4.4 one can see that if (4.7) holds for
t = 0 then it holds for any t > 0 as well.

Remark 4.6. More traditional object for studying decay of correlation principle is the
so-called Ursell functions (or truncated correlation functions). We recall (see [2] and
references therein) that the function ut : Γ0 → R is called Ursell function for kt if

kt = exp∗ ut :=

∞∑

n=0

1

n!
u∗n
t , u∗0 := 1∗.

The condition kt(∅) = 1 guarantees existence of ut with ut(∅) = 0 (see e.g. [2] for
details). Then, by (3.19) and [2], we obtain that ut is equal to sum of Ursell functions,
corresponding to correlation functions of measures πzt and νt from (3.26). It’s easy
to see that the Ursell function corresponding to the Poisson measure πzt is equal to

χ{|η|=1}
σ

m
(1− e−tm). Next,

e−tm|η|k0(η) = e−tm|η|
∞∑

n=1

1

n!
u∗
0(η)

= e−tm|η|
∞∑

n=1

1

n!

∑

η1⊔...⊔ηn=η
ηi 6=∅, 1≤i≤n

u(η1) . . . u(ηn)
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=

∞∑

n=1

1

n!

∑

η1⊔...⊔ηn=η
ηi 6=∅, 1≤i≤n

e−tm|η1|u(η1) . . . e
−tm|ηn|u(ηn)

= exp∗
(
e−tm|·|u0

)
(η).

Therefore,

ut(η) = e−tm|η|u0(η) + χ{|η|=1}
σ

m
(1− e−tm).

In particular, if for any n ≥ 2 the symmetric function u
(n)
0 is integrable by j variables

(1 ≤ j ≤ n− 1) then u
(n)
t has this property too.

4.2. Evolution of Bogolyubov functional. Let µ ∈ M1
fm(Γ) such that for any θ ∈

L1(Rd, dx) the following so-called Bogolyubov functional there exists:

(4.11) Bµ(θ) :=

∫

Γ

∏

x∈γ

(
1 + θ(x)

)
dµ(γ).

By (3.1) and (3.3), we have an another representation

(4.12) Bµ(θ) =

∫

Γ0

eλ(θ, η)kµ(η)dλ(η).

In particular, if there exists C > 0 such that kµ(η) ≤ const · C |η|, η ∈ Γ0 then, by (3.2)
and (3.3), the r.h.s. of (4.12) as well as (4.11) are finite.

Proposition 4.7. Let C >
σ

m
, k0 ∈ KC and k0(∅) = 1. Let Bt(θ) := Bµt

(θ), Binv(θ) :=

Bµinv
(θ). Then

∣∣Bt(θ)−Binv(θ)
∣∣ ≤ e−mt‖k0 − kinv‖KC

exp
{
C‖θ‖L1

}

1−
σ

Cm

.

Proof. First of all let us note that, by Proposition 3.4, Bt exists. Then, by Theorem 4.1,
we have

∣∣Bt(θ)−Binv(θ)
∣∣ =

∣∣∣∣
∫

Γ0

eλ(θ, η)kt(η)dλ(η)−

∫

Γ0

eλ(θ, η)kinv(η)dλ(η)

∣∣∣∣

≤

∫

Γ0

eλ(|θ|, η)
∣∣kt(η)− kinv(η)

∣∣dλ(η)

≤‖kt − kinv‖KC

∫

Γ0

eλ(|θ|, η)C
|η|dλ(η)

≤‖k0 − kinv‖KC

e−mt

1−
σ

Cm

exp
{
C‖θ‖L1

}
. �

Remark 4.8. Note that, by (3.18), we have

(4.13)

Bt (θ) =

∫

Γ0

eλ (θ, η) kt (η) dλ (η)

=

∫

Γ0

eλ (θ, η)e
−tm|η|

∫

Γ0

eλ (θ, ξ) eλ

( σ

m

(
1− e−tm

)
, ξ
)
dλ (ξ) k0 (η) dλ (η)

=

∫

Γ0

eλ (θ, ξ)eλ

( σ

m

(
1− e−tm

)
, ξ
)
dλ (ξ)

∫

Γ0

e−tm|η|eλ (θ, η) k0 (η) dλ (η)

= exp
{ σ

m

(
1− e−tm

)
〈θ〉

}
B0

(
e−tmθ

)
,

that corresponds to (3.26).
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Since, by (4.12) and (3.2), Binv(θ) = exp
{ σ

m
〈θ〉

}
, we obtain from (4.13)

(4.14)

Bt(θ)−Binv(θ)

= exp
{ σ

m

(
1− e−tm

)
〈θ〉

}(
B0

(
e−tmθ

)
− exp

{ σ

m
e−tm 〈θ〉

})

=exp
{ σ

m

(
1− e−tm

)
〈θ〉

}∫

Γ0

e−tm|η|eλ (θ, η)
(
k0 (η)− kinv(η)

)
dλ (η) .

As a result, if, e.g., k0(η) ≤
( σ

m

)|η|

= kinv(η), η ∈ Γ0 and k0(∅) = 1, then for any

0 ≤ θ ∈ L1(Rd, dx) one has

0 ≤ Binv(θ)−Bt(θ) ≤ e−tm exp
{ σ

m

(
1− e−tm

)
〈θ〉

}(
Binv(θ)−B0(θ)

)
.

One can consider now the state space where the evolution B0(θ) 7→ Bt(θ) lives. Let
E = L1(Rd, dx). We recall (see, e.g., [13] and references therein) that a functional
A : E → C is called entire on E whenever A is locally bounded and for all θ0, θ ∈ E the
mapping C ∋ z 7→ A(θ0 + zθ) ∈ C is entire. For any α > 0 we consider a Banach space
E(α) of entire functionals on E with norm

‖A‖α := sup
θ∈E

(
|A(θ)|e−α‖θ‖E

)
< ∞.

Then for any α ≥
σ

m
we have

‖Bt(θ)‖α = sup
θ∈E

(
exp

{ σ

m
(1− e−tm)〈θ〉

}
|B0(e

−tmθ)| exp{−α‖θ‖E}
)

≤‖B0(θ)‖α sup
θ∈E

(
exp

{ σ

m
(1− e−tm)‖θ‖E

}
exp

{
α(e−tm − 1)‖θ‖E

})

=‖B0(θ)‖α sup
θ∈E

(
exp

{( σ

m
− α

)
(1− e−tm)‖θ‖E

})
≤ ‖B0(θ)‖α.

Therefore, the evolution B0(θ) 7→ Bt(θ) preserves balls in E(α).

5. Evolution on LC

We recall now without a proof the partial case of the well-known lemma (cf., [17]).

Lemma 5.1. For any measurable function H : Γ0 × Γ0 × Γ0 → R

(5.1)

∫

Γ0

∑

ξ⊂η

H (ξ, η \ ξ, η) dλ (η) =

∫

Γ0

∫

Γ0

H (ξ, η, η ∪ ξ) dλ (ξ) dλ (η)

if only both sides of the equality make sense.

Next statements present explicit form for the semigroup on LC and resolvent of its
generator and show mean-ergodic properties of this semigroup (see, e.g., [1] for a termi-
nology).

Proposition 5.2. Let C ≥
σ

m
. Then for any G ∈ LC

(5.2)
(
T̂ (t)G

)
(η) = e−tm|η|

∫

Γ0

G (η ∪ ξ) eλ

( σ

m

(
1− e−tm

)
, ξ
)
dλ (ξ) .

Moreover, for any z ∈ C with Re z > 0 there exist bounded resolvent operator Rz =
(L̂− z)−1 and for any G ∈ LC

(5.3) (RzG) (η) =
1

m

∫

Γ0

G (η ∪ ξ)
( σ

m

)|ξ|

B
( z

m
+ |η| , |ξ|+ 1

)
dλ (ξ) ,
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where B(x, y) =
∫ 1

0
sx−1 (1− s)

y−1
ds is the Euler beta function.

Proof. Let C ≥
σ

m
and G ∈ LC . Then, T̂ (t)G ∈ LC and for any k ∈ KC , by Corollary 3.6

and Lemma 5.1, one has
∫

Γ0

(
T̂ (t)G

)
(η) k (η) dλ (η) =

∫

Γ0

G(η)
(
T̂ ∗(t)k

)
(η) dλ(η)

=

∫

Γ0

G (η) e−tm|η|
(
eλ

( σ

m

(
etm − 1

))
∗ k

)
(η) dλ (η)

=

∫

Γ0

∫

Γ0

G (η ∪ ξ) e−tm|η|e−tm|ξ|eλ

( σ

m

(
etm − 1

)
, ξ
)
k (η) dλ (ξ) dλ (η) ,

that implies (5.2).

Since T̂ (t) is a C0-semigroup with generator
(
L̂,D(L̂)

)
then for any z ∈ C with

Re z > 0

Rz =

∫ ∞

0

e−ztU (t) dt.

Then, by direct computation,

(RzG) (η) =

∫ ∞

0

e−zte−tm|η|

∫

Γ0

G (η ∪ ξ) eλ

( σ

m

(
1− e−tm

)
, ξ
)
dλ (ξ) dt

=

∫

Γ0

G (η ∪ ξ)
( σ

m

)|ξ|
∫ ∞

0

e−(z+m|η|)t
(
1− e−tm

)|ξ|
dtdλ (ξ) ,

and the assertion follows from (3.23). �

Theorem 5.3. Let C ≥ max
( σ

m
; 1

)
and G ∈ L2C then

1

t

∫ t

0

T̂ (s)Gds → χΓ(0) ·

∫

Γ0

G (ξ) kinv (ξ) dλ (ξ)

as t → ∞ in LC .

Proof. Using equality

1Γ(0)(η) ·

∫

Γ0

G (ξ) kinv (ξ) dλ (ξ) =

∫

Γ0

G (ξ ∪ η)
( σ

m

)|ξ|

0|η|dλ (ξ)

we have
∥∥∥∥
1

t

∫ t

0

T̂ (s)Gds− χΓ(0) ·

∫

Γ0

G (ξ)
( σ

m

)|ξ|

dλ (ξ)

∥∥∥∥
LC

≤

∫

Γ0

∫

Γ0

|G (η ∪ ξ)|
( σ

m

)|ξ|
∣∣∣∣
1

t

∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds− 0|η|

∣∣∣∣C
|η|dλ (ξ) dλ (η) .

We have

1

t

∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds

=

|ξ|∑

j=0

(
|ξ|

j

)
(−1)

j 1

t

∫ t

0

e−sm(|η|+j)ds

=





|ξ|∑

j=0

(
|ξ|

j

)
(−1)

j 1

t

1− e−tm(|η|+j)

m (|η|+ j)
, |η| 6= 0,

1 +

|ξ|∑

j=1

(
|ξ|

j

)
(−1)

j 1

t

1− e−tmj

mj
, |η| = 0.



FUNCTIONAL EVOLUTIONS FOR DEATH-IMMIGRATION DYNAMICS 317

Therefore, for any ξ, η ∈ Γ0

1

t

∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds → 0|η|, t → ∞.

Using trivial estimate

∣∣∣∣
1

t

∫ t

0

e−sm|η|
(
1− e−sm

)|ξ|
ds− 0|η|

∣∣∣∣ ≤ 1 we obtain the asser-

tion by the dominated convergence theorem since
∫

Γ0

∫

Γ0

|G (η ∪ ξ)|
( σ

m

)|ξ|

C |η|dλ (ξ) dλ (η)

=

∫

Γ0

|G (η)|
(
1 +

σ

Cm

)|η|

C |η|dλ (η)

≤

∫

Γ0

|G (η)| 2|η|C |η|dλ (η) = ‖G‖2C < +∞.

The statement is proved. �
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