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ON INFINITESIMAL STRUCTURE OF A HYPERGROUP THAT

ORIGINATES FROM A LIE GROUP

A. A. KALYUZHNYI, G. B. PODKOLZIN, AND YU. A. CHAPOVSKY

Abstract. We describe an infinitesimal algebra to a hypergroup constructed from a
Lie group and a conditional expectation. We also prove a theorem on a decomposition

of the conditional expectation into the product of a counital conditional expectation
and the one that arises in the double coset construction.

1. Introduction

The notion of a locally compact hypergroup is a generalization of that of a group and
allows to carry main results of the harmonic analysis on a group to this more general
object [1, 2, 3]. However an attempt to construct, for a hypergroup, a theory similar
to the Lie theory, as in the case of a Lie group, meets a number of difficulties. It turns
out that a hypergroup obtained from a Lie group may not be a manifold, the relations
that the generators of the hypergroup satisfy may not be of Lie type, and the generators
themselves may not be differential operators.

A construction of a Lie theory for generalized translation operators was initiated by
Delsart [4] and Levitan [5]. The latter author studied the case where the generators
satisfied Lie type relations. Some classes of hypergroups where the generators satisfied
relations more general than Lie type relations were studied in [6, 7, 8].

In this paper, we describe an infinitesimal algebra for a hypergroup, constructed from
a Lie group and a conditional expectation [9]. Such a hypergroup generalizes the one
constructed in [10] from an orbital morphism. The main instrument we use is that of a
conditional expectation on a C∗-algebra of continuous functions on a Lie group. There
are two essentially different cases arise. The one corresponds to a so-called counital
conditional expectation, see Definition 3.3, and the other one to a conditional expectation
connected with a double coset construction, Remark 2.2. In both cases, we describe the
infinitesimal algebra in terms of the universal enveloping algebra of the Lie group.

The paper is organized as follows. In Section 2 we recall some definitions and set forth
the notation used in the paper.

Section 3 discusses constructing a new locally compact hypegroup with a use of a
conditional expectation, and contains a theorem on the structure of this hypergroup. We
also recall the connection between an orbital morphism and the corresponding conditional
expectation.

Section 4 describes the differential structure on a locally compact hypergroup obtained
from a Lie group and a conditional expectation, where two cases of the expectation being
counital and not are treated.
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2. Initial definitions and notations

Let Q be a locally compact second countable Hausdorff topological space.
The spaces of complex-valued functions that are continuous, continuous and bounded,

continuous with compact supports, continuous and equal to zero at infinity are denoted
by C(Q), Cb(Q), Cc(Q), C0(Q), respectively. For f ∈ Cc(Q), supp f denotes support of
the function f . The linear spaces C0(Q) and Cb(Q) have the structure of a C∗-algebra
with respect to the pointwise multiplication and complex conjugation, endowed with the
norm ‖f‖ = supr∈Q|f(r)| for f ∈ Cb(Q) or f ∈ C0(Q).

Everywhere in the sequel a measure will mean a Radon measure on Q [11]. The
integral of f , f ∈ Cc(Q), with respect to a measure µ is denoted by µ(f) =

∫

Q
f(p) dµ(p).

The Dirac measure at a point q ∈ Q is denoted by εq, i.e., εq(f) = f(q), f ∈ C(Q).

Let A be a C∗-algebra and B ⊂ A a C∗-subalgebra of A. A bounded linear map
P : A → B is called a conditional expectation if it satisfies the following properties [12]:

(i) P is a projection onto and has norm 1, that is, P 2 = P and ‖P‖ = 1;
(ii) P is positive, that is P (a∗a) ≥ 0 for any a ∈ A;
(iii) P (b1ab2) = b1P (a)b2 for any a ∈ A and b1, b2 ∈ B;
(iv) P (a∗)P (a) ≤ P (a∗a) for all a ∈ A.

It follows from (ii) and the polarization identity that

(v) P (a∗) = P (a)∗, a ∈ A.

It also follows from [13] that (i) implies (ii), (iii), and (iv).

Now we recall the definition of a locally compact hypergroup, see [1, Definition 2.1].

Definition 2.1. Let Q be a locally compact space with an involutive homeomorphism
∗ : Q → Q and a point e ∈ Q, e∗ = e, and let the following conditions be satisfied.

(H1) There is a C-linear mapping ∆: Cb(Q) → Cb(Q×Q) such that
(a) ∆ is coassociative, that is,

(1) (∆× id) ◦∆ = (id×∆) ◦∆;

(b) ∆ is positive, that is, ∆f ≥ 0 for all f ∈ Cb(Q) such that f ≥ 0;
(c) ∆ preserves the identity, that is, (∆1)(p, q) = 1, for all p, q ∈ Q;
(d) for all f, g ∈ Cc(Q), we have (1⊗ f) · (∆g) ∈ Cc(Q×Q) and (f ⊗ 1) · (∆g) ∈

Cc(Q×Q).
(H2) The homomorphism ǫ : Cb(Q) → C defined on the C∗-algebra Cb(Q) by ǫ(f) =

f(e) satisfies the counit property, that is,

(2) (ǫ× id) ◦∆ = (id× ǫ) ◦∆ = id,

in other words, (∆f)(e, p) = (∆f)(p, e) = f(p) for all p ∈ Q.
(H3) The function f̌ defined by f̌(q) = f(q∗) for f ∈ Cb(Q) satisfies

(3) (∆f̌)(p, q) = (∆f)(q∗, p∗).

(H4) There exists a positive measure µ on Q, suppµ = Q, such that

(4)

∫

Q

(∆f)(p, q) g(q) dµ (q) =

∫

Q

f(q) (∆g)(p∗, q) dµ (q)

for all f ∈ Cb(Q) and g ∈ Cc(Q), or f ∈ Cc(Q) and g ∈ Cb(Q), p ∈ Q.

Then (Q, ∗, e,∆, µ ), or simply Q, is called a locally compact hypergroup.

The measure µ will be called a left Haar measure on Q.
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Remark 2.2. If G is a locally compact group, then it is a locally compact hypergroup
with respect to the following operations:

(5) ∆(f)(p, q) = f(p · q), ǫ(f) = f(e), q∗ = q−1

for all p, q ∈ G, with ·, e, and −1 being the multiplication, the unit, and the operation
of taking the inverse in the group G, correspondingly. The measure µ is a left invariant
measure on G.

3. A hypergroup constructed from a conditional expectation

Let (Q, ∗, e,∆, µ ) be a locally compact hypergroup, A denote the C∗-algebra Cb(Q),
A0 its C∗-subalgebra C0(Q), and let I be the ideal of A consisting of functions with
compact support.

Theorem 3.1. Let A be as above, P : A → A be a conditional expectation such that
B = P (A0) is a C∗-algebra, P (I) ⊂ I, and let the following hold:

(6)

(

(P × id) ◦∆ ◦ P
)

(f) =
(

(id× P ) ◦∆ ◦ P
)

(f) =
(

(P × P ) ◦∆
)

(f),

P (f̌) =
(

P (f)
)

,̌

for all f ∈ A.
Denote by Q̃ the spectrum of the commutative algebra B, which is a Hausdorff locally

compact space. For each g ∈ B ⊂ A, let

(7) ∆̃(g) =
(

(P × P ) ◦∆
)

(g).

If q̃ ∈ Q̃ and g ∈ B, then we set

(8) q̃∗(g) = ǧ(q), ẽ = ǫ,

and let µ̃ be defined by

(9) µ̃ = µ ◦ P.

Then (Q̃, ∗, ẽ, ∆̃, µ̃ ) is a locally compact hypergroup.

Proof. (H1) (a). Using (7) and property (6) we have

(∆̃× id) ◦ ∆̃ = (P × P × id) ◦ (∆× id) ◦ (P × P ) ◦∆ = (P × P × P ) ◦ (∆× id) ◦∆.

On the other hand,

(id× ∆̃) ◦ ∆̃ = (id× P × P ) ◦ (id×∆) ◦ (P × P ) ◦∆ = (P × P × P ) ◦ (id×∆) ◦∆.

Now, the result follows from coassociativity of ∆.

(H1) (b) is trivial, since ∆ and P are positive.

(H1) (c). The identity in B is 1̃ = P (1). Indeed, P (1) · P (f) = P (1 · f) = P (f) for
any P (f) ∈ B. By writing property (H1) (c) as ∆(1) = 1⊗ 1, we get

∆̃(1̃) =
(

(P⊗P )◦∆
)

(1̃) =
(

(P⊗P )◦∆◦P
)

(1) =
(

(P⊗P )◦∆
)

(1) = (P⊗P )(1⊗1) = 1̃⊗1̃.

(H1) (d). For f, g ∈ Cc(Q̃)) ⊂ Cc(Q), we have

(1⊗ f) · (∆̃(g)) = (1⊗ f) ·
(

(P ⊗ P ) ◦∆(g)
)

= (id⊗ P )
(

(1⊗ f) ·∆(g)
)

.

Since (1⊗ f) ·∆(g) ∈ Cc(Q×Q), the result follows.

(H2). For f ∈ B, we have

(ǫ× id) ◦ ∆̃(f) = (ǫ× id) ◦ (P × P ) ◦∆(P (f)) = (ǫ× P ) ◦∆(P (f)) = P (P (f)) = f.
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(H3). First note that ǧ ∈ B for g ∈ B, since P (ǧ) = P (g)̌ = ǧ by (6). Now,

(∆̃f̌)(p, q) =
(

(P × P ) ◦∆f̌
)

(p, q) =
(

(P × P ) ◦ (∨ × ∨) ◦∆
)

(f)(q, p)

=
(

(P × P ) ◦∆
)

(f)(q∗, p∗) = (∆̃f)(q∗, p∗)

for p, q ∈ Q̃, f ∈ B.

(H4). Let us rewrite identity (4) as

(id× µ̃ )
(

∆̃(f) · (1⊗ g)
)

= (id× µ̃ )
(

(1⊗ f) · ((∨ × id) ◦ ∆̃(g))
)

.

Consider the left-hand side and substitute the definitions of µ̃ and ∆̃,

(id× µ ◦ P )
(

((P × P ) ◦∆(Pf)) · (1⊗ Pg)
)

= (id× µ )
(

(id× P ) ◦∆(Pf) · (1⊗ Pg)
)

= (id× µ )
(

(P × id) ◦∆(Pf) · (1⊗ Pg)
)

= P
(

(id× µ )(∆(Pf) · (1⊗ Pg))
)

.

Now using (4) we get

P
(

(id× µ )(∆(Pf) · (1⊗ Pg))
)

= P
(

(id× µ )((1⊗ Pf) · (∨ × id) ◦∆(Pg))
)

= (id× µ )
(

(1⊗ Pf) · (∨ ◦ P × id) ◦∆(Pg)
)

= (id× µ )
(

(1⊗ Pf) · (∨ ◦ P × P ) ◦∆(Pg)
)

= (id× µ ◦ P )
(

(1⊗ Pf) · (∨ × P ) ◦∆(pg)
)

= (id× µ̃ )
(

(1⊗ Pf) · (∨ × id) ◦ ∆̃(Pg)
)

.

�

Remark 3.2. The statement of Theorem 3.1 remains true [9] if we replace the first condi-
tion in (6) with the following two more general conditions: 1) (P×P )◦∆ = (P×P )◦∆◦P ,

and 2) ǫ is a counit with respect to ∆̃ = (P × P ) ◦∆.

Definition 3.3. Let Q be a locally compact hypergroup. A conditional expectation P
is called counital if ǫ ◦ P = ǫ on A.

Remark 3.4. Let G be a locally compact group and H its compact subgroup. Let A
denote the C∗-algebra Cb(Q). A function f ∈ A is calledH-biinvariant if f(h1gh2) = f(g)
for all g ∈ G, h1, h2 ∈ H. Then P : A → A defined by

(10) (Pf)(g) =

∫

H2

f(h1gh2) dµH(h1) dµH(h2), g ∈ G,

where µH is the normalized Haar measure on H, is a conditional expectation on A
satisfying all conditions of Theorem 3.1. The corresponding comultiplication ∆̃ is given
by

(∆̃f)(g1, g2) =

∫

H

f(g1, hg2) dµH(h), g1, g2 ∈ G,

and Q̃ = H\G/H is the double coset hypergroup [14]. Since

(ǫ ◦ P )(f) =

∫

H

f(h) dµ(h),

the conditional expectation P is not counital.

Lemma 3.5. Let G be a locally compact group with a locally compact hypergroup structure
as in Remark 2.2, A = Cb(G), and A0 = C0(G). Let P : A → A be a conditional
expectation satisfying (6). Denote ǫ̃ = ǫ ◦ P . Assume that ǫ̃(A0) 6= {0} and P (A0) is a
C∗-subalgebra of A0. Define mappings P l, P r : A → A by

(11) P l = (ǫ̃× id) ◦∆, P r = (id× ǫ̃) ◦∆.
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Then P l(Cc(G)) ⊂ Cc(G), P r(Cc(G)) ⊂ Cc(G) and

P l ◦ P l = P l, P r ◦ P r = P r,(12)

P l ◦ P r = P r ◦ P l,(13)

P ◦ P l = P l ◦ P = P ◦ P r = P r ◦ P = P.(14)

In particular, P l and P r are conditional expectations on A0.

Proof. First, let us show that P l(A0) ⊂ A0. Indeed, since ǫ̃(A0) 6= {0}, we have that
ǫ̃(Cc(G)) 6= {0}. Let g ∈ Cc(G) be such that P (g) = g and ǫ(g) = 1. Then, for any
f ∈ Cc(G), we have

P l(f) = (ǫ̃× id) ◦∆(f) = (ǫ̃(g)⊗ 1) · (ǫ̃× id) ◦∆(f) = (ǫ̃× id)
(

(g ⊗ 1) ·∆(f)
)

.

Since (g⊗ 1) ·∆(f) ∈ Cc(G×G) for f, g ∈ Cc(G), the claim follows. In the same way, we
prove that P r(A0) ⊂ A0.

Let us prove the first identity in (12). We have

P l ◦ P l = (ǫ̃× id) ◦∆ ◦ (ǫ̃× id) ◦∆

= (ǫ ◦ P × ǫ ◦ P × id) ◦ (∆× id) ◦∆ = (ǫ ◦ P × ǫ× id) ◦ (∆ ◦ P × id) ◦∆

= (ǫ ◦ P ◦ P × id) ◦∆ = (ǫ ◦ P × id) ◦∆ = P l.

The second identity in (12) is proved similarly.
Consider now identity (13). We have

P l ◦ P r = (ǫ̃× id) ◦∆ ◦ (id× ǫ̃) ◦∆ = (ǫ̃× id× ǫ̃) ◦ (∆× id) ◦∆.

On the other hand,

P r ◦ P l = (id× ǫ̃) ◦∆ ◦ (ǫ̃× id) ◦∆ = (ǫ̃× id× ǫ̃) ◦ (id×∆) ◦∆,

hence, identity (13) follows from coassociativity of ∆, see condition (1).
To prove (14), consider

P ◦ P l = (ǫ ◦ P × P ) ◦∆ = (ǫ× P ) ◦∆ ◦ P = P ◦ P = P.

The other identities in (14) are proved similarly.
Finally, since ∆ and ǫ are C∗-homomorphisms, P is a conditional expectation, their

composition has C∗-norm 1 and thus, by [12], P l and P r are conditional expectations. �

Corollary 3.6. Let P be as in Lemma 3.5. Then

(ǫ̃× ǫ̃)
(

(1⊗ a) ·∆(f)
)

= (ǫ̃× ǫ̃)
(

∆(f) · (1⊗ a)
)

= ǫ̃(a) · ǫ̃(f),(15)

(ǫ̃× ǫ̃)
(

(a⊗ 1) ·∆(f)
)

= (ǫ̃× ǫ̃)
(

∆(f) · (a⊗ 1)
)

= ǫ̃(a) · ǫ̃(f)(16)

for all a, f ∈ A0.

Proof. Note that

ǫ ◦ P l = ǫ(ǫ̃× id) ◦∆ = (ǫ̃× ǫ) ◦∆ = ǫ̃.

Since P l is a conditional expectation, P l(aP l(f)) = P l(a)P l(f). Hence, applying ǫ to
both sides, we get ǫ̃(aP l(f)) = ǫ̃(a) · ǫ̃(f), or

(ǫ̃× ǫ̃)
(

(1⊗ a) ·∆(f)
)

= ǫ̃(a) · ǫ̃(b).

This proves the first part of (15).
Considering the identity P l(P l(a)f) = P l(a)P l(b) and applying ǫ to both sides we get

the second identity in (15).
Identity (16) is proved similarly. �
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Proposition 3.7. Let G be a locally compact group, ∆, ǫ be given by (5), A = Cb(Q),
and P : A → A be a conditional expectation satisfying the conditions of Theorem 3.1 and
such that ǫ ◦ P (A0) 6= {0}. Then there exists a compact subgroup H of G such that

(17) P l(A0) = H\A0, P r(A0) = A0/H,

where H \A0 (resp. A0/H) is a C∗-subalgebra of A0 of H-left invariant (resp. H-right
invariant) functions on G tending to zero at infinity.

Moreover, the measure µH given, for any f ∈ C0(G), by µH(f ↾H) = ǫ̃(f) is a normal-
ized Haar measure on H and the expectations P l and P r are given by

(18) P l(f) =

∫

H

f(hg) dµH(h), P r(f) =

∫

H

f(gh) dµH(h).

Proof. Let
J = {f ∈ A0 : (ǫ ◦ P )(|f |2) = 0}.

The linear functional ǫ ◦ P on A0 is positive, hence J is an ideal [15]. Let B0 = A0/J
and π : A0 → B0 be the corresponding map onto the quotient C∗-algebra B. Denote
H = specB0, the spectrum of B0 [15]. Since π is a C∗-algebra homomorphism,

H = specB0 ⊆ specA0 = G.

Also, by the definition, h ∈ H if and only if f(h) = 0 for all f ∈ J .
Let us show that H is a subgroup of G. Indeed, let f ∈ J and h1, h2 ∈ H. Then

f(h1h2) = ∆f(h1, h2). Hence, h1h2 ∈ H if and only if (ǫ ◦ P × ǫ ◦ P )∆f = 0 if f ∈ J .
But using the first identity in (6) we get

(

(ǫ ◦ P × ǫ ◦ P ) ◦∆
)

(f) =
(

(ǫ ◦ P × ǫ) ◦∆ ◦ P
)

(f) = (ǫ ◦ P )(Pg) = (ǫ ◦ P )(f) = 0.

In the same way, the second identity in (6) yields get that h−1 ∈ H if h ∈ H. Hence, H
is a subgroup of G.

To show that P l(A0) = H\A0, let us first prove that ImP l ⊂ H\A0. SinceH = supp ǫ̃,
for an arbitrary h ∈ H, choose a sequence en ∈ A0 such that ǫ̃(en) = 1 and ǫ̃(enf) → f(h)
for any f ∈ A0. Then f ∈ H \ A0 if, for all h ∈ H, f(hg) = (∆f)(h, g) = f(g). If
f ∈ ImP l, then f = P l(f) and

(ǫ̃× id)
(

(en ⊗ 1) ·∆(P l(f))
)

= (ǫ̃× id)
(

(en ⊗ 1) · (ǫ̃× id× id) ◦ (id×∆) ◦∆(f)
)

= (ǫ̃× ǫ̃× id)
(

(1⊗ en ⊗ 1) · ((∆× id) ◦∆)(f)
)

= ǫ̃(en) · (ǫ̃× id) ◦∆(f) = P l(f) = f,

where we used identity (15).
To show that ImP l ⊃ H\ A0, let f ∈ H\ A0, that is f(hg) = f(g) for all h ∈ H and

g ∈ G or, which is the same thing, (π × id) ◦ ∆f = 1 ⊗ f . Since supp ǫ̃ = H, we have
that ǫ̃ ◦ π = ǫ̃ and, hence,

P l(f) =
(

(ǫ̃× id) ◦∆
)

(f) =
(

(ǫ̃ ◦ π × id) ◦∆
)

(f) = (ǫ̃× id)(1⊗ f) = f.

The second equality in (17) is proved similarly.
If ν is any Radon measure on H, then

(µH ∗ ν)(f) = (ǫ̃× ν) ◦∆(f) = ν(P l(f)) = ν(1)ǫ̃(f),

hence ǫ̃ is a left-invariant measure. Since ǫ̃(1) = 1, the group H is compact and µH is
the normalized Haar measure.

Formulas (18) are immediate. �

Theorem 3.8. Let G be a group, P : A → A a conditional expectation satisfying the
conditions of Proposition 3.7. Then there is a conditional expectation P2 : H \ A/H →
H\A/H such that P = P2 ◦ P1, where P1 = P l ◦ P r defined by (18) and P2 is counital.
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Proof. By Lemma 3.5, P1 ◦ P = P , hence P factors through P1, that is, P = P2 ◦ P1,
where P2 is defined by P2(f) = P (f) for any f ∈ H\ A/H. Thus we only need to show
that P2 is counital. But this is immediate, since the counit on H\A/H is ǫ̃ = ǫ ◦ P and
ǫ̃ ◦ P2 = ǫ ◦ P ◦ P = ǫ ◦ P = ǫ̃. �

3.1. The connection between conditional expectations and orbital morphisms.

In what follows we discuss conditional expectations on usual hypergroups and a con-
struction of orbital morphisms [10]. For simplicity, we consider only the case of compact
hypergroups. Let Q be a compact DJS-hypergroup with involution Q ∋ p 7→ p∗ ∈ Q,
comultiplication ∆ : C(Q) → C(Q×Q), a neutral element (counit) e, and a Haar mea-
sure µ, and let Y be a compact Hausdorff space. Let φ be an open continuous mapping
from Q onto Y (the orbital mapping). The closed sets φ−1(y), y ∈ Y , are called φ-orbits.
Let B be a C∗-subalgebra of C(Q) consisting of functions constant on φ-orbits. Obvi-
ously, a mapping φ : C(Y ) → B defined by (φf)(x) = f(φ(x)) is an isomorphism of
the C∗-algebras. Denote by φ∗ : M(Q) → M(Y ) the corresponding mapping of Radon
measures, 〈φ∗(µ), f〉 = 〈µ, f ◦ φ〉, µ ∈ M(Q), f ∈ C(Y ). The measure µ ∈ M(Q) is
called φ-consistent, if φ∗(µ ∗ ν) = 0 = φ∗(ν ∗ µ) whenever φ∗(ν) = 0.

The following proposition clarifies the concept of φ-consistency.

Proposition 3.9. Let φ : Q → Y be an orbital mapping and denote ẽ = φ(e). Suppose
that the following conditions are satisfied:

(a) φ−1(ẽ) = {e},
(b) if A is an φ-orbit then so is A∗,
(c) for any y ∈ Y there exists a probability measure qy ∈ M(Q) such that supp qy ⊂

φ−1(y),
(d) each measure qy is φ-consistent.

Define the linear mapping P : C(Q) → B as follows:

(19) (Pf)(x) =
〈

qφ(x), f
〉

.

Then P is a conditional expectation and satisfies all hypothesis of Remark 3.2. Con-
versely, if conditions (a)–(c) are satisfied and the linear mapping P defined by (19) is
a conditional expectation from C(Q) to B satisfying all hypothesis of Remark 3.2, then
each qy is φ-consistent.

Proof. In virtue of (b) we can define an involutive homeomorphism ∗ : Y → Y as follows:
if y = φ(x), then y∗ = φ(x∗). Theorem 13.5A in [10] states that there exists a unique
convolution ∗ in M(Y ) such that Y is a DJS-hypergroup and φ is an orbital morphism,
i.e.,

(i) δy ∗ δz = φ∗(qy ∗ qz) for any y, z ∈ Y ,
(ii) qy∗ = (qy)

∗,
(iii) supp qy = φ−1(y) and

(20) m =

∫

Q

qφ(x)m(dx),

where m is a Haar measure on the hypergroup Q.

Thus we can define a mapping φ∗ : M(Y ) → M(Q) by setting φ∗(δy) = qy and

φ∗(ν) =

∫

Y

qz ν(dz),

for y ∈ Y and ν ∈ M(Y ). In virtue of Lemma 13.6A in [10] the orbital morphism φ
is consistent, i.e., the mapping φ∗ is a ∗-homomorphism. It also follows from the proof
of Theorem 13.5A cited above that the mapping Y ∋ y 7→ qy ∈ M(q) is continuous in
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the weak topology. Thus P is well-defined and is, indeed, a conditional expectation. Let
f ∈ kerP . Then 〈qz, f〉 = 0 for all z ∈ Y , and for x1, x2 ∈ Q we have

((P ⊗ P )∆f)(x1, x2) =
〈

qφ(x1) ⊗ qφ(x2),∆f
〉

=
〈

qφ(x1) ∗ qφ(x2), f
〉

=
〈

φ∗(δφ(x1)) ∗ φ
∗(δφ(x2)), f

〉

=
〈

φ∗(δφ(x1) ∗ δφ(x2)), f
〉

=

∫

Y

〈qz, f〉 (δφ(x1) ∗ δφ(x2))(dz)

=

∫

Y

(Pf)(φ(x)) (δφ(x1) ∗ δφ(x2))(dz) = 0,

where x ∈ φ−1(z). Hence, kerP is a coideal. In virtue of (iii), P is m-invariant and it
follows from (a) that P is counital. At last, the equality P ◦ ∗ = ∗ ◦ P follows from (b).

Let us prove the converse statement. Define the convolution in M(Y ) according to (i).
Since B is isomorfic to C(Y ), it follows from Theorem 2.1 that Y is a DJS-hypergroup.
To prove the result, we need to show that φ is a consistent orbital morphism. Then
the result follows from Theorem 13.6B in [10]. Indeed, (ii) follows from (b) and equality
(20) follows from the fact that P is m-invariant. Let us show that supp qy = φ−1(y).
Suppose that x0 ∈ φ−1(y) and x0 6∈ supp qy. Then there exists an open neighborhood
Ox0

of x0 such that Ox0
∩ supp qy = ∅. Let f ∈ C(Q) be a positive function such that

f(x0) = 0 and f(x) = 1 for x ∈ Q\Ox0
. Since Pf ∈ C(Q) and (Pf)(x0) = 〈qy, f〉 = 1,

one can find, for an arbitrary 0 < ε < 1/2, an open neighborhood V ⊂ Ox0
of x0 such

that f(x) < ǫ and (Pf)(x) > 1− ε for x ∈ V . Denote by iV the indicator of V . Since

〈

qφ(x), iV f
〉

=

∫

V

f(t)qφ(x)(dt) ≥ (1− ε)qφ(x)(V ),

we have, by using (20),

εm(V ) ≥

∫

V

f(x)m(dx) =

∫

Q

〈

qφ(x), iV f
〉

m(dx)

≥ (1− ε)

∫

Q

qφ(x)(V )m(dx) = (1− ε)m(V ).

Since m is positive on open sets, we have that supp qy = φ−1(y). The fact that the
orbital morphism φ is consistent follows from the following fact: Let P be a conditional
expectation satisfying all hypotesis of the Remark 3.2. Denote P ′ : A′ → A′ as follows
< Pξ, f >=< ξ, Pf >. Then P ′ is a ∗-homomorphism. �

4. Differential structure on the hypergroup constructed from a Lie
group and a conditional expectation

Let G be a Lie group. We regard it with the structure of a locally compact hypergroup
as in Remark 2.2. By A∞ = C∞(G), we denote the algebra of infinitely differentiable
functions on G, g denotes the Lie algebra of G, and U(g) denotes the universal enveloping
algebra of g. We regard U(g) as a linear space spanned by the left invariant differential
operators Xα on A∞, where α = (α1, . . . , αm) ∈ N

m and

(Xαf)(g) = ∂α1

t
α1

1

. . . ∂αm

t
αm

m

f(get1X1 . . . etmXm)
∣

∣

t1=···=tm=0
, X1, . . . , Xm ∈ g.

The universal enveloping algebra is considered with a Hopf algebra structure,
(U(g),∆′, ǫ′, S) [16], where ∆′ : U(g) → U(g)⊗U(g), S : U(g) → U(g), and ǫ′ : U(g) → C

are given on g by

(21) ∆′X = 1⊗X +X ⊗ 1, S(X) = −X, ǫ′(X) = 0, (X ∈ g),
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and then extended, correspondingly, to U(g). For Xα ∈ U(g) and f ∈ A∞, 〈Xα, f〉
denotes the evaluation (Xαf)(e). It is well known [16] that

(22) 〈XαY β , f〉 = 〈Xα ⊗ Y β ,∆(f)〉,

where Xα, Y β ∈ U(g), f ∈ C∞.
We can also identify U(g) with the algebra of distributions having support in {e} with

convolution as the product [17].
Let P be a conditional expectation on the C∗-algebra A0 satisfying the conditions of

Theorem 3.1. Assuming that P gives rise to a continuous mapping P : A∞ → A∞ and
following [18], one can define right generators Xα

Q, α ∈ N
m, of the hypergroup Q acting

on functions in P (A∞) as follows:

(23) (Xα
Qf)(g) = Dα

h (∆̃f)(g, h)
∣

∣

h=e
=

(

(id× ǫ) ◦ (id×Dα) ◦ ∆̃
)

(f)(g), f ∈ P (A∞).

The algebra B generated by all right generators is called an infinitesimal algebra of the
hypergroup Q.

The main purpose of this section is to give a description of the algebra B. As follows
from Theorem 3.8, it is sufficient to consider the case where the conditional expectation
P is counital and the case of a double coset hypergroup, that is, where P = P l ◦ P r as
in Theorem 3.8.

4.1. The case of a counital conditional expectation. Let P be counital. Every-
where in this subsection, we also assume that P satisfies the following condition:

(B) if e /∈ supp f for f ∈ C∞

0 (G), then e /∈ suppP (f).

Condition (B) is satisfied for counital conditional expectations constructed from counital
orbital morphisms and, in particular, for expectations related to the Delsart construction,
see Proposition 4.2.

Lemma 4.1. Let P ′ : U(g) → U(g) be defined by

(24) 〈P ′(Xα), f〉 = 〈Xα, P (f)〉, Xα ∈ U(g), f ∈ A∞.

Then P ′ satisfies the following:

P ′ ◦ P ′ = P ′,(25)

P ′
(

P ′(Xα)XβP ′(Xγ)
)

= P ′(Xα)P ′(Xβ)P ′(Xγ), Xα, Xβ , Xγ ∈ U(g),(26)

(P ′ ⊗ id) ◦∆′ ◦ P ′ = (P ′ ⊗ P ′) ◦∆′ = (id⊗ P ′) ◦∆′ ◦ P ′.(27)

Proof. First of all, let us show that P ′ is well defined. It is clear that P ′(Xα) is a
distributions for Xα ∈ U(g). Let us show that suppP ′(Xα) = {e}. Let g 6= e. Choose a
neighborhood Ug of the point g such that e /∈ Ug. Then, for all f ∈ A∞ such that supp f ⊂
Ug, we have that e /∈ suppP (f) by condition (B). Then 〈P ′(Xα), f〉 = 〈Xα, P (f)〉 = 0,
hence e /∈ suppP ′(Xα), and P ′(Xα) ∈ U(g).

Property (25) directly follows from P 2 = P .
Let us prove (26). Let Xα, Xβ , Xγ ∈ U(g) and f ∈ A∞. Using (6) we get

〈

P ′
(

P ′(Xα)XβP ′(Xγ)
)

, f
〉

= 〈P ′(Xα)XβP ′(Xγ), P (f)〉

=
〈

P ′(Xα)⊗Xβ ⊗ P ′(Xγ),
(

(∆× id) ◦∆
)(

P (f)
)〉

=
〈

Xα ⊗Xβ ⊗Xγ ,
(

(P × P × P ) ◦ (∆× id) ◦∆
)

(f)
〉

= 〈P ′(Xα)⊗ P ′(Xβ)⊗ P ′(Xγ), f〉,

which proves (26).
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Finally, consider (27). For Xα ∈ U(g) and f1, f2 ∈ A∞, we have

〈(

(P ′ ⊗ id) ◦∆′
)

(P ′(Xα)), f1 ⊗ f2
〉

= 〈P ′(Xα), P (f1)f2〉

= 〈Xα, P (P (f1)f2)〉 = 〈Xα, P (f1)P (f2)〉

=
〈(

(P ′ ⊗ P ′) ◦∆′
)

(Xα), f1 ⊗ f2〉.

the second identity in (27) is proved similarly. �

Proposition 4.2. Let φ : G → Q be a counital orbital morphism from a Lie group G to
hypergroup a Q and (Pf)(g) =< qφ(g), f > be the corresponding conditional expectation.
Then the condition (B) is satisfied.

Proof. It is sufficient to prove that supp (P ′Xα) = {e}. Let g 6= e. Then there exists
an open neighborhood Ug of g such that e /∈ Ug and for all functions f ∈ C∞

0 (Ug) we
have that e /∈ supp (Pf). Indeed, since φ is an open continuous mapping, φ(Ug) is open
set. Therefore supp (Pf) ⊂ φ(Ug). But φ(e) /∈ φ(Ug) since φ−1(φ(e)) = {e}. Therefore,
e /∈ supp(Pf). �

Denote A = P ′(U(g)). It follows from (26), (27) that A is a subalgebra of U(g).

Moreover, there is a comultiplication ∆̃′ defined by

(28) ∆̃′ = (P ′ ⊗ P ′) ◦∆′.

Theorem 4.3. The algebra A is isomorphic to the infinitesimal algebra B of the hyper-
group Q.

Proof. Let f ∈ A∞, Xα ∈ U(g), and g ∈ G. Then

(Xα
Qf)(g) =

(

(id⊗ ǫ) ◦ (id⊗Dα) ◦ (P ⊗ P ) ◦∆
)

(f)(g)

=
(

(id⊗ ǫ ◦ P ) ◦ (id⊗Dα) ◦ (P ⊗ id) ◦∆ ◦ P (f)
)

(g)

=
(

(P ⊗ ǫ) ◦ (1⊗Dα) ◦∆
)

(Pf)(g) =
(

P (Xα(Pf))
)

(g).

Hence, the generators of the hypergroup Q and generators of the group G are related via

(29) Xα
Q = P ◦Xα ◦ P.

Identity (29) permits to define a linear map λ : B → A by

(30) λ(Xα
Q) = P ′(Xα).

It is clear that the map λ is invertible. Let us show that it is a homomorphism. Note
that

Xα
QX

β
Q = (id⊗ ε)(id⊗Dα)(P ⊗ P )∆(id⊗ ε)(id⊗Dβ)(P ⊗ P )∆

= (id⊗ ε⊗ ε)(id⊗Dα ⊗ id)(P ⊗ id⊗ id)(∆ ◦ P ⊗ id)(P ⊗Dβ)∆ ◦ P

= (P ⊗ ε⊗ ε)(id⊗Dα ⊗Dβ)(∆ ◦ P ⊗ id)∆ ◦ P

= (P ⊗ ε)(id⊗Dα)∆ ◦ P (id⊗ ε)(id⊗Dβ)∆ ◦ P.

Hence, Xα
QX

β
Q = PXαPXβP . Therefore

λ(Xα
QX

β
Q) = P ′(Xα(P ′(Xβ))) = P ′(Xα)P ′(Xβ) = λ(Xα

Q)λ(X
β
Q),

i.e. λ is a homomorphism. �
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4.2. The case where the conditional expectation is defined by the double coset

construction. Here B still denotes the infinitesimal algebra of the hypergroup and we
keep the notations of Theorem 3.1. As before g denotes the Lie algebra of the Lie group
G and we denote by h the Lie algebra of H. The corresponding universal enveloping
algebras are denoted by U(g) and U(h). For a set S ⊂ U(g), by SH we denote a subset
of S of all H-invariant elements, that is,

SH = {s ∈ S : Ad h(s) = s, h ∈ H},

where Ad is the restriction to H of the adjoint action of G on U(g) [16].
The following theorem has been proved in [7].

Theorem 4.4. Let I = hU(g). Then IH is an ideal in U(g)H and B ≈ UH/IH .
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