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GENERAL FORMS OF THE MENSHOV–RADEMACHER, ORLICZ,

AND TANDORI THEOREMS ON ORTHOGONAL SERIES

VLADIMIR A. MIKHAILETS AND ALEKSANDR A. MURACH

Abstract. We prove that the classical Menshov–Rademacher, Orlicz, and Tandori
theorems remain true for orthogonal series given in the direct integrals of measurable
collections of Hilbert spaces. In particular, these theorems are true for the spaces

L2(X, dµ;H) of vector-valued functions, where (X,µ) is an arbitrary measure space,
and H is a real or complex Hilbert space of an arbitrary dimension.

1. Introduction

The Menshov–Rademacher theorem [1, 2] plays an important role in the theory of
orthogonal series. It states that the sequence (log22 n) is a Weyl multiplier for convergence,
almost everywhere (a.e.) with respect to the Lebesgue measure, of a series in an arbitrary
orthonormal system (ONS) of real-valued functions given on a finite interval of the real
axis. There are some various theorems on unconditional convergence of orthogonal series.
These results refine the Menshov–Rademacher theorem (see, e.g., [3, Ch. 2, § 5] and [4,
Ch. 8, § 2]), where the Orlicz theorem [5] occupies a special place. It gives a sufficient
condition for the sequence (ωn log

2
2 n) to be a Weyl multiplier for the unconditional

convergence a.e. The Menshov–Rademacher and the Orlicz theorems are best possible
in the sense that their conditions cannot be weakened.

It is known (see, e.g., [6, 7]) that the Menshov–Rademacher theorem remains true
for series with respect to ONSs of real-valued or complex-value functions given on an
arbitrary measure space. This also true [8] for the Orlicz theorem and for another known
result on unconditional convergence, the Tandori theorem [9].

The question arises whether these and others theorems on convergence of orthogonal
series remain true in a more general setting of series with respect to ONSs of vector-
valued functions given on a measure space and taking values in a collection of Hilbert
spaces.

In the present paper, we will give a positive answer to this question for the classical
Menshov–Rademacher, Orlicz, and Tandori theorems.

Note that, in the case of orthogonal series in (complex-valued) eigenfunctions of
a self-adjoint elliptic operator defined on a closed compact manifold X, the condi-
tions of the Menshov–Rademacher and the Orlicz theorems and that the function be-
ing expanded belongs to the isotropic Hörmander spaces Hψ(X) are equivalent, where
ψ(t) = log∗ t or ψ(t) = ϕ(t) log∗ t, respectively; see [10, 11] and [12, Sec. 2.3.2]. Here
log∗ t := max{1, log2 t}, whereas ϕ(t), t ≥ 1, is a positive increasing function that varies
regularly at +∞ in the sense of Karamata and satisfies the condition

∫ ∞

2

dt

t (log2 t)ϕ
2(t)

<∞.
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2. Statements of the main results

Let X be an arbitrary measure space with some σ-additive measure µ ≥ 0. The mea-
sure is not assumed to be finite or σ-finite. Let {H(x) : x ∈ X} be a µ-measurable col-
lection of either real or complex Hilbert spaces. This means that the function dimH(x),
x ∈ X, takes only finitely or countably many values (that are cardinal numbers) and
that all the sets

{x ∈ X : dimH(x) = const }
are µ-measurable. We consider the direct integral

L2 :=

∫ ⊕

X

H(x) dµ(x)

of the µ-measurable collection {H(x) : x ∈ X} (see, e.g., [13, Ch. 7, Sec. 1] and [14,
Ch. 2]). The space L2 is endowed with the inner product

(f(·), g(·))2 :=

∫

X

(f(x), g(x))H(x) dµ(x),

which induces the norm ‖ · ‖2.
If H(x) ≡ H = const, then

L2 = L2(X, dµ;H) = L2(X, dµ)⊗H.

Thus, in this case, the space L2 consists of all classes of µ-equivalent vector-valued
functions f : X → H that are strongly measurable with respect to µ [15, Ch. V, Sec. 4]
and that

‖f‖2 =

(
∫

X

‖f(x)‖2H dµ(x)
)1/2

<∞.

Let an ONS of vector-valued functions Φ := (ϕn)
∞
n=1 be arbitrarily chosen in the space

L2. We investigate the µ-almost everywhere (µ-a.e.) convergence on X of the orthogonal
series

(1)
∞
∑

n=1

an ϕn(x).

Here all the coefficients an are either complex or real numbers; this depends on whether
all the spaces H(x), x ∈ X, are complex or real. We set a := (an)

∞
n=1. Given x ∈ X, the

convergence of the series (1) is regarded in the norm of H(x).
Consider the majorant of partial sums of this series:

(2) S∗(Φ, a, x) := sup
m∈N

∥

∥

m
∑

n=1

an ϕn(x)
∥

∥

H(x)
, x ∈ X.

Let us formulate the main results of the paper.

Theorem 1 (a general form of the Menshov–Rademacher theorem). Let a sequence of
numbers (an)

∞
n=1 satisfy the condition

(3) L :=

∞
∑

n=1

|an|2 log22(n+ 1) <∞.

Then the series (1) converges µ-a.e. on X, and moreover

(4) ‖S∗(Φ, a, ·)‖2 ≤ K
√
L.

Here K is a certain universal positive constant, one may take K = 4.
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This theorem was proved independently by D. E. Menshov [1] and H. Rademacher [2]
in the case where

(5) X = (α, β), −∞ < α < β <∞, µ is the Lebesgue measure, H(x) ≡ R.

An exposition of their results are given, e.g., in the books [3, Sec. 2.3.2] and [4, Ch. 8, § 1].
Note that the measures µ that are absolutely continuous with respect to the Lebesgue
measure are also allowed in [3]. As it has been mentioned, the Menshov–Rademacher
theorem remains true for the ONSs of real-valued or complex-valued functions given on
an arbitrary measure space X. Remark that a complete characterization of the sequences
(an)

∞
n=1 such that the series (1) converges a.e. for an arbitrary ONS in L2(X, dµ;R) is

given by A. Paszkiewicz [16].
The Menshov–Rademacher theorem is precise. In the situation (5), D. E. Menshov

[1] constructed an example of ONS (ϕn)
∞
n=1 such that for every sequence of numbers

(ωn)
∞
n=1 satisfying

1 = ω1 ≤ ω2 ≤ ω3 ≤ . . . , lim
n→∞

ωn

log22 n
= 0,

there exists an a.e. divergent series of the form (1) whose coefficients meet the condition

∞
∑

n=1

|an|2 ωn <∞.

This result is presented, e.g., in the books [3, Sec. 2.4.1] and [4, Ch. 8, § 1] mentioned
above.

Recall that the series (1) is called unconditionally convergent µ-a.e. on X if the series

(6)
∞
∑

n=1

aσ(n) ϕσ(n)(x)

converges µ-a.e. on X for an arbitrary permutation σ = (σ(n))∞n=1 of the set N of all
positive integers. Here the zero measure set of the points at which the series (6) diverges
can depend on the permutation σ.

Theorem 2 (a general form of the Tandori theorem). Let a sequence of numbers (an)
∞
n=1

satisfy the condition

(7)

∞
∑

k=0

( νk+1
∑

n=νk+1

|an|2 log22 n

)1/2

<∞,

where νk := 22
k

. Then the series (1) converges unconditionally µ-a.e. on X.

This theorem was proved by K. Tandori [9] in the case (5). He also showed that
his theorem is best possible in the following sense. Given a (nonstrictly) decreasing
sequence of positives numbers (an)

∞
n=1, the series (1) converges unconditionally a.e. for

each ONS (ϕn)
∞
n=1 in L2((0; 1), dx,R) if and only if (7) holds. These K. Tandori’s results

are presented in the book [4] (see Ch. 8, § 2 and the remarks to Ch. 8).
A sufficient condition for the unconditional convergence of the series (1) can be ex-

pressed in the terms of the Weyl multipliers.

Theorem 3 (a general form of the Orlicz theorem). Let a sequence of numbers (an)
∞
n=1

and a (nonstrictly) increasing sequence of positives numbers (ωn)
∞
n=1 satisfy the following
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conditions:

∞
∑

n=2

|an|2 (log22 n)ωn <∞,(8)

∞
∑

n=2

1

n (log2 n)ωn
<∞.(9)

Then series (1) converges unconditionally µ-a.e. on X.

Under the assumption (5), Theorem 3 is an equivalent formulation of the Orlicz theo-
rem [5], which was suggested by P. L. Ulj’anov [17, § 4, Sec. 1] (also see [18, § 9, Sec. 1]).
The Orlicz theorem and its proof can be founded, e.g., in G. Alexits’ book [3, Sec. 2.5.1].
As K. Tandori proved [9], this theorem is best possible in the sense that the condition
(9) on the sequence (ωn)

∞
n=1 cannot be weakened.

Note that both Theorems 2 and 3 remain true for each ONS of complex-valued func-
tions given on an arbitrary measure space X [8].

Theorems 1, 2, and 3 will be proved in Sections 4, 5, and 6, resp. When proving
Theorems 1 and 2, we use the classical scheme of argument set forth in [4, Ch. 8, §1, 2]
for the case (5). Theorem 3 will be deduced from Theorem 2. Previously, in Section 3
we establish a general form of the Menshov–Rademacher inequality that plays a decisive
role in the proofs of Theorems 1 and 2.

3. Menshov-Rademacher inequality

The proofs of Theorem 1 and 2 are based on the following fact.

Lemma 1. Let an integer N ≥ 1, finite ONS of vector-valued functions Ψ := (ψn)
N
n=1

in L2, and a finite collection of numbers b := (bn)
N
n=1 be arbitrary. Then the function

(10) S∗
N (Ψ, b, x) := max

1≤j≤N

∥

∥

j
∑

n=1

bn ψn(x)
∥

∥

H(x)
, x ∈ X,

satisfies the inequality

(11) ‖S∗
N (Ψ, b, ·)‖2 ≤ (2 + log2N)

( N
∑

n=1

|bn|2
)1/2

.

In the classical case (5), the inequality (11) was obtained independently by D. E. Men-
shov [1] and G. Rademacher [2] and then used by them in the proof of Theorem 1 (see,
e.g., the books [3, Sec. 2.3.1, 2.3.2] and [4, Ch. 9, § 1]). On the right-hand side of
(11), the factor C log2(N + 1) with some universal constant C is used usually instead
of 2 + log2N . Note that this inequality is known for ONSs of real-valued or complex-
valued functions given on an arbitrary measure space X (see, e.g., [19, Theorem 3] and
[7, Proposition 2.1]).

Proof of Lemma 1. First we consider the case where N = 2r for some integer r ≥ 1.
The general situation is easily reduced to this case; this will be shown at the end of the
proof.

Given an arbitrary number j ∈ {1, 2, . . . , 2r}, consider its binary representation

j =

r
∑

k=0

εk 2
r−k, where εk := εk(j) ∈ {0, 1}.
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Then every sum
∑j
n=1 hn of vectors in a real or complex Hilbert space H can be repre-

sented in the form

j
∑

n=1

hn =
∑

k : εk 6=0

∑

∑
k−1

s=0
εs2r−s<n≤

∑
k

s=0
εs2r−s

hn.

Whence, using the triangle inequality for the norm in H and the Cauchy inequality (both
being applied to the external sum of ≤ r + 1 terms), we get

∥

∥

j
∑

n=1

hn
∥

∥

H
=

∥

∥

∑

k : εk 6=0

1 ·
∑

∑
k−1

s=0
εs2r−s<n≤

∑
k

s=0
εs2r−s

hn
∥

∥

H

≤
∑

k : εk 6=0

1 ·
∥

∥

∑

∑
k−1

s=0
εs2r−s<n≤

∑
k

s=0
εs2r−s

hn
∥

∥

H

≤ (r + 1)1/2
(

∑

k : εk 6=0

∥

∥

∑

∑
k−1

s=0
εs2r−s<n≤

∑
k

s=0
εs2r−s

hn
∥

∥

2

H

)1/2

≤ (r + 1)1/2
( r
∑

k=0

2k−1
∑

p=0

∥

∥

(p+1)2r−k

∑

n=p2r−k+1

hn
∥

∥

2

H

)1/2

.

Thus

(12)
∥

∥

j
∑

n=1

hn
∥

∥

2

H
≤ (r + 1)

r
∑

k=0

2k−1
∑

p=0

∥

∥

(p+1)2r−k

∑

n=p2r−k+1

hn
∥

∥

2

H
.

We apply this inequality to estimate the function (10), which is represented in the
form

S∗
N (Ψ, b, x) =

∥

∥

j(x)
∑

n=1

bn ψn(x)
∥

∥

H(x)
, x ∈ X;

here the number j(x) ∈ {1, 2, . . . , 2r} is properly chosen for every fixed x ∈ X. Setting
hn := bnψn(x) in (12), write

(S∗
N (Ψ, b, x))2 ≤ (r + 1)

r
∑

k=0

2k−1
∑

p=0

∥

∥

(p+1)2r−k

∑

n=p2r−k+1

bnψn(x)
∥

∥

2

H(x)
, x ∈ X.

Integrating the latter inequality and using that (ψn)
2r

n=1 is an ONS in L2, we have

‖S∗
N (Ψ, b, ·)‖22 ≤ (r + 1)

r
∑

k=0

2k−1
∑

p=0

∫

X

∥

∥

(p+1)2r−k

∑

n=p2r−k+1

bnψn(x)
∥

∥

2

H(x)
dµ(x)

= (r + 1)

r
∑

k=0

2k−1
∑

p=0

(p+1)2r−k

∑

n=p2r−k+1

|bn|2 = (r + 1)

r
∑

k=0

2r
∑

n=1

|bn|2

= (r + 1)2
2r
∑

n=1

|bn|2.
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Thus

(13) ‖S∗
N (Ψ, b, ·)‖22 ≤ (r + 1)2

2r
∑

n=1

|bn|2.

This, in view of N = 2r, yields the required estimate (11).
Now consider the general situation, where N ≥ 1 is an arbitrary integer. If N = 1,

then Lemma 1 is trivial. Let N ≥ 2. Then there exists an integer r ≥ 1 such that
2r−1 < N ≤ 2r. Putting an := 0 for N < n ≤ 2r, we arrive at the above case, when the
collection (an) consists of 2r numbers. Therefore, (13) holds with r − 1 < log2N ; i.e.,
the required inequality (11) is fulfilled in the general situation.

Lemma 1 is proved. �

4. Proof of Theorem 1

Beforehand let us make a useful remark. Without loss of generality we may assume
that the measure µ is σ-finite. Indeed, since ‖ϕn‖2 = 1 for each n ≥ 1, it follows that
every set {x ∈ X : ‖ϕn(x)‖H(x) > 1/j}, with j ∈ N, has finite measure. Hence, µ is a
σ-finite measure on the set of all points x ∈ X such that ϕn(x) 6= 0 for at least one index
n. Outside this set all terms of the series (1) are zero-vectors. Therefore our assumption
does not lead to any loss of generality in the proofs.

Now let us show that the sequence

(14) S2k(x) :=

2k
∑

n=1

an ϕn(x), k = 1, 2, 3, . . . ,

converges for µ-a.e. x ∈ X, and then we estimate the norm in L2(X, dµ;R) of the
function

S⋆(x) := sup
0≤k<∞

‖S2k(x)‖H(x), x ∈ X.

Let

χk(x) :=

2k+1−1
∑

n=2k

an ϕn(x), x ∈ X, k = 0, 1, 2, 3, . . . .

Since (ϕn)
∞
n=1 is an ONS in L2, we may write

‖χk‖22 =
2k+1−1
∑

n=2k

|an|2.

Hence, by the condition (3), we have

∞
∑

k=0

‖χk‖22 (k + 1)2 =
∞
∑

k=0

(k + 1)2
2k+1−1
∑

n=2k

|an|2

≤
∞
∑

k=0

2k+1−1
∑

n=2k

|an|2 (1 + log2 n)
2 ≤ 2L <∞.

Whence, applying the Cauchy inequality, we get

∞
∑

k=0

‖χk‖2 =

∞
∑

k=0

‖χk‖2 (k + 1) (k + 1)−1

≤
( ∞
∑

k=0

‖χk‖22 (k + 1)2
)1/2 ( ∞

∑

k=0

(k + 1)−2

)1/2

≤
√
2L

√
2 = 2

√
L.
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Thus

(15)
∞
∑

k=0

‖χk‖2 ≤ 2
√
L.

Let us show that

(16)

∞
∑

k=0

‖χk(x)‖H(x) <∞ for µ-a.e x ∈ X.

Recall that without loss of generality we may consider the measure µ to be σ-finite on
X.

If µ(X) <∞, then by (15) and the Cauchy inequality we have

(17)

∞
∑

k=0

∫

X

‖χk(x)‖H(x) dµ(x) ≤
∞
∑

k=0

(
∫

X

dµ(x)

)1/2(∫

X

‖χk(x)‖2H(x) dµ(x)

)1/2

≤ 2
√

µ(X)L <∞.

Therefore, according to the B. Levi theorem, we may write

(18)

∫

X

( ∞
∑

k=0

‖χk(x)‖H(x)

)

dµ(x) =
∞
∑

k=0

∫

X

‖χk(x)‖H(x) dµ(x) <∞;

this yields (16).
If µ(X) = ∞, then represent X as a countable union of some measurable sets Xj ,

j = 1, 2, 3, . . ., with µ(Xj) <∞. For every j formula (17) and its consequences, formulas
(18) and (16), remain true if we replace X with Xj . So, we get (16) again.

It follows from (16) that (14) is a Cauchy sequence for µ-a.e. x ∈ X, i.e., (14)
converges. Besides,

S⋆(x) ≤
∞
∑

k=0

‖χk(x)‖H(x) <∞ for µ-a.e. x ∈ X.

Whence we have by (15) that

(19) ‖S⋆‖2 ≤
∞
∑

k=0

‖χk‖2 ≤ 2
√
L.

Now consider the function

S◦(x) := sup
1≤k<∞

S◦
k(x), x ∈ X,

where

S◦
k(x) := max

2k≤j<2k+1

∥

∥

j
∑

n=2k

an ϕn(x)
∥

∥

H(x)
, x ∈ X, k = 1, 2, 3, . . . .

Applying Lemma 1, with Ψ := (ϕn)
j
n=2k

and b := (an)
j
n=2k

, and using the condition (3),
we may write the following:

∞
∑

k=1

‖S◦
k‖22 ≤

∞
∑

k=1

max
2k≤j<2k+1

(

2 + log2(j − 2k + 1)
)2

j
∑

n=2k

|an|2

≤
∞
∑

k=1

(

2 + log2 2
k
)2

2k+1−1
∑

n=2k

|an|2 ≤
∞
∑

k=1

2k+1−1
∑

n=2k

|an|2 (2 + log2 n)
2

=
∞
∑

n=1

|an|2 (2 + log2 n)
2 ≤ 4L <∞.
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Therefore, by the B. Levy theorem, we have

(20)

∫

X

( ∞
∑

k=1

(S◦
k(x))

2

)

dµ(x) =
∞
∑

k=1

∫

X

(S◦
k(x))

2 dµ(x) ≤ 4L <∞.

Whence limk→∞ S◦
k(x) = 0 for µ-a.e. x ∈ X. This together with the convergence of

(14) for µ-a.e. x ∈ X proved above yields the convergence of the sequence (3) for µ-a.e.
x ∈ X.

Moreover, since

S∗(Φ, a, x) ≤ S⋆(x) + S◦(x),
(

S◦(x)
)2 ≤

∞
∑

k=1

(S◦
k(x)

)2
, x ∈ X,

we finally deduce the required inequality (4) from (19) and (20),

‖S∗(Φ, a, ·)‖2 ≤ ‖S⋆‖2 + ‖S◦‖2 ≤ 4
√
L.

Theorem 1 is proved.

5. Proof of Theorem 2

Without loss of generality we may assume that a1 = a2 = 0. For an integer k ≥ 0,
denote

Mk := {j ∈ N : νk + 1 ≤ j ≤ νk+1}
and recall that νk := 22

k

. Consider an arbitrary permutation (6) of the orthogonal series

(1). Define a sequence of numbers
(

ε
(k)
n

)∞

n=1
by the formula

ε(k)n :=

{

1, if σ(n) ∈Mk,

0, otherwise.

Given arbitrary p, q ∈ N with p ≤ q, we may write

(21)

q
∑

n=p

aσ(n) ϕσ(n)(x) =

∞
∑

k=0

q
∑

n=p

ε(k)n aσ(n) ϕσ(n)(x), x ∈ X.

The series on the right-hand side of (21) converges for every x ∈ X because it contains
only a finitely many nonzero terms.

Given any integer k ≥ 0, we set

(22) δk(x) := sup
1≤p<q<∞

∥

∥

q
∑

n=p

ε(k)n aσ(n) ϕσ(n)(x)
∥

∥

H(x)
, x ∈ X.

Note that

(23) δk(x) ≤ 2 sup
1≤q<∞

∥

∥

q
∑

n=1

ε(k)n aσ(n) ϕσ(n)(x)
∥

∥

H(x)
, x ∈ X;

here the sum contains only the terms with σ(n) ∈Mk. We put, in Lemma 1,

Ψ := {ϕσ(n) : n ∈ N such that σ(n) ∈Mk},
b := {aσ(n) : n ∈ N such that σ(n) ∈Mk},
N =N(k) := νk+1 − νk = νk(νk − 1).

Then

S∗
N(k)(Ψ, b, x) = sup

1≤q<∞

∥

∥

q
∑

n=1

ε(k)n aσ(n) ϕσ(n)(x)
∥

∥

H(x)
, x ∈ X.
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Therefore, by Lemma 1 and in view of (23), we have

‖δk‖2 ≤ (4 + 2 log2N(k))

(

∑

n :σ(n)∈Mk

|aσ(n)|2
)1/2

= (4 + 2 log2N(k))

( νk+1
∑

n=νk+1

|an|2
)1/2

.

Hence, since

4 + 2 log2N(k) = 4 + 2 log2(νk(νk − 1)) ≤ 8 log2 νk,

we arrive at the estimate

(24)

(
∫

X

δ 2
k (x) dµ(x)

)1/2

≤ 8

( νk+1
∑

n=νk+1

|an|2 log22 n

)1/2

.

We will deduce from this that

(25)

∞
∑

k=0

δk(x) <∞ for µ-a.e. x ∈ X.

Recall that, without loss of generality, the measure µ is assumed to be σ-finite on X.
If µ(X) < ∞, then by the Cauchy inequality for integrals, the estimate (24), and

condition (7) we may write the following:

(26)

∞
∑

k=0

∫

X

δk(x) dµ(x) ≤
∞
∑

k=0

(
∫

X

dµ(x)

)1/2 (∫

X

δ 2
k (x) dµ(x)

)1/2

≤ 8
√

µ(X)

∞
∑

k=0

( νk+1
∑

n=νk+1

|an|2 log22 n

)1/2

<∞.

Therefore, according to the B. Levi theorem, we have

(27)

∫

X

( ∞
∑

k=0

δk(x)

)

dµ(x) =
∞
∑

k=0

∫

X

δk(x) dµ(x) <∞,

whence we get (25) (recall that all δk ≥ 0).
If µ(X) = ∞, then represent X as a countable union of measurable sets Xj , j ∈ N,

with µ(Xj) < ∞. For every j the inequality (26) and its consequences, formulas (27)
and (25), remain valid if we replace X with Xj . Whence we obtain (25) again.

By (25), for µ-a.e. x ∈ X and arbitrary ε > 0 there exists a number m = m(x, ε) such
that

(28)
∞
∑

k=m

δk(x) < ε.

Let p = p(x, ε) be large enough so that the sum

p−1
∑

n=1

aσ(n) ϕσ(n)(x)
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contains all the functions ϕn whose indexes belong to Mk with 0 ≤ k < m(x, ε). Then
by (22) and (28) we have for every q ≥ p that

∥

∥

q
∑

n=p

aσ(n) ϕσ(n)(x)
∥

∥

H(x)
=

∥

∥

∞
∑

k=0

q
∑

n=p

ε(k)n aσ(n) ϕσ(n)(x)
∥

∥

H(x)

=
∥

∥

∞
∑

k=m

q
∑

n=p

ε(k)n aσ(n) ϕσ(n)(x)
∥

∥

H(x)

≤
∞
∑

k=m

∥

∥

q
∑

n=p

ε(k)n aσ(n) ϕσ(n)(x)
∥

∥

H(x)
≤

∞
∑

k=m

δk(x) < ε.

Thus, for µ-a.e. x ∈ X and for an arbitrary ε > 0 there exists a number p = p(x, ε)
such that

∥

∥

q
∑

n=p

aσ(n) ϕσ(n)(x)
∥

∥

H(x)
< ε

for every integer q ≥ p. So, the series (6) converges for µ-a.e. x ∈ X.
Theorem 2 is proved.

6. Proof of Theorem 3

We deduce it from Theorem 2 by showing that the conditions (8) and (9) together
imply (7).

For every integer k ≥ 0, put

Ak :=

νk+1
∑

n=νk+1

|an|2 log22 n;

here νk := 22
k

as above. Applying the Cauchy inequality, we may write

∞
∑

k=0

A
1/2
k =

∞
∑

k=0

A
1/2
k ω1/2

νk
ω−1/2
νk

≤
( ∞
∑

k=0

Ak ωνk

)1/2 ( ∞
∑

k=0

ω−1
νk

)1/2

.

It is known that
∞
∑

n=2

1

n (log2 n)ωn
<∞ ⇔

∞
∑

n=1

1

nω2n
<∞ ⇔ c :=

∞
∑

n=0

1

ωνn
<∞.

Therefore, using (8) and since (ωn)
∞
n=1 is increasing, we have the following:

( ∞
∑

k=0

A
1/2
k

)2

≤ c

∞
∑

k=0

Ak ωνk = c

∞
∑

k=0

ωνk

νk+1
∑

n=νk+1

|an|2 log22

≤ c

∞
∑

k=0

νk+1
∑

n=νk+1

|an|2 (log22 n)ωn = c

∞
∑

n=3

|an|2 (log22 n)ωn <∞.

Thus, condition (7) is satisfied,

∞
∑

k=0

( νk+1
∑

n=νk+1

|an|2 log22 n

)1/2

=

∞
∑

k=0

A
1/2
k <∞.

Therefore, by Theorem 2, the sequence (1) converges unconditionally µ-a.e. on X.
Theorem 3 is proved.
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7. Final remark

A simple inspection of the proofs of Lemma 1 and Theorems 1–3 reveals that they
remain true if the system (ϕn)

∞
n=1 forms a Riesz basis in the closure of its linear span in

L2. In this case, the factor C log2(N + 1) should be used, instead of 2 + log2N , in the
right-hand side of (11), the constant C > 0 as well as K in Theorem 1 depend on the
choice of (ϕn)

∞
n=1.
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