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ELIMINATION OF JACOBI EQUATION IN EXTREMAL

VARIATIONAL PROBLEMS

I. V. ORLOV

Abstract. It is shown that the extremal problem for the one–dimensional Euler–
Lagrange variational functional in C1[a; b] under a strengthened Legendre condition
can be solved without using the Jacobi equation. In this case, exactly one of the two

possible cases requires a restriction to the length of [a; b], defined only by the form of
the integrand. The result is extended to the case of compact extremum in H1[a; b].

0. Introduction

The classical scheme of a study of a local extremum for the one–dimensional Euler–
Lagrange variational functional

Φ(y) =

∫ b

a

f(x, y, y′)dx 7→ extr (y ∈ C1[a; b])

at an extremal point y assumes [1], [2] checking the strengthened Legendre condition
fy′y′(x, y, y′) 6= 0 and the Jacobi condition U(x) 6= 0 (a < x ≤ b) for the Jacobi equation

−
d

dx

[
fy′y′(x, y, y′)U ′

]
+

[
−

d

dx

(
fyy′(x, y, y′)

)
+ fy2(x, y, y′)

]
U = 0

(U(a) = 0, U ′(a) = 1).

The second step is the most laborious, it requires to solve a fairly complicated equation
for obtaining, actually, very little information about the behavior of the solution U(x).

Moreover, the initial conditions U(a) = 0, U ′(a) = 1, as a consequence of the Jacobi
condition, is automatically satisfied near a. The question is only what is the length of a
suitable interval ?

Note that all the classical sufficiency theorems in the theory of calculus of variations
assume the Legendre–Jacobi conditions. Because of this fact, G. M. Ewing mentioned in
[3] that there is a gap between the necessary and sufficient conditions for optimality. He
showed that it is possible to partially close this gape by adding a penalty term. However,
this technique may not hold in general.

In more recent years, a study of the second order conditions for optimality in the theory
of calculus of variations and optimal control has provided an extensive literature (see
e.g. [4], [5], [6], [7], [8] and references therein). A known approach by M. R. Hestenes [9]
treats explicitly with the positivity of the second variation and it is implicitly based
on the concept of a directionally convergent sequence of trajectories. A generalization
of this method which covers optimal control problems can be found in the works by
J. F. Rosenblueth and G. S. Licea [10]–[14]. Here a proof of sufficiency modifies the
classical necessary Weierstrass condition under certain supplementary assumptions on
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the functions delimiting the problem and it makes no use of Hamilton–Jacobi theory and
conjugate points.

Recently, in [15], by applying a similar technique G. S. Licea obtained a new sufficiency
theorem which does not include the strengthened Legendre–Clebsch condition and Jacobi
condition. This result assumes, with respect to a given extremal, the usual Legendre–
Clebsch condition, the positivity of the second variation and the special conditions related
to the Weierstrass excess function.

In contrast to the above mentioned approach, the aim of the present work is to show
that the interval satisfying the Jacobi condition can be chosen depending only on the form
of the integrand f and not depending on a concrete extremal. It enables us to exclude
Jacobi condition under preserving the strengthened Legendre condition and without any
supplementary condition to second variation, Weierstrass function, etc. More precisely,
the main result (Theorem 1.1) distinguishes two cases depending on the range of the
coefficients in the Jacobi equation. For the first case, an extremum is guaranteed without
any restriction to the length of [a; b] being imposed, for the second one, such a restriction
is given. The result above remains valid when passing to the case of finding a compact
extremum in the Sobolev space H1[a; b].

The first part of the work deals with elimination of the Jacobi equation in case of zero
extremal in C1[a; b]. The second part contains a quadratic estimate of tending Φ to a
minimal value via the norm of y in H1[a; b]. The third part contains a passage to the case
of an arbitrary C2–smooth extremal in C1[a; b] and the last, the fourth part contains a
passage to the case of a compact extremum in H1[a; b].

1. Elimination of the Jacobi condition: the case of zero extremal

Let us consider the classical Euler–Lagrange variational functional

(1.1) Φ(y) =

∫ b

a

f(x, y, y′)dx (y ∈ C1[a; b], y(a) = y(b) = 0, f ∈ C2, fyz ∈ C1).

We are going to show that, if the Euler–Lagrange variational equation and the strength-
ened Legendre condition at zero are satisfied, then the functional (1.1) always attains a
strong local extremum at zero. However, in addition, two different possible cases defined
by the form of the integrand f , arise. One of the cases assumes a restriction on the length
of [a; b], in the second case, any restriction is absent.

So, let us split the integrand f(x, y, z) into two terms:

f1(x, y, z) = f(x, y, z)− f(x, 0, 0)− [fy(x, 0, 0) · y + fz(x, 0, 0) · z]

−
1

2

[
fy2(x, 0, 0) · y2 + 2fyz(x, 0, 0) · yz + λ · fz2(x, 0, 0) · z2

]
(0 < λ < 1),

f2(x, y, z) = f(x, y, z)− f1(x, y, z) = f(x, 0, 0) + [fy(x, 0, 0) · y + fz(x, 0, 0) · z]

+
1

2

[
fy2(x, 0, 0) · y2 + 2fyz(x, 0, 0) · yz + λ · fz2(x, 0, 0) · z2

]
.

Set, respectively,

Φi(y) =

∫ b

a

fi(x, y, y
′)dx (i = 1, 2); Φ(y) = Φ1(y) + Φ2(y).

1) Let us investigate Φ1 for a local extremum (minimum, for definiteness) at zero with
the help of the Euler–Lagrange, Legendre and Jacobi conditions.
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(i) The Euler–Lagrange equation. Because
(
f1,y(x, y, z) = fy(x, y, z)− fy(x, 0, 0)− fy2(x, 0, 0) · y − fyz(x, 0, 0) · z

)

⇒
(
f1,y(x, 0, 0) = 0

)
,

(
f1,z(x, y, z) = fz(x, y, z)− fz(x, 0, 0)− fyz(x, 0, 0) · y − λ · fz2(x, 0, 0) · z

)

⇒
(
f1,z(x, 0, 0) = 0

)
,

the Euler–Lagrange equation for Φ1 at zero,

f1,y(x, 0, 0)−
d

dx

[
f1,z(x, 0, 0)

]
= 0,

holds automatically, i.e., y0(x) ≡ 0 is an extremal of the functional Φ1.
(ii) The strengthened Legendre condition. Because
(
f1,z2(x, y, z) = fz2(x, y, z)− λ · fz2(x, 0, 0)

)
⇒
(
f1,z2(x, 0, 0) = (1− λ) · fz2(x, 0, 0)

)
,

under the additional requirement

(1.2) p(x) := fz2(x, 0, 0) > 0 (a ≤ x ≤ b),

the strengthened Legendre condition for a strong minimum at zero holds.
(iii) The Jacobi equation and the Jacobi condition. Because

(
f1,yz(x, y, z) = fyz(x, y, z)− fyz(x, 0, 0)

)
⇒
(
f1,yz(x, 0, 0) = 0

)
,

(
f1,y2(x, y, z) = fy2(x, y, z)− fy2(x, 0, 0)

)
⇒
(
f1,y2(x, 0, 0) = 0

)
,

the Jacobi equation for Φ1 at zero takes the form

−
d

dx

[
(1− λ) · fz2(x, 0, 0)U ′

]
+

[
−

d

dx

(
f1,yz(x, 0, 0)

)
+ f1,y2(x, 0, 0)

]
U

= −
d

dx

[
(1− λ)p(x)U ′

]
= 0 (U(a) = 0, U ′(a) = 1).

Hence, in view of condition (1.2), the required result
(
U(x) = p(a) ·

∫ x

a

dt

p(t)

)
⇒

(
U(x) 6= 0 for a < x ≤ b

)

holds, i.e., the strengthened Jacobi condition at zero for a strong minimum of Φ1 takes
place. Thus, under the condition (1.2), Φ1 attains a strong local minimum at zero.

2) Let us study now Φ2 for a local extremum at zero immediately. Note at first that
Φ2(0) = Φ(0).

(i) Suppose that the Euler–Lagrange equation for Φ at zero,

(1.3) fy(x, 0, 0)− fxz(x, 0, 0) = 0 (a ≤ x ≤ b)

is satisfied. Then, by integrating by parts, we get

Φ2(y) =

∫ b

a

f(x, 0, 0)dx+

∫ b

a

[fy(x, 0, 0) · y + fz(x, 0, 0) · y
′] dx

+

∫ b

a

[
1

2
fy2(x, 0, 0) · y2 + fyz(x, 0, 0) · yy

′

]
dx+

λ

2
·

∫ b

a

·fz2(x, 0, 0) · y′2dx

= Φ2(0) +

[ ∫ b

a

(fy − fxz) (x, 0, 0)dx+ fz(x, 0, 0) · y

∣∣∣∣
b

a

]

+

[
1

2

∫ b

a

(
fy2 − fxyz

)
(x, 0, 0) · y2dx+

1

2
fyz(x, 0, 0) · y

2

∣∣∣∣
b

a

]
+

λ

2

∫ b

a

p(x) · y′2dx.

From here, denoting by
q(x) :=

(
fy2 − fxyz

)
(x, 0, 0),
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it follows that

(1.4) Φ2(y) = Φ2(0) +
1

2

∫ b

a

[
λ · p(x) · y′2 + q(x) · y2

]
dx.

(ii) Denote

(1.5) p := min
a≤x≤b

p(x) > 0, q := min
a≤x≤b

q(x)

and consider, at first, the case q ≥ 0. Then

λp(x)y′2 + q(x)y2 ≥ λp · y′2 + q · y2 > 0 as y′ 6= 0,

whence, in view of (1.4), the inequality

Φ2(y) > Φ2(0) as y(x) 6= 0

follows. Thus, in this case, Φ2 attains a strong absolute minimum at zero. Hence, in
view of what has been proved in i.1), Φ attains a strong local minimum at zero (without
any restriction on the length of [a; b]).

(iii) Let us consider now the case q < 0. Then, using Friederichs inequality (see,
e.g., [16], Ch. 18), it follows that

(1.6)

Φ2(y)− Φ2(0) =
1

2

∫ b

a

[
λ · p(x) · y′2 + q(x) · y2

]
dx

≥
1

2

∫ b

a

[
λ · p · y′2 − |q| · y2

]
dx ≥

1

2

∫ b

a

[
λ · p · y′2 −

16(b− a)2

π2
|q| · y′2

]
dx

=
1

2

(
λ · p−

16(b− a)2

π2
|q|

)
·

∫ b

a

y′2dx.

Let us require that the coefficient in front of the last integral in (1.6) be strictly
positive,

(1.7)

(
λ · p−

16(b− a)2

π2
|q| > 0

)
⇔

(
b− a <

π

4

√
λp

|q|

)
.

It follows from (1.6) and (1.7) that Φ2(y) > Φ2(0) as y 6= 0, i.e., Φ2 attains a strong
absolute minimum at zero and, hence, in virtue of i.1), Φ attains a strong local minimum
at zero under the restriction (1.7) on the length of [a; b].

Finally, passing to the limits in (1.7) as λ → 1− 0, the last statement can be extended
to the case of the estimate of the length of [a; b] not depending on λ

b− a <
π

4

√
p

|q|
.

So, the following was proved.

Theorem 1.1. Let the variational functional (1.1) satisfy, at zero, the Euler–Lagrange
equation (1.3) under the conditions y(a) = y(b) = 0. Then, with the notation (1.5),

1) for p > 0, q ≥ 0, Φ(y) attains a strong local minimum at zero (without any re-
striction on the length of [a; b]);

2) for p > 0, q < 0, with the restriction on the length of [a; b],

(1.8) b− a <
π

4

√
p

|q|
,

Φ(y) attains a strong local minimum at zero as well.
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2. Quadratic estimation from below of tending Φ to minimum at zero

It is easy to see that the estimate (1.8) in Theorem 1.1 is not optimal. For example,
the generalized harmonic oscillator

Φ(y) =

∫ T

0

(py′2 − qy2)dx (p > 0, q > 0)

on the zero extremal reduces to the Jacobi equation

pU ′′ + qU = 0 (U(0) = 0, U ′(0) = 1)

having the solution

U(x) =

√
p

q
sin

√
q

p
x ,

satisfying Jacobi condition U(x) 6= 0 as 0 < x < T for T < π
√

p
q
.

At the same time, the estimate (1.8) for this case leads to the inequality T < π
4

√
p
q
.

However, as it is easily seen, an advantage of estimate (1.8) consists of the possibility
to get a useful quadratic estimate from below for Φ(y) tending to the minimal value by
means of the norm of y in the Sobolev space H1[a; b].

1) First, let us consider the case p > 0, q > 0. The equality (1.4) implies

Φ2(y)− Φ2(0) ≥
1

2
min(p, q) ·

∫ b

a

(y′2 + y2)dx =
1

2
min(p, q) · ‖y‖2H1[a;b].

Since Φ(y)− Φ(0) ≥ Φ2(y)− Φ2(0) in a sufficiently small neighborhood of zero, then,
given a neighborhood of zero, the inequality

Φ(y)− Φ(0) ≥
1

2
min(p, q) · ‖y‖2H1[a;b]

is true.
2) Let us pass to the case p > 0, q < 0. The inequality (1.6) leads to the estimate

Φ2(y)− Φ2(0) ≥
1

2

[
p−

16(b− a)2

π2
|q|

]
·

∫ b

a

y′2dx .

Since the Friederichs inequality implies

(2.1)

∫ b

a

y′2dx ≥
π2

π2 + 16(b− a)2
· ‖y‖2H1[a;b] ,

by combining the last two inequalities for a sufficiently small neighborhood of zero, under
the conditions of inequality (1.6), we get

Φ(y)− Φ(0) ≥
π2p− 16(b− a)2|q|

2(π2 + 16(b− a)2)
· ‖y‖2H1[a;b] .

3) Note that the estimate (2.1) can be applied as well in the case p > 0, q ≥ 0, whence
the inequality

Φ(y)− Φ(0) ≥
π2p

2(π2 + 16(b− a)2)
· ‖y‖2H1[a;b]

follows. This gives the following.

Theorem 2.1. Under the conditions and notation of Theorem 1.1, the following state-
ments are valid:



346 I. V. ORLOV

1) in the case p > 0, q > 0, in a sufficiently enough neighborhood of zero in C1[a; b],
the estimate

Φ(y)− Φ(0) ≥
1

2
min(p, q) · ‖y‖2H1[a;b]

holds;
2) in the case p > 0, q ≥ 0, in a sufficiently small neighborhood of zero in C1[a; b],

the estimate

Φ(y)− Φ(0) ≥
π2p

2(π2 + 16(b− a)2)
· ‖y‖2H1[a;b]

holds;
3) in the case p > 0, q < 0, in a sufficiently small neighborhood of zero in C1[a; b],

under the condition of estimate (1.8), the estimate

Φ(y)− Φ(0) ≥
π2p− 16(b− a)2|q|

2(π2 + 16(b− a)2)
· ‖y‖2H1[a;b]

holds.

3. Case of arbitrary C2–smooth extremal in C1[a; b]

Let us fix an arbitrary C2–smooth function y0(x), a ≤ x ≤ b, and consider the ques-
tion of eliminating the Jacobi condition for the local minimum of the variational func-
tional (1.1) at the point y0(·) under the boundary conditions y(a) = y0(a), y(b) = y0(b).

To pass to the case (i.1) considered above of the zero extremal, it suffices to consider
an auxiliary variational functional,

Φ̃(y) = Φ(y + y0) =

∫ b

a

f(x, y + y0(x), y
′ + y′0(x))dx =:

∫ b

a

f̃(x, y, y′)dx

(y(a) = y(b) = 0).

In this connection, the condition y0(·) ∈ C2 guarantees fulfillment of the condition from (1.1)

for the auxiliary integrand f̃ and permits to apply Theorem 1.1 to Φ̃. A not complicated
calculation shows the following.

Theorem 3.1. Let the variational functional (1.1) satisfy, at a point y0(·) ∈ C2[a; b],
the Euler–Lagrange equation

(3.1) fy(x, y0, y
′
0)−

d

dx

[
fz(x, y0, y

′
0)
]
= 0 .

Denote
p := min

a≤x≤b
fz2(x, y0(x), y

′
0(x));

q := min
a≤x≤b

[
fy2(x, y0(x), y

′
0(x))−

d

dx

(
fyz(x, y0(x), y

′
0(x))

)]
.

Then, under the boundary conditions y(a) = y0(a), y(b) = y0(b) we have the following:

1) for p > 0, q ≥ 0, Φ(y) attains a strong local minimum at y0(·) (without any
restriction on the length of [a; b]);

2) for p > 0, q < 0, and under the restriction

(3.2) b− a <
π

4

√
p

|q|

on the length of [a; b], Φ(y) attains a strong local minimum at y0(·) as well.

Analogously, applying Theorem 2.1 to Φ̃ leads to a general quadratic estimate for
tending Φ to a local minimum at y0.

Theorem 3.2. Under the conditions and notation of Theorem 3.1 we have the following:
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1) for p > 0, q > 0, in some neighborhood of y0(·) in C1[a; b], the estimate

(3.3) Φ(y)− Φ(y0) ≥
1

2
min(p, q) · ‖y‖2H1[a;b]

holds;
2) for p > 0, q ≥ 0, in some neighborhood of y0(·) in C1[a; b], the estimate

(3.4) Φ(y)− Φ(y0) ≥
π2p

2(π2 + 16(b− a)2)
· ‖y‖2H1[a;b]

holds;
3) for p > 0, q < 0, under the restriction (3.2) on the length of [a; b], in some neigh-

borhood of y0(·) in C1[a; b], the estimate

(3.5) Φ(y)− Φ(y0) ≥
π2p− 16(b− a)2|q|

2(π2 + 16(b− a)2)
· ‖y‖2H1[a;b]

holds.

4. The case of compact extremum in H1[a; b]

In the Hilbert–Sobolev space W 1,2[a; b] = H1[a; b] equipped with the norm

(4.1) ‖y‖2H1[a;b] =

∫ b

a

(y2 + y′2)dx ,

as it is well known, by virtue of I. V. Skrypnik theorem ([17], Ch. 11), the non-absolute
local extrema of the variational functionals are practically absent. Note that in the
present work the norm (4.1) has appeared above (Theorem 2.1, 3.2) in a natural way
even for extremal problems in C1[a; b].

In our works [18]–[20] and in the works by E. V. Bozhonok [21]–[23] a general concept
of compact extremum (or K–extremum) of a functional was studied (see, also, [24]). It
has been shown there that the both classical necessary and sufficient conditions for a
local extremum of the variational functional in C1[a; b] can be extended to the case of
the K–extremum in H1[a; b]. In this case, K–extrema inherit important properties of the
local extrema and can be considered as an analog in the case of variational functionals
in H1[a; b].

Definition 4.1. Let a real functional Φ : H → R be defined on a Hilbert space H.
We say that Φ has a compact minimum (or K–minimum) at a point y0 ∈ H if, for
each absolutely convex (a.c.) compact set C ⊂ H, the restriction of f to the subspace
(y0 + spanC) has a local minimum at y0 with respect to the Banach norm ‖ · ‖C in
spanC generated by C. In other words, for each a.c. compactum C ⊂ H there exists
ε = ε(C) > 0 such that ϕ(y) ≥ ϕ(y0) as y − y0 ∈ ε · C.

The well posedness and the validity for the case of K–extremum of the variational
functional (1.1) of the classical extreme conditions in C1 (Euler–Lagrange equation, Le-
gendre condition, Jacobi condition) require, as it was shown in [20], belonging coefficient
R(x, y, z) in the pseudoquadratic representation of the integrand f :

f(x, y, z) = P (x, y) +Q(x, y) · z +
1

2
R(x, y, z) · z2

to an appropriate dominated mixed smoothness space C2
xy (see [25], [26]). Namely, for

the arbitrary compacta Cx, Cy ⊂ R the following property holds:

(x ∈ Cx , y ∈ Cy , −∞ < z < +∞) ⇒ (R(x, y, z) is uniformly continuous and

bounded, together with its first and second partial derivatives).
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Under the conditions above, the Euler–Lagrange equation, the Legendre condition,
the strengthened Legendre condition, and the Jacobi condition for the Jacobi equa-
tion are extended to the case of the K–extremum in an arbitrary W 2,2–smooth point
y0(·) ∈ H1[a; b]. It enables us to extend the results of i.4 to the case of a K–minimum in
H1[a; b]. Let us give the corresponding formulations.

Theorem 4.1. Let the variational functional (1.1), at a W 2,2–smooth point

y0(·) ∈ H1[a; b],

satisfy the Euler–Lagrange equation (3.1), and R(x, y, z) ∈ C2
xy. Then, under the condi-

tions and the notation of Theorem 3.1, we have the following:

1) for p > 0, q ≥ 0, Φ(y) attains a strong K–minimum at y0(·) (without any restric-
tion on the length of [a; b]);

2) for p > 0, q < 0, and under the restriction (3.2) on the length of [a; b], Φ(y)
attains a strong K–minimum at y0(·) as well.

Theorem 4.2. Under the conditions and the notation of Theorem 4.1, we have the
following:

1) for p > 0, q > 0, for each a.c. compactum C ⊂ H1[a; b] there exists ε = ε(C) > 0
such that the inclusion y − y0 ∈ ε · C implies estimate (3.3);

2) for p > 0, q ≥ 0, for each a.c. compactum C ⊂ H1[a; b] there exists ε = ε(C) > 0
such that the inclusion y − y0 ∈ ε · C implies estimate (3.4);

3) for p > 0, q < 0, under the restriction (3.2) on the length of [a; b], for each
a.c. compactum C ⊂ H1[a; b] there exists ε = ε(C) > 0 such that the inclusion
y − y0 ∈ ε · C implies estimate (3.5).
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