STRONG BASE FOR FUZZY TOPOLOGY

A. A. RAKHIMOV AND F. M. ZAKIROV

ABSTRACT. It is known that a base for a traditional topology, or for a *L*-topology, τ , is a subset \mathcal{B} of τ with the property that every element $G \in \tau$ can be written as a union of elements of \mathcal{B} . In the classical case it is equivalent to say that $G \in \tau$ if and only if for any $x \in G$ we have $B \in \mathcal{B}$ satisfying $x \in B \subseteq G$. This latter property is taken as the foundation for a notion of strong base for a *L*-topology. Characteristic properties of a strong base are given and among other results it is shown that a strong base is a base, but not conversely.

It is well known that a base for a traditional topology, or for a *L*-topology, τ , is a subset \mathcal{B} of τ with the property that every element $G \in \tau$ can be written as a union of elements of \mathcal{B} . In the classical case, but not in the *L*-topology case, it is equivalent to say that $G \in \tau$ if and only if for any $x \in G$ we have $B \in \mathcal{B}$ satisfying $x \in B \subseteq G$. This latter property is taken as the foundation for a notion of strong base for a *L*-topology. The two conditions

The two conditions

- (i) each point is contained in at least one member of the base, and
- (ii) if a point belongs to the intersection of two members of the base, then it belongs to a member of the base contained in that intersection,

which are characteristic of a base of a traditional topology, are shown to be insufficient to characterize a strong base for a *L*-topology. Therefore, characteristic properties of a strong base are given and among other results it is shown that a strong base is a base, but not conversely.

Throughout this paper, L will be a Hutton algebra, i.e. complete and completely distributive lattice which has an order-reversing involution ': $L \to L$, a smallest element 0 and a largest element 1 ($0 \neq 1$). Obviously, for every set X, L^X , the family of all L-subsets of X, i.e., all mappings from X to L, is also a Hutton algebra under the pointwise order and induced order-reversing involution; we denote the largest element and the smallest element of L^X by 1_X and 0_X , respectively. A L-topological space, briefly, L-ts, is a pair (X, δ) , where X is a set and δ , called an L-topology on X, is a subfamily of L^X which contains 0_X and 1_X , and is closed under the operations of taking finite intersections and arbitrary unions. Obviously, in case L = [0, 1], a L-topological space ($[0, 1]^X, \delta$) (for simplicity, denoted by (X, δ)) is just a fuzzy topological space in the sense of Chang [1].

We assume that the reader is familiar with the usual notions and basic concepts of *L*-topology and lattice theory.

For $x \in X$ and $\alpha \in L$ ($\alpha \neq 0$) denote the *L*-subset taking value α at *x* and value 0 at other points of *X* by x_{α} , call it an *L*-point on *X*. The family of all *L*-points in *X* is denoted by \mathcal{F} (see [3], [6]). A *L*-point x_{α} is said to belong to *A*, written $x_{\alpha} \in A$, where *A* is an *L*-subset in *X*, iff $\alpha \leq A(x)$. For all undefined basic concepts, our reference is [2–5].

²⁰⁰⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. Base of fuzzy topology, fuzzy topology.

Definition 1. A subset \mathcal{B} of a *L*-topology δ on *X* which has the property

$$U \in \delta \iff (x_{\alpha} \in U \Rightarrow \exists B \in \mathcal{B} \text{ with } x_{\alpha} \in B \subseteq U)$$

is called a **strong base** of δ .

δ

Theorem 1. A subset \mathcal{B} of L^X is a strong base for some L-topology on X if and only if it satisfies the following three conditions:

(i) $x_{\alpha} \in \mathcal{F} \Rightarrow \exists B_{x_{\alpha}} \in \mathcal{B} \text{ with } x_{\alpha} \in B_{x_{\alpha}},$ (ii) $B_1, B_2 \in \mathcal{B} \text{ and } x_{\alpha} \in B_1 \land B_2 \Rightarrow \exists B_3 \in \mathcal{B} \text{ with } x_{\alpha} \in B_3 \subset (B_1 \land B_2),$ (iii) $\{B_{\lambda}\}_{\lambda \in J} \subset \mathcal{B} \text{ and } x_{\alpha} \in \bigvee_{\lambda} B_{\lambda} \Rightarrow \exists B \in \mathcal{B} \text{ with } x_{\alpha} \in B \subset \bigvee_{\lambda} B_{\lambda}.$

Proof. It is clear that if \mathcal{B} is a strong base for some *L*-topology on *X* then it satisfies the conditions (i)–(iii). Conversely, suppose that for subset \mathcal{B} of L^X the conditions (i)–(iii) are satisfied. We shall show that the set

$$\mathcal{B} = \{ U \subset L^X \mid x_\alpha \in U \Rightarrow \exists B_{x_\alpha} \in \mathcal{B} \text{ with } x_\alpha \in B_{x_\alpha} \subseteq U \}$$

is a L-topology (so-called L-topology generated by \mathcal{B}) on X.

 $0_X \in \delta_{\mathcal{B}}$ is trivial. For every $x_{\alpha} \in \mathcal{F}$ there exists $B_{x_{\alpha}} \in \mathcal{B}$ satisfying $x_{\alpha} \in B_{x_{\alpha}}$ by (i). Since $B_{x_{\alpha}} \subset \mathbf{1}_X$ we have $x_{\alpha} \in B_{x_{\alpha}} \subset \mathbf{1}_X$, so $\mathbf{1}_X \in \delta_{\mathcal{B}}$.

Let $\{U_{\lambda}\}_{\lambda \in J} \subset \delta_{\mathcal{B}}$ and $x_{\alpha} \in \bigvee_{\lambda} U_{\lambda}$. Let $\alpha_{\lambda} := U_{\lambda}(x)$. Then $x_{\alpha} \in \bigvee_{\lambda} x_{\alpha_{\lambda}}$. Since $U_{\lambda} \in \delta_{\mathcal{B}}$, then $\exists B_{\lambda} \in \mathcal{B}$ with $x_{\alpha_{\lambda}} \in B_{\lambda} \subset U_{\lambda}$. Hence

$$x_{\alpha} \in \bigvee_{\lambda} x_{\alpha_{\lambda}} \subset \bigvee_{\lambda} B_{\lambda} \subset \bigvee_{\lambda} U_{\lambda}.$$

By (iii) there exists an element B of \mathcal{B} such that $x_{\alpha} \in B \subset \bigvee_{\lambda} B_{\lambda}$. Therefore $x_{\alpha} \in B \subset \bigvee_{\lambda} U_{\lambda}$. Thus $\bigvee_{\lambda} U_{\lambda} \in \delta_{\mathcal{B}}$.

Let $U, V \in \delta_{\mathcal{B}}$ and $x_{\alpha} \in U \wedge V$. Then $x_{\alpha} \in U$ and $x_{\alpha} \in V$. Therefore $\exists B_1, B_2 \in \mathcal{B}$ with $x_{\alpha} \in B_1 \subset U$ and $x_{\alpha} \in B_2 \subset V$. Hence $x_{\alpha} \in B_1 \wedge B_2 \subset U \wedge V$. From (ii) there is an element $B_3 \in \mathcal{B}$ such that $x_{\alpha} \in B_3 \subset B_1 \wedge B_2$. Then $x_{\alpha} \in B_3 \subset U \wedge V$, i.e. $U \wedge V \in \delta_{\mathcal{B}}$.

Example 1. Let $X = \{a, b\}$ and L = [0, 1]. Let \mathcal{B} be the collection of the following *L*-subsets: $B_0 = (x, \frac{a}{4/5}, \frac{b}{1/2}), B_1 = (x, \frac{a}{1}, \frac{b}{1/2}), B_2 = (x, \frac{a}{1/2}, \frac{b}{1}), B_3 = (x, \frac{a}{1/2}, \frac{b}{1/2}), B_n = (x, \frac{a}{4/5-1/n}, \frac{b}{1/2}) (n \ge 4).$

It is easy to check that for \mathcal{B} the conditions (i), (ii) and (iii) of Theorem 1 are valid. Therefore, \mathcal{B} is a strong base for some *L*-topology on *X*.

Theorem 2. Every strong base of a L-topology is a base.

2

Proof. Let \mathcal{B} be a strong base on X and $\mathcal{A}_{\mathcal{B}}$ the subset of all unions of elements of \mathcal{B} . We shall show that the subset $\mathcal{A}_{\mathcal{B}}$ is a L-topology on X.

The first condition of *L*-topology is trivial. If $\{U_{\lambda}\}_{\lambda \in J} \subset \mathcal{A}_{\mathcal{B}}$, then for every λ there exists a family $\{B_{\mu,\lambda}\} \subset \mathcal{B}$ with $U_{\lambda} = \bigvee_{\mu} B_{\mu,\lambda}$. Hence $\bigvee_{\lambda} U_{\lambda} = \bigvee_{\mu,\lambda} B_{\mu,\lambda} \in \mathcal{A}_{\mathcal{B}}$, i.e. the second condition of *L*-topology is also true.

Put $U = \bigvee_{\lambda} B_{\lambda}, V = \bigvee_{\mu} B_{\mu} \in \mathcal{A}_{\mathcal{B}}$ and let $x_{\alpha} \in U \wedge V = (\bigvee_{\lambda} B_{\lambda}) \wedge (\bigvee_{\mu} B_{\mu})$. Then $x_{\alpha} \in \bigvee_{\lambda} B_{\lambda}$ and $x_{\alpha} \in \bigvee_{\mu} B_{\mu}$. By (iii) there are $B, B' \in \mathcal{B}$ such that

$$x_{\alpha} \in B \subset \bigvee_{\lambda} B_{\lambda} \quad \text{and} \quad x_{\alpha} \in B' \subset \bigvee_{\mu} B_{\mu}.$$

Hence

$$x_{\alpha} \in B \land B' \subset \left(\bigvee_{\lambda} B_{\lambda}\right) \land \left(\bigvee_{\mu} B_{\mu}\right).$$

There exists by (ii) an element $B_{x,\alpha}$ of \mathcal{B} with $x_{\alpha} \in B_{x,\alpha} \subset B \wedge B'$. Therefore $x_{\alpha} \in B_{x,\alpha} \subset (\bigvee_{\lambda} B_{\lambda}) \wedge (\bigvee_{\mu} B_{\mu})$ and $U \wedge V = (\bigvee_{\lambda} B_{\lambda}) \wedge (\bigvee_{\mu} B_{\mu}) = \bigvee_{x,\alpha} B_{x,\alpha}$, i.e. $U \wedge V \in \mathcal{A}_{\mathcal{B}}$. Thus $\mathcal{A}_{\mathcal{B}}$ is a L-topology on X.

Remark 1. The converse of Theorem 2 is false:

Example 2. Consider the family \mathcal{B} of Example 1 without the set B_0 .

It is easy to check that for \mathcal{B} the conditions (i) and (ii) of Theorem 1 are valid again and it is base for some *L*-topology on *X*. But, now for \mathcal{B} the condition (iii) is not true. For this we consider the set $\bigvee_{n\geq 4} B_n = (x, \frac{a}{4/5}, \frac{b}{1/2})$.

It is easy to see that for this set there is no set $B \in \mathcal{B}$ with $B(a) \geq \alpha$ and $B \subset \bigvee_{n\geq 4} B_n$. Hence, for the *L*-point a_α there does not exist a set $B \in \mathcal{B}$ with $a_\alpha \in B \subset \bigvee_{n\geq 4} B_n$. Therefore, $\bigvee_{n\geq 4} B_n \notin \delta_{\mathcal{B}}$, i.e. $\delta_{\mathcal{B}}$ is not a *L*-topology on *X*. Since condition (iii) of Theorem 1 is not satisfied, \mathcal{B} is not a strong base.

Now, we consider other example.

Example 3. Let $(I[L], \delta)$ be the *L*-fuzzy unit interval with its canonical *L*-topology. We briefly recall the definitions from [2], [3].

Let $md_{\mathbb{R}}(L)$ be the family of all the monotonically decreasing mappings $\lambda \in L^{\mathbb{R}}$ with $\bigvee_{t \in \mathbb{R}} \lambda(t) = 1$ and $\bigwedge_{t \in \mathbb{R}} \lambda(t) = 0$. Let $md_I(L)$ be the family of all the elements in $md_{\mathbb{R}}(L)$ with $\lambda(t) = 1$ for t < 0 and $\lambda(t) = 0$ for t > 1. Define an equivalence relation \sim on $md_I(L)$ as: $\lambda \sim \mu \Leftrightarrow \forall t, \lambda(t-) = \mu(t-), \lambda(t+) = \mu(t+)$, where $\lambda(t-) = \bigwedge_{s < t} \lambda(s), \lambda(t+) = \bigvee_{s > t} \lambda(s)$. Denote the family of all the equivalence classes in $md_I(L)$ with respect to \sim by I[L]. For every $t \in \mathbb{R}$, define $L_t, R_t \in L^{I[L]}$ as: $L_t(\lambda) = \lambda(t-)'$ and $R_t(\lambda) = \lambda(t+)$.

Let \mathcal{B}_L^I be the set of all finite intersections of elements of $\mathcal{S}_L^I = \{L_t, R_t \in L^{I[L]} : t \in \mathbb{R}\}.$

It is easy to show that the set \mathcal{B}_{L}^{I} is a base for a *L*-topology, which we denote by δ . Moreover, for the set \mathcal{B}_{L}^{I} conditions (i) and (ii) of Theorem 1 are immediately satisfied, because $R_{t} = \mathbf{1}_{X}$ for t < 0; $L_{s} = \mathbf{1}_{X}$ for s > 1, and \mathcal{B}_{L}^{I} is closed under finite intersections.

Let us to show that for the set \mathcal{B}_L^I the condition (iii) is not true. Let $\lambda : \mathbb{R} \to [0, 1]$ be the continuous function defined by

$$\lambda(x) := \begin{cases} 1 & \text{if } x < 0, \\ 1 - x & \text{if } 0 \le x \le 1, \\ 0 & \text{if } x > 1 \end{cases}$$

and for $n \geq 2$ consider points $t_n, s_n \in \mathbb{R}$ defined by

$$t_n := \begin{cases} \frac{1}{2} + 2^{-n} & \text{for } n \text{ even,} \\ \frac{1}{4} + 2^{-n} & \text{for } n \text{ odd} \end{cases} \quad \text{and} \quad s_n := \begin{cases} \frac{3}{4} - 2^{-n} & \text{for } n \text{ even,} \\ \frac{1}{2} - 2^{-n} & \text{for } n \text{ odd.} \end{cases}$$

A straightforward calculation shows that $L_{s_n}(\lambda) \wedge R_{t_n}(\lambda) = \frac{1}{2} - 2^{-n}$ for all $n \geq 2$, so $\bigvee_{n=2}^{\infty} (R_{t_n} \wedge L_{s_n})(\lambda) = \frac{1}{2}$. Hence, for the *L*-point $\lambda_{1/2}$ we have $\lambda_{1/2} \in \bigvee_{n=2}^{\infty} (R_{t_n} \wedge L_{s_n})$. Now, suppose that there exists an element $R_{t_o} \wedge L_{s_o} \in \mathcal{B}_L^I$ with

$$\lambda_{1/2} \in R_{t_o} \wedge L_{s_o} \subset \bigvee_{n=2}^{\infty} (R_{t_n} \wedge L_{s_n}).$$

Since $(R_{t_o} \wedge L_{s_o})(\lambda) = 1/2$, we have $t_o \leq \frac{1}{2}$, $s_o \geq \frac{1}{2}$ and at least one of the its is equal to 1/2. Let, for simplicity, $t_o = \frac{1}{2}$ and $s_o \geq \frac{1}{2}$. We define the function μ as

$$\mu(x) := \begin{cases} 1 & \text{if} \quad x \le 3/4, \\ 1/2 & \text{if} \quad 3/4 < x \le 1 \\ 0 & \text{if} \quad x > 1. \end{cases}$$

A straightforward calculation shows that

$$R_{1/2}(\mu) = \bigvee_{t>1/2} \mu(t) = 1$$
 and $L_{s_o}(\mu) = 1 - \bigwedge_{s < s_0} \mu(s) = 1 - 0 = 1$,

so $(R_{1/2} \wedge L_{s_o})(\mu) = 1$. Similarly,

$$R_{t_n}(\mu) = \bigvee_{t>t_n} \mu(t) = 1$$
 and $L_{s_n}(\mu) = 1 - \bigwedge_{s < s_n} \mu(s) = 1 - 1 = 0$

so $\bigvee_{n=2}^{\infty} (R_{t_n} \wedge L_{s_n})(\mu) = 0$. This is a contradiction.

Therefore, for the *L*-point $\lambda_{1/2}$ there does not exist a set $R_{t_o} \wedge L_{s_o} \in \mathcal{B}_L^I$ with $\lambda_{1/2} \in R_{t_o} \wedge L_{s_o} \subset \bigvee_{n=2}^{\infty} (R_{t_n} \wedge L_{s_n})$. Thus, for the set \mathcal{B}_L^I the condition (iii) is not true. By Theorem 1, \mathcal{B} is not a strong base for δ .

Remark 2. In traditional topology condition (iii) of Theorem 1 is automatically satisfied since,

 $\{B_{\lambda}\}_{\lambda \in J} \subset \mathcal{B}$ and $x \in \bigcup_{\lambda} B_{\lambda} \Rightarrow \exists \lambda_0 \in J$ such that $x \in B_{\lambda_0} \subset \bigcup_{\lambda} B_{\lambda}$. Thus, in this case the notions of base and strong base coincide.

As noted above if \mathcal{B} is a strong base then the subset $\mathcal{A}_{\mathcal{B}}$ is a *L*-topology. On the other hand, by definition the subset $\delta_{\mathcal{B}}$ also is a *L*-topology. In the following theorem we'll show that these topologies coincide.

Theorem 3. If \mathcal{B} is a strong base then $\mathcal{A}_{\mathcal{B}} = \delta_{\mathcal{B}}$.

Proof. Since $\{B_{\lambda}\} \subset \mathcal{B}$ and $\bigvee_{\lambda} B_{\lambda} \in \delta_{\mathcal{B}}$ we have $\mathcal{A}_{\mathcal{B}} \subset \delta_{\mathcal{B}}$. Conversely, let $U \in \delta_{\mathcal{B}}$. Choose, for each $x_{\alpha} \in U$, an element B_x of \mathcal{B} such that $x_{\alpha} \in B_x \subset U$. Then $U = \bigvee_x B_x$, so U equals a union of elements of \mathcal{B} , i.e. $U \in \mathcal{A}_{\mathcal{B}}$.

Remark 3. According to Example 2, in order for $\delta_{\mathcal{B}}$ to be a *L*-topology it is necessary that \mathcal{B} satisfy condition (iii). On the other hand, conditions (i) and (ii) are sufficient for $\mathcal{A}_{\mathcal{B}}$ to be a *L*-topology.

Clearly the first and second conditions of L-topology are satisfied. To check the third condition, we consider

$$\left(\bigvee_{\lambda} B_{\lambda}\right) \wedge \left(\bigvee_{\mu} B_{\mu}\right) = \bigvee_{\lambda,\mu} (B_{\lambda} \wedge B_{\mu}).$$

If $x_{\alpha} \in (B_{\lambda} \wedge B_{\mu})$ there is, by (ii), an element $B_{\alpha,x,\lambda,\mu}$ of \mathcal{B} such that $x_{\alpha} \in B_{\alpha,x,\lambda,\mu} \subset (B_{\lambda} \wedge B_{\mu})$. Hence $B_{\lambda} \wedge B_{\mu} = \bigvee_{\alpha,x} B_{\alpha,x,\lambda,\mu}$. Therefore,

$$\left(\bigvee_{\lambda} B_{\lambda}\right) \wedge \left(\bigvee_{\mu} B_{\mu}\right) = \bigvee_{\alpha, x, \lambda, \mu} B_{\alpha, x, \lambda, \mu},$$

i.e. $(\bigvee_{\lambda} B_{\lambda}) \wedge (\bigvee_{\mu} B_{\mu}) \in \mathcal{A}_{\mathcal{B}}$. Thus $\mathcal{A}_{\mathcal{B}}$ is a L-topology.

Sometimes we need to go in the reverse direction, from a *L*-topology to a strong base that generates it. Below it is one way of obtaining a strong base for a given topology.

Theorem 4. Let (X, δ) be a L-ts. Suppose that C is a subset of elements of δ such that for each $U \in \delta$ and $x_{\alpha} \in U$, there is an element C_x of C such that $x_{\alpha} \in C_x \subset U$. Then C is a strong base for δ .

Proof. Immediate from Definition 1.

Remark 4. By Remark 3, a subset \mathcal{B} of L^X with the properties (i), (ii) and without the condition (iii), generates the *L*-topology $\mathcal{A}_{\mathcal{B}}$. Theorem 4 shows that δ is a strong base of itself.

The following theorem shows when one *L*-topology is finer than another in terms of strong bases for these topologies.

Theorem 5. Let \mathcal{B} and \mathcal{B}' be strong bases for the L-topologies δ ve δ' on X, respectively. Then the followings are equivalent:

- (1) $\delta \subseteq \delta'$.
- (2) For each $x_{\alpha} \in \mathcal{F}$ and each base member $B \in \mathcal{B}$ containing x_{α} , there is a base member $B' \in \mathcal{B}'$ such that $x_{\alpha} \in B' \subset B$.

Proof. \Leftarrow Let $U \in \delta$ and $x_{\alpha} \in U$. Since \mathcal{B} generates δ , there is a base member $B \in \mathcal{B}$ with $x_{\alpha} \in B \subset U$. By hypothesis there is a base member $B' \in \mathcal{B}'$ with $x_{\alpha} \in B' \subset B$. Hence $x_{\alpha} \in B' \subset U$, so $U \in \delta'$, by definition.

 \implies We are given $x_{\alpha} \in \mathcal{F}$ and $B \in \mathcal{B}$ with $B \ni x_{\alpha}$. B belongs to δ by definition and $\delta \leq \delta'$ by hypothesis; therefore $B \in \delta'$. Since δ' is generated by \mathcal{B}' , there is a base member $B' \in \mathcal{B}'$ such that $x_{\alpha} \in B' \subset B$.

As an application of Theorem 5 we give the following example.

Example 4. Let \mathcal{B} be the set of all *fuzzy circular regions* in the plane \mathbb{R}^2 , i.e. the set of all fuzzy sets of the form $B(A^{\beta}_{(x,y)}, r)$, where $r > 0, A^{\beta}_{(x,y)} \in \mathcal{F}$ and

$$B(A^{\beta}_{(x,y)}, r)(A^{\alpha}_{(x',y')}) := \begin{cases} \alpha\beta, & \text{if } \sqrt{(x-x')^2 + (y-y')^2} + |\alpha - \beta| < r, \\ 0, & \text{otherwise}, \end{cases}$$

in other words $B(A_{(x,y)}^{\beta}, r) := \bigcup_{\substack{\sqrt{(x-x')^2 + (y-y')^2} \\ +|\alpha-\beta| < r}} A_{(x',y')}^{\alpha\beta}.$

Similarly, let \mathcal{C} be the collection of all *fuzzy rectangular regions* in the plane \mathbb{R}^2 , i.e. the collection of all fuzzy sets of the form $C(A_{(x,y)}^{\beta}, a)$, where a > 0, $A_{(x',y')}^{\beta} \in \mathcal{F}$ and

$$C(A_{(x,y)}^{\beta},a)(A_{(x',y')}^{\alpha}) := \begin{cases} \alpha\beta, & \text{if} \max\{|x-x'|, |y-y'|\} + |\alpha-\beta| < a, \\ 0, & \text{otherwise} \end{cases}$$

for each $A^{\alpha}_{(x',y')} \in \mathcal{F}$.

It is easy to see that the sets \mathcal{B} and \mathcal{C} are strong bases of *L*-topologies on \mathbb{R}^2 and by Theorem 5 the set \mathcal{B} generates the same *L*-topology as the set \mathcal{C} .

Let us, for instance, to show that the set \mathcal{B} satisfies the condition (iii) of Theorem 1. Let $A_{(x,y)}^{\alpha}$ be a *L*-point and $\{B_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{B}$ with $A_{(x,y)}^{\alpha} \in \bigvee_{\lambda \in \Lambda} B_{\lambda}$. We may suppose without loss of generality that $B_{\lambda} = B(A_{(x,y)}^{\beta_{\lambda}}, r_{\lambda})$ for any $\lambda \in \Lambda$. Then one has $\sup_{\lambda} \beta_{\lambda} = 1$. If $\alpha = 1$ we choose the set $B \in \mathcal{B}$ as $B(A_{(x,y)}^{1}, r)$, for some $r \in \{r_{\lambda}\}_{\lambda \in \Lambda}$. Let $\alpha < 1$ and $r = \sup_{\lambda} r_{\lambda}$. Then there exists $\lambda_0 \in \Lambda$ with $\alpha < \beta_{\lambda_0}$. If $r < \infty$, we choose the set $B \in \mathcal{B}$ as $B(A_{(x,y)}^{\beta_{\lambda_0}}, r')$, where $r' = 2|\alpha - \beta_{\lambda_0}|$. It is all one implies that $A_{(x,y)}^{\alpha} \in B \subset \bigvee_{\lambda \in \Lambda} B(A_{(x,y)}^{\beta_{\lambda_0}}, r_{\lambda})$. Thus, for the set \mathcal{B} the condition (iii) is true.

References

- 1. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- U. Hoehle, S. E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston— Dordrecht—London, 1999.
- Liu Ying-Ming and Luo Mao-Kang, *Fuzzy Topology*, World Scientific Publishing, Singapore, 1998.
- 4. S. E. Rodabaugh, E. P. Klement, and U. Hoehle (Eds.), *Applications of Category Theory to Fuzzy Subsets*, Kluwer Academic Publishers, Boston—Dordrecht—London, 1992.
- R. H. Warren, Neighborhoods, bases, and continuity in fuzzy topological spaces, Rocky Mountain Journal of Mathematics 8 (1978), 459–470.
- C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl. 46 (1974), 316–328.

TASHKENT INSTITUTE OF RAILWAYS AND ENGINEERING, TASHKENT, UZBEKISTAN; KARADENIZ TECHNICAL UNIVERSITY, TURKEY

E-mail address: gafur_rakhimov@yahoo.com *E-mail address*: rakhimov@ktu.edu.tr

TASHKENT AUTOROAD INSTITUTE, TASHKENT, UZBEKISTAN

Received 08/01/2011