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STRONG BASE FOR FUZZY TOPOLOGY

A. A. RAKHIMOV AND F. M. ZAKIROV

Abstract. It is known that a base for a traditional topology, or for a L-topology,

τ , is a subset B of τ with the property that every element G ∈ τ can be written as a
union of elements of B. In the classical case it is equivalent to say that G ∈ τ if and
only if for any x ∈ G we have B ∈ B satisfying x ∈ B ⊆ G. This latter property is

taken as the foundation for a notion of strong base for a L-topology. Characteristic
properties of a strong base are given and among other results it is shown that a strong
base is a base, but not conversely.

It is well known that a base for a traditional topology, or for a L-topology, τ , is a
subset B of τ with the property that every element G ∈ τ can be written as a union of
elements of B. In the classical case, but not in the L-topology case, it is equivalent to
say that G ∈ τ if and only if for any x ∈ G we have B ∈ B satisfying x ∈ B ⊆ G. This
latter property is taken as the foundation for a notion of strong base for a L-topology.

The two conditions

(i) each point is contained in at least one member of the base, and
(ii) if a point belongs to the intersection of two members of the base, then it belongs

to a member of the base contained in that intersection,

which are characteristic of a base of a traditional topology, are shown to be insufficient
to characterize a strong base for a L-topology. Therefore, characteristic properties of a
strong base are given and among other results it is shown that a strong base is a base,
but not conversely.

Throughout this paper, L will be a Hutton algebra, i.e. complete and completely
distributive lattice which has an order-reversing involution ′ : L → L, a smallest element
0 and a largest element 1 (0 6= 1). Obviously, for every set X, LX , the family of all
L-subsets of X, i.e., all mappings from X to L, is also a Hutton algebra under the
pointwise order and induced order-reversing involution; we denote the largest element
and the smallest element of LX by 1X and 0X , respectively. A L-topological space, briefly,
L-ts, is a pair (X, δ), where X is a set and δ, called an L-topology on X, is a subfamily
of LX which contains 0X and 1X , and is closed under the operations of taking finite
intersections and arbitrary unions. Obviously, in case L = [0, 1], a L-topological space
([0, 1]X , δ) (for simplicity, denoted by (X, δ)) is just a fuzzy topological space in the sense
of Chang [1].

We assume that the reader is familiar with the usual notions and basic concepts of
L-topology and lattice theory.

For x ∈ X and α ∈ L (α 6= 0) denote the L-subset taking value α at x and value 0
at other points of X by xα, call it an L-point on X. The family of all L-points in X is
denoted by F (see [3], [6]). A L-point xα is said to belong to A, written xα ∈ A, where
A is an L-subset in X, iff α ≤ A(x). For all undefined basic concepts, our reference is
[2–5].
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Definition 1. A subset B of a L-topology δ on X which has the property

U ∈ δ ⇐⇒ (xα ∈ U ⇒ ∃ B ∈ B with xα ∈ B ⊆ U)

is called a strong base of δ.

Theorem 1. A subset B of LX is a strong base for some L-topology on X if and only if

it satisfies the following three conditions:

(i) xα ∈ F ⇒ ∃ Bxα
∈ B with xα ∈ Bxα

,

(ii) B1, B2 ∈ B and xα ∈ B1∧B2 ⇒ ∃ B3 ∈ B with xα∈B3 ⊂ (B1∧B2),
(iii) {Bλ}λ∈J ⊂ B and xα ∈ ∨

λ Bλ ⇒ ∃B ∈ B with xα∈B ⊂ ∨

λ Bλ.

Proof. It is clear that if B is a strong base for some L-topology on X then it satisfies the
conditions (i)–(iii). Conversely, suppose that for subset B of LX the conditions (i)–(iii)
are satisfied. We shall show that the set

δB = {U ⊂ LX | xα ∈ U ⇒ ∃ Bxα
∈ B with xα ∈ Bxα

⊆ U}
is a L-topology (so-called L-topology generated by B) on X.

0X ∈ δB is trivial. For every xα ∈ F there exists Bxα
∈ B satisfying xα ∈ Bxα

by (i).
Since Bxα

⊂ 1X we have xα ∈ Bxα
⊂ 1X , so 1X ∈ δB.

Let {Uλ}λ∈J ⊂ δB and xα ∈
∨

λ Uλ. Let αλ := Uλ(x). Then xα ∈
∨

λ xαλ
. Since

Uλ ∈ δB, then ∃ Bλ ∈ B with xαλ
∈ Bλ ⊂ Uλ. Hence

xα ∈
∨

λ

xαλ
⊂

∨

λ

Bλ ⊂
∨

λ

Uλ.

By (iii) there exists an element B of B such that xα ∈ B ⊂ ∨

λ Bλ. Therefore xα ∈ B ⊂
∨

λ Uλ. Thus
∨

λ Uλ ∈ δB.
Let U, V ∈ δB and xα ∈ U∧V . Then xα ∈ U and xα ∈ V . Therefore ∃ B1, B2 ∈ B

with xα ∈ B1 ⊂ U and xα ∈ B2 ⊂ V . Hence xα ∈ B1∧B2 ⊂ U∧V . From (ii)
there is an element B3 ∈ B such that xα ∈ B3 ⊂ B1∧B2. Then xα ∈ B3 ⊂ U∧V , i.e.
U∧V ∈ δB. �

Example 1. . Let X = {a, b} and L = [0, 1]. Let B be the collection of the following
L-subsets: B0 = (x, a

4/5
, b

1/2
), B1 = (x, a

1
, b

1/2
), B2 = (x, a

1/2
, b
1
), B3 = (x, a

1/2
, b

1/2
),

Bn = (x, a

4/5−1/n
, b

1/2
) (n ≥ 4).

It is easy to check that for B the conditions (i), (ii) and (iii) of Theorem 1 are valid.
Therefore, B is a strong base for some L-topology on X.

Theorem 2. Every strong base of a L-topology is a base.

Proof. Let B be a strong base on X and AB the subset of all unions of elements of B.
We shall show that the subset AB is a L-topology on X.

The first condition of L-topology is trivial. If {Uλ}λ∈J ⊂ AB, then for every λ there
exists a family {Bµ,λ} ⊂ B with Uλ =

∨

µ Bµ,λ. Hence
∨

λ Uλ =
∨

µ,λ Bµ,λ ∈ AB, i.e.
the second condition of L-topology is also true.

Put U =
∨

λ Bλ, V =
∨

µ Bµ ∈ AB and let xα ∈ U ∧ V =
(
∨

λ Bλ

)

∧
(
∨

µ Bµ

)

. Then

xα ∈ ∨

λ Bλ and xα ∈ ∨

µ Bµ. By (iii) there are B,B′ ∈ B such that

xα ∈ B ⊂
∨

λ

Bλ and xα ∈ B′ ⊂
∨

µ

Bµ.

Hence

xα ∈ B ∧B′ ⊂
(

∨

λ

Bλ

)

∧
(

∨

µ

Bµ

)

.
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There exists by (ii) an element Bx,α of B with xα ∈ Bx,α ⊂ B ∧ B′. Therefore
xα ∈ Bx,α ⊂

(
∨

λ Bλ

)

∧
(
∨

µ Bµ

)

and U ∧ V =
(
∨

λ Bλ

)

∧
(
∨

µ Bµ

)

=
∨

x,α Bx,α,
i.e. U∧V ∈ AB. Thus AB is a L-topology on X. �

Remark 1. The converse of Theorem 2 is false:

Example 2. Consider the family B of Example 1 without the set B0.

It is easy to check that for B the conditions (i) and (ii) of Theorem 1 are valid again
and it is base for some L-topology on X. But, now for B the condition (iii) is not true.
For this we consider the set

∨

n≥4 Bn = (x, a

4/5
, b

1/2
).

It is easy to see that for this set there is no set B ∈ B with B(a) ≥ α and
B ⊂

∨

n≥4 Bn. Hence, for the L-point aα there does not exist a set B ∈ B with

aα ∈ B ⊂ ∨

n≥4 Bn. Therefore,
∨

n≥4 Bn 6∈ δB, i.e. δB is not a L-topology on X.

Since condition (iii) of Theorem 1 is not satisfied, B is not a strong base.

Now, we consider other example.

Example 3. Let (I[L], δ) be the L-fuzzy unit interval with its canonical L-topology. We
briefly recall the definitions from [2], [3].

Let mdR(L) be the family of all the monotonically decreasing mappings λ ∈ LR with
∨

t∈R
λ(t) = 1 and

∧

t∈R
λ(t) = 0. Let mdI(L) be the family of all the elements in mdR(L)

with λ(t) = 1 for t < 0 and λ(t) = 0 for t > 1. Define an equivalence relation ∼ on
mdI(L) as: λ ∼ µ ⇔ ∀ t, λ(t−) = µ(t−), λ(t+) = µ(t+), where λ(t−) =

∧

s<t λ(s),
λ(t+) =

∨

s>t λ(s). Denote the family of all the equivalence classes in mdI(L) with

respect to ∼ by I[L]. For every t ∈ R, define Lt, Rt ∈ LI[L] as: Lt(λ) = λ(t−)′ and
Rt(λ) = λ(t+).

Let BI
L be the set of all finite intersections of elements of SI

L = {Lt, Rt ∈ LI[L] : t ∈ R}.

It is easy to show that the set BI
L is a base for a L-topology, which we denote by δ.

Moreover, for the set BI
L conditions (i) and (ii) of Theorem 1 are immediately satisfied,

because Rt = 1X for t < 0; Ls = 1X for s > 1, and BI
L is closed under finite

intersections.
Let us to show that for the set BI

L the condition (iii) is not true. Let λ : R → [0, 1] be
the continuous function defined by

λ(x) :=











1 if x < 0,

1− x if 0 ≤ x ≤ 1,

0 if x > 1

and for n ≥ 2 consider points tn, sn ∈ R defined by

tn :=

{

1
2 + 2−n for n even,
1
4 + 2−n for n odd

and sn :=

{

3
4 − 2−n for n even,
1
2 − 2−n for n odd.

A straightforward calculation shows that Lsn(λ) ∧ Rtn(λ) = 1
2 − 2−n for all n ≥ 2, so

∨∞
n=2(Rtn ∧Lsn)(λ) =

1
2 . Hence, for the L-point λ1/2 we have λ1/2 ∈ ∨∞

n=2(Rtn ∧Lsn).

Now, suppose that there exists an element Rto ∧ Lso ∈ BI
L with

λ1/2 ∈ Rto ∧ Lso ⊂
∞
∨

n=2

(Rtn ∧ Lsn).
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Since (Rto ∧ Lso)(λ) = 1/2, we have to ≤ 1
2 , so ≥ 1

2 and at least one of the its is

equal to 1/2. Let, for simplicity, to = 1
2 and so ≥ 1

2 . We define the function µ as

µ(x) :=











1 if x ≤ 3/4,

1/2 if 3/4 < x ≤ 1,

0 if x > 1.

A straightforward calculation shows that

R1/2(µ) =
∨

t>1/2

µ(t) = 1 and Lso(µ) = 1−
∧

s<s0

µ(s) = 1− 0 = 1,

so
(

R1/2 ∧ Lso

)

(µ) = 1. Similarly,

Rtn(µ) =
∨

t>tn

µ(t) = 1 and Lsn(µ) = 1−
∧

s<sn

µ(s) = 1− 1 = 0,

so
∨∞

n=2(Rtn ∧ Lsn)(µ) = 0. This is a contradiction.
Therefore, for the L-point λ1/2 there does not exist a set Rto ∧Lso ∈ BI

L with λ1/2 ∈
Rto ∧ Lso ⊂ ∨∞

n=2(Rtn ∧ Lsn). Thus, for the set BI
L the condition (iii) is not true. By

Theorem 1, B is not a strong base for δ.

Remark 2. In traditional topology condition (iii) of Theorem 1 is automatically satisfied
since,

{Bλ}λ∈J ⊂ B and x ∈ ⋃

λ Bλ ⇒ ∃ λ0 ∈ J such that x ∈ Bλ0
⊂ ⋃

λ Bλ.
Thus, in this case the notions of base and strong base coincide.

As noted above if B is a strong base then the subset AB is a L-topology.
On the other hand, by definition the subset δB also is a L-topology. In the following
theorem we’ll show that these topologies coincide.

Theorem 3. If B is a strong base then AB = δB.

Proof. Since {Bλ} ⊂ B and
∨

λ Bλ ∈ δB we have AB ⊂ δB. Conversely, let U ∈ δB.
Choose, for each xα ∈ U , an element Bx of B such that xα ∈ Bx ⊂ U . Then U =

∨

x Bx,
so U equals a union of elements of B, i.e. U ∈ AB. �

Remark 3. According to Example 2, in order for δB to be a L-topology it is necessary
that B satisfy condition (iii). On the other hand, conditions (i) and (ii) are sufficient for
AB to be a L-topology.

Clearly the first and second conditions of L-topology are satisfied. To check the third
condition, we consider

(

∨

λ

Bλ

)

∧
(

∨

µ

Bµ

)

=
∨

λ,µ

(

Bλ ∧Bµ

)

.

If xα ∈ (Bλ ∧ Bµ) there is, by (ii), an element Bα,x,λ,µ of B such that xα ∈ Bα,x,λ,µ ⊂
(Bλ ∧Bµ). Hence Bλ ∧Bµ =

∨

α,x Bα,x,λ,µ. Therefore,

(

∨

λ

Bλ

)

∧
(

∨

µ

Bµ

)

=
∨

α,x,λ,µ

Bα,x,λ,µ,

i.e.
(
∨

λ Bλ

)

∧
(
∨

µ Bµ

)

∈ AB. Thus AB is a L-topology.

Sometimes we need to go in the reverse direction, from a L-topology to a strong base
that generates it. Below it is one way of obtaining a strong base for a given topology.
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Theorem 4. Let (X, δ) be a L-ts. Suppose that C is a subset of elements of δ such that

for each U ∈ δ and xα ∈ U , there is an element Cx of C such that xα ∈ Cx ⊂ U . Then

C is a strong base for δ.

Proof. Immediate from Definition 1. �

Remark 4. By Remark 3, a subset B of LX with the properties (i), (ii) and without the
condition (iii), generates the L-topology AB. Theorem 4 shows that δ is a strong base of
itself.

The following theorem shows when one L-topology is finer than another in terms of
strong bases for these topologies.

Theorem 5. Let B and B′ be strong bases for the L-topologies δ ve δ′ on X, respectively.

Then the followings are equivalent:

(1) δ ⊆ δ′.
(2) For each xα ∈ F and each base member B ∈ B containing xα, there is a base

member B′ ∈ B′ such that xα ∈ B′ ⊂ B.

Proof. ⇐= Let U ∈ δ and xα ∈ U . Since B generates δ, there is a base member B ∈ B
with xα ∈ B ⊂ U . By hypothesis there is a base member B′ ∈ B′ with xα ∈ B′ ⊂ B.
Hence xα ∈ B′ ⊂ U , so U ∈ δ′, by definition.

=⇒ We are given xα ∈ F and B ∈ B with B ∋ xα. B belongs to δ by definition
and δ � δ′ by hypothesis; therefore B ∈ δ′. Since δ′ is generated by B′, there is a base
member B′ ∈ B′ such that xα ∈ B′ ⊂ B. �

As an application of Theorem 5 we give the following example.

Example 4. Let B be the set of all fuzzy circular regions in the plane R
2, i.e. the set of

all fuzzy sets of the form B(Aβ
(x,y), r), where r > 0, Aβ

(x,y) ∈ F and

B(Aβ
(x,y), r)(A

α
(x′,y′)) :=







αβ, if
√

(x− x′)2 + (y − y′)2 + |α− β| < r,

0, otherwise,

in other words B(Aβ
(x,y), r) :=

⋃

√
(x−x′)2+(y−y′)2

+|α−β|<r

Aαβ
(x′,y′).

Similarly, let C be the collection of all fuzzy rectangular regions in the plane R
2, i.e.

the collection of all fuzzy sets of the form C(Aβ
(x,y), a), where a > 0, Aβ

(x′,y′) ∈ F and

C(Aβ
(x,y), a)(A

α
(x′,y′)) :=

{

αβ, if max{|x− x′|, |y − y′|}+ |α− β| < a,

0, otherwise

for each Aα
(x′,y′) ∈ F .

It is easy to see that the sets B and C are strong bases of L-topologies on R
2 and by

Theorem 5 the set B generates the same L-topology as the set C.
Let us, for instance, to show that the set B satisfies the condition (iii) of Theorem 1.

Let Aα
(x,y) be a L-point and {Bλ}λ∈Λ ⊂ B with Aα

(x,y) ∈
∨

λ∈Λ Bλ. We may suppose

without loss of generality that Bλ = B(Aβλ

(x,y), rλ) for any λ ∈ Λ. Then one has

supλ βλ = 1. If α = 1 we choose the set B ∈ B as B(A1
(x,y), r), for some r ∈ {rλ}λ∈Λ.

Let α < 1 and r = supλ rλ . Then there exists λ0 ∈ Λ with α < βλ0
. If r < ∞, we choose

the set B ∈ B as B(A
βλ0

(x,y), r); if r = ∞, as B(A
βλ0

(x,y), r
′), where r′ = 2|α− βλ0

|. It is all
one implies that Aα

(x,y) ∈ B ⊂ ∨

λ∈Λ B(Aβλ

(x,y), rλ). Thus, for the set B the condition

(iii) is true.
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