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ON THE COMPLETENESS OF GENERAL BOUNDARY VALUE

PROBLEMS FOR 2× 2 FIRST-ORDER SYSTEMS OF ORDINARY

DIFFERENTIAL EQUATIONS

A. V. AGIBALOVA, M. M. MALAMUD, AND L. L. ORIDOROGA

Dedicated to the blessed memory of A. G. Kostyuchenko.

Abstract. Let B = diag(b−1
1 , b−1

2 ) 6= B∗ be a 2 × 2 diagonal matrix with

b−1
1 b2 /∈ R and let Q be a smooth 2× 2 matrix function. Consider the system

−iBy′ +Q(x)y = λy, y = col(y1, y2), x ∈ [0, 1],

of ordinary differential equations subject to general linear boundary conditions
U1(y) = U2(y) = 0. We find sufficient conditions on Q and Uj that guaranty com-
pleteness of root vector system of the boundary value problem.

Moreover, we indicate a condition on Q that leads to a completeness criterion in
terms of the linear boundary forms Uj , j ∈ {1, 2}.

1. Introduction

Spectral theory of non-selfadjoint boundary value problems (BVP) for nth order or-
dinary differential equations (ODE)

(1.1) y(n) + q1y
(n−2) + · · ·+ qn−1y = λny

on a finite interval takes its origin in the classical papers by Birkhoff [2] and Tamarkin [21].
They have introduced a concept of regular boundary conditions (BC) and investigated
asymptotic behavior of the eigenvalues and the eigenfunctions of such problems for ODE.
Moreover, they have proved that the system of root functions, i.e. eigenfunctions and
associated functions (EAF) of the regular BVP is complete. Their results are also treated
in classical monographs (see, for instance, [18, Section 2]).

Note however, that some natural and important boundary conditions are not regular.
For instance, boundary value problem with separated boundary conditions is regular if
and only if n = 2l, l is the number of BC at the left (right) endpoint of the interval.
Later on, completeness of the system of EAF of such boundary value problems had
been announced by M. V. Keldysh in his famous communication [7] and was proved by
A. A. Shkalikov [20]. The completeness property of other non-regular BVP for nth order
ordinary differential equations on [0, 1] has been investigated by A. G. Kostyuchenko,
G. V. Radzievsky and A. A. Shkalikov ([9], [10]), A. P. Khromov [8], V. S. Rykhlov [19]
and others.

Consider first-order system of ODE of the form

(1.2) Ly := L(Q)y :=
1

i
B
dy

dx
+Q(x)y = λy, y = col(y1, . . . , yn),
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where B is a non-singular diagonal n× n matrix

(1.3) B = diag(b−1
1 In1

, . . . , b−1
r Inr

) ∈ C
n×n, n = n1 + · · ·+ nr,

with complex entries satisfying bj 6= bk for j 6= k, and Q = (Qjk)
r
j,k=1 is a potential

matrix with respect to the orthogonal decomposition C
n = C

n1 ⊕ · · · ⊕ C
nr , Q(·) ∈

L2([0, 1];Cn×n).
Systems (1.2) form more general object than ordinary differential equations. They

are of significant interest in some theoretical and practical questions. More precisely, for
n = 2m, B = diag(Im,−Im) and Q11 = Q22 = 0, the system (1.2) is equivalent to the
Dirac system [17]. For r = n and bj = exp (2πij/n), an nth-order differential equation
is reduced to the system (1.2) (see [13]).

To obtain a BVP, we adjoin to equation (1.2) boundary conditions

(1.4) Cy(0) +Dy(1) = 0, C = (cjk), D = (djk) ∈ C
n×n.

Denote by LC,D := LC,D(Q) the operator in L2([0, 1];Cn) associated with the BVP
(1.2)–(1.4). Moreover, in what follows we impose the maximality condition

(1.5) rank(C D) = n,

which is equivalent to ker(CC∗ +DD∗) = {0}.
Recall some results from [16]. For this we need the following construction. Let A =

diag(a1, . . . , an) be a diagonal matrix with entries ak (not necessarily distinct) that are
not lying on the imaginary axis, Re ak 6= 0. Starting from arbitrary matrices C,D ∈
C

n×n, we define the auxiliary matrix TA(C,D) as follows:

• if Re ak > 0, then the kth column in the matrix TA(C,D) coincides with the kth
column of the matrix C,

• if Re ak < 0, then the kth column in the matrix TA(C,D) coincides with the kth
column of the matrix D.

Definition 1.1. The boundary conditions (1.4) are called weakly B-regular (or, simply,
weakly regular) if there exist three complex numbers z1, z2, z3 satisfying the following
conditions:

(a) the origin is an interior point of the triangle △z1z2z3 ;
(b) det TzjB(C,D) 6= 0 for j ∈ {1, 2, 3}.

Theorem 1.2. [14, 16, Theorem 1.2]. Let Q ∈ L1[0, 1]⊗ C
n×n and let boundary condi-

tions (1.4) be weakly B-regular. Then the system of root functions of the BVP (1.2)–(1.4)
(of the operator LC,D(Q)) is complete and minimal in L2[0, 1]⊗C

n. Moreover, the root
vector system of the operator LC,D(Q)∗ is complete and minimal too.

In the case of B = diag(b−1
1 , b−1

2 ) = B∗, more general BVP that include irregular and
even degenerate boundary conditions were investigated in papers [15] and [16]. The later
publications have been inspired by the results of [12] on the completeness property of
boundary value problems for Sturm–Liouville operators with degenerate BC.

In this connection we also mention the recent papers by F. Gesztesy and V. Tkachen-
ko [6] and P. Djakov and B. Mityagin [4], [5], devoted to Riesz basis property for boundary
value problems for Sturm–Liouville and Dirac operators.

In what follows we consider only 2× 2-systems

(1.6) −iBy′ +Q(x)y = λy, y = col(y1, y2), x ∈ [0, 1],

with the matrix B = diag(b−1
1 , b−1

2 ) 6= B∗, assuming that b−1
1 b2 /∈ R,

(1.7) Q =

(
Q11 Q12

Q21 Q22

)
, Q(·) ∈ L2([0, 1];C2×2).
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Without loss of generality one can assume that Q11 = Q22 = 0 (see Lemma 2.6 below).
To the system (1.6) we join the boundary conditions

(1.8) Uj(y) := aj1y1(0) + aj2y2(0) + aj3y1(1) + aj4y2(1) = 0, j ∈ {1, 2}.

We put Ajk :=

(
a1j a1k
a2j a2k

)
and Jjk := detAjk, j, k ∈ {1, 2, 3, 4}.

It follows from Definition 1.1 that boundary conditions (1.8) are weakly B-regular if
and only if one of the following conditions is satisfied:

(1.9) (i) J14J23 6= 0 or (ii) J12J34 6= 0.

If conditions (1.9) are violated then boundary conditions (1.8) are equivalent (see Lem-
ma 2.7 below) either to the boundary conditions

(1.10)

{
U1(y) := y1(0) = 0,

U2(y) := a22y2(0) + a23y1(1) + a24y2(1) = 0

or to the boundary conditions

(1.11)

{
y1(0) + ã12y2(0) = 0,

y1(1) + ã22y2(0) = 0,

where ã12ã22 6= 0.
Despite of the fact that conditions (1.11) are not weakly regular, the following result

on completeness property holds.

Theorem 1.3. [15, 16, Theorem 6.1]. Let B = diag(b−1
1 , b−1

2 ), b−1
1 b2 /∈ R, Q ∈ L1[0, 1]⊗

C
2×2 and ã12ã22 6= 0. Then the root vector system of the problem (1.6), (1.11) (of the

operator LC,D(Q)) is complete and minimal in L2
(
[0, 1];C2

)
.

It is also shown in [16] that in the case B = diag(b−1
1 , b−1

2 ) 6= B∗ weak B-regularity
of boundary conditions (1.4) is equivalent to the completeness of both operators LC,D(0)
and LC,D(0)∗ with Q = 0.

Since boundary conditions (1.11) are not weakly B-regular, the root vector system of
the corresponding adjoint operator LC,D(Q)∗ is not complete in general. For instance,
the operator LC,D(0)∗ with Q = 0 is not complete.

In this paper we study completeness of the root vectors of system (1.6) subject to
boundary conditions that are not covered by Theorems 1.2 and 1.3. In particular, we
complete Theorem 1.3 by investigating completeness property of the adjoint operator
LC,D(Q)∗. More precisely, we investigate the BVP (1.6), (1.10), assuming that

(1.12) B =

(
1 0
0 b−1

)
, b ∈ C\R, Q =

(
0 Q12

Q21 0

)

and Q12(·) and Q21(·) admit an analytic continuation to the disk DR (in short Q(·) ∈
A(DR)⊗ C

2×2) for some sufficiently large R.
Now we can state the main results on the completeness property of BVP (1.6), (1.10),

(1.12). As it is already mentioned, completeness depends on a potential matrix Q(·).

Theorem 1.4. Let a23a24 6= 0 and Q21(1) 6= 0. Then the root vector system of the
boundary value problem (1.6), (1.10), (1.12) (the operator LC,D(Q)) is complete and
minimal in L2

(
[0, 1];C2

)
. Moreover, the adjoint operator LC,D(Q)∗ := (LC,D(Q))∗ is

complete and minimal too.

Theorem 1.5. Let a23 = 0, a24 6= 0 and Q12(0)Q21(1) 6= 0. Then both the operator
LC,D(Q) and its adjoint LC,D(Q)∗ are complete and minimal in L2

(
[0, 1];C2

)
.

Theorem 1.6. Let a23 6= 0, a24 = 0 and Q21(0)Q21(1) 6= 0. Then both the operator
LC,D(Q) and its adjoint LC,D(Q)∗ are complete and minimal in L2

(
[0, 1];C2

)
.
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Finally, we indicate a condition on a potential matrix Q(·) that leads to completeness
criterion for LC,D(Q) in terms of boundary conditions.

Corollary 1.7. Let Q ∈ A(DR) ⊗ C
2×2 and Q12(0)Q12(1)Q21(0)Q21(1) 6= 0. Then the

boundary value problem (1.6)–(1.8) is incomplete if and only if BC (1.8) are equivalent
to one of the ”Volterra” boundary conditions: y1(0) = y2(0) = 0 or y1(1) = y2(1) = 0.

The proof is immediate from Theorems 1.2, 1.3, 1.4, 1.5, 1.6. We mention also that
BC (1.8) are not equivalent to ”Volterra” conditions if and only if A12 6= 0 and A34 6= 0.

2. Preliminary and auxiliary results

2.1. General results. Here we provide some general results from [13] and [16]. For
brevity we adapt them only for the case of 2×2 systems (1.6), (1.12) investigated below.

Note that the line {λ ∈ C : Re(λ) = Re(bλ)} divides the complex plane in two
halfplanes. Denote them by S1 and S2. Namely, S1 = {λ ∈ C : Re(λ) < Re(bλ)} and
S2 = {λ ∈ C : Re(λ) > Re(bλ)}. Clearly, each of the halfplanes Sp, p ∈ {1, 2} is of the
form Sp = {λ ∈ C : ϕ1p < arg λ < ϕ2p}. Fix p ∈ {1, 2} and denote by S the sector
strictly embedded into Sp, i.e.,

S := {λ : ϕ1p + ε < arg λ < ϕ2p − ε}, ε > 0;

SR := {λ ∈ S : |λ| > R}.
(2.1)

Theorem 2.1. [15, 3]. Let S be the sector of the form (2.1). Then for a sufficiently
large R, system (1.6), (1.12) has the fundamental system of matrix solutions
(2.2)

Y1(x;λ) =

(
(1 + o(1))eiλx

o(1)eiλx

)
, Y2(x;λ) =

(
o(1)eibλx

(1 + o(1))eibλx

)
, λ → ∞, λ ∈ SR,

which is analytic in λ ∈ SR and has the asymptotic behavior uniformly in x.

Suppose that Φ(x;λ) is a fundamental 2×2 matrix solution of equation (1.6), satisfying
the initial condition Φ(0;λ) = I2 (I2(∈ C

2×2) is the identity matrix), i.e.

Φ(x;λ) :=
(
Φ1(x;λ) Φ2(x;λ)

)
, Φj(x;λ) :=

(
ϕ1j(x;λ)
ϕ2j(x;λ)

)
, j ∈ {1, 2},

and Φ1(0;λ) :=

(
1

0

)
, Φ2(0;λ) =

(
0

1

)
.

Lemma 2.2. [16, Theorem 2.1, step (vi)]. The system {Φj(·;λ) : j ∈ {1, 2}, λ ∈ C} of
solutions of equation (1.6) is complete in L2([0, 1];C2), i.e., the only f ∈ L2([0, 1];C2)
satisfying ∫ 1

0

〈Φj(x;λ), f(x)〉 dx = 0, λ ∈ C, j ∈ {1, 2},

is trivial, f(·) ≡ 0.

2.2. Transformation operators.

Lemma 2.3. [13]. Assume that e±(·;λ) are solutions of system (1.6), (1.12), correspond-
ing to the initial conditions e+(0;λ) =

(
1
1

)
, e−(0;λ) =

(
1
−1

)
. Then solutions e±(·;λ)

admit the representations

(2.3) e±(x;λ) = (I +K±)e0±(x;λ) = e0±(x;λ) +

∫ x

0

K±(x, t)e0±(t;λ) dt,

where

e0±(x;λ) =

(
eib1λx

±eib2λx

)
, K±(x, t) =

(
K±

jk(x, t)
)2
j,k=1

,

and K±
ij (·, ·) ∈ A(Ω), Ω = {(x, t) : 0 ≤ t ≤ x ≤ 1}.
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Introduce the following functions

(2.4) R±
jk(t) := K+

jk(1, t)±K−
jk(1, t), j, k ∈ {1, 2}.

Lemma 2.4. [15, 16]. Let Q(·) ∈ A(C) ⊗ C
2×2, and let K±(·, ·) be the kernels of the

transformation operators given by (2.3). Then the following relations hold:

R−
11(1) = K+

11(1, 1)−K−
11(1, 1) = 2i(b− 1)−1Q12(0),(2.5)

R+
21(1) = K+

21(1, 1) +K−
21(1, 1) = 2ib(b− 1)−1Q21(1).(2.6)

R+
12(1) = K+

12(1, 1) +K−
12(1, 1) = 2ib(1− b)−1Q12(1),(2.7)

R−
22(1) = K+

22(1, 1)−K−
22(1, 1) = 2ib2(1− b)−1Q21(0).(2.8)

Lemma 2.5. Under the assumptions of Lemma 2.4 the following relation holds:

(2.9)
(
R−

21

)′
(1) =

2b

(b− 1)2
Q12(0)Q21(1).

Proof. According to [13], the kernels K±(x, t) satisfy the equations

(2.10) BDxK
±(x, t) +DtK

±(x, t)B = −iQ(x)K±(x, t), (x, t) ∈ Ω,

and the boundary conditions

K±
12(x, x) =

ib

1− b
Q12(x), K±

21(x, x) =
ib

b− 1
Q21(x),(2.11)

bK±
11(x, 0)±K±

12(x, 0) = 0, bK±
21(x, 0)±K±

22(x, 0) = 0.(2.12)

It follows from (2.10) that

(2.13) b−1 ∂

∂x

(
K±

21(x, t)
)
+

∂

∂t

(
K±

21(x, t)
)
= −iQ21(x)K

±
11(x, t).

Using the identity

du(x, x)

dx
=

∂u(x, t)

∂x

∣∣∣∣
t=x

+
∂u(x, t)

∂t

∣∣∣∣
t=x

, u ∈ C1(Ω),

it follows from (2.13) that

b−1 d

dx
K±

21(x, x) + (1− b−1)
∂K±

21(x, t)

∂t

∣∣∣∣
t=x

= −iQ21(x)K
±
11(x, x).

Taking into account the second relation in (2.11) we obtain

(2.14)
∂K±

21(x, t)

∂t

∣∣∣∣
t=x

=
ib

1− b
Q21(x)K

±
11(x, x)−

ib

(b− 1)2
Q′

21(x).

Setting x = 1 in (2.14) and taking into account (2.5) and the identity

d

dt
R−

21(t) =
d

dt

(
K+

21(1, t)−K−
21(1, t)

)

we arrive at the following expression for (R−
21)

′(1):
(

d

dt
R−

21(t)

)∣∣∣∣
t=1

=
ib

1− b
Q21(1)R

−
11(1) =

2b

(b− 1)2
Q12(0)Q21(1).

Lemma is proved. �
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2.3. Boundary value problem. Next we show that the problem (1.6), (1.10) with an

arbitrary potential matrix Q(·) =
(
Qjk(·)

)2
j,k=1

∈ L1[0, 1] ⊗ C
2×2 can be reduced to a

similar problem with an off-diagonal potential matrix.

Lemma 2.6. The problem (1.6), (1.10) with a potential matrix Q(·) =
(
Qjk(·)

)2
j,k=1

is

equivalent to the problem

(2.15) −iBy′ + Q̃(x)y = λy, x ∈ [0, 1],

(2.16)

{
y1(0) = 0,

ã22y2(0) + ã23y1(1) + ã24y2(1) = 0

with the off-diagonal potential matrix Q̃ =

(
0 Q̃12

Q̃21 0

)
. Moreover, for any j ∈ {2, 3, 4}

the following equivalence holds: ã2j = 0 if and only if a2j = 0.

Proof. Denote by W (·) the fundamental 2× 2 matrix solution of the Cauchy problem

(2.17) iBW ′(x) = Q1(x)W (x), W (0) = I2,

where the 2× 2 matrix function Q1(·) is diagonal ,

(2.18) Q1(x) = diag
(
Q11(x), Q22(x)

)
.

Since BQ1(x) = Q1(x)B for any x ∈ [0, 1], the matrix functions W1(·) = BW (·) and
W2(·) = W (·)B satisfy equation (2.17) and common initial conditions

(2.19) iBW ′
j(x) = Q1(x)Wj(x), Wj(0) = B, j ∈ {1, 2}.

According to the Cauchy uniqueness theorem W1(x) = W2(x) for x ∈ [0, 1], i.e.

(2.20) W (x)B −BW (x) = 0, x ∈ [0, 1].

Letting L̃ = (I ⊗W )−1L(I ⊗W ) we deduce from (1.6), (2.17) and (2.20) that for any
f ∈ C1[0, 1]⊗ C

2

L̃f − λf = W−1(x)(−iB)W (x)f ′ +W−1(x)(−iB)W ′(x)f

+W−1(x)Q(x)W (x)f − λf = −iB
d

dx
f + Q̃(x)f − λf,

(2.21)

where

(2.22) Q̃(x) := W−1(x)
(
Q(x)−Q1(x)

)
W (x).

It follows from (2.20) that the matrix function W (·) is diagonal

(2.23) W (x) = diag
(
W11(x),W22(x)

)
.

It follows from (2.22) and (2.23) that Q̃(·) is off-diagonal

Q̃(x) =

(
0 Q̃12(x)

Q̃21(x) 0

)
, x ∈ [0, 1].

Thus, the problem (1.6), (1.10) is transformed into the problem (2.15), (2.16), where
ã22 = a22, ã23 = a23W11(1), ã24 = a24W22(1). Since W (·) is the fundamental matrix so-
lution of (2.17), detW (x) = W11(x)W22(x) 6= 0 for x ∈ [0, 1]. Hence W11(1)W22(1) 6= 0,
that implies the desired equivalence: a2j 6= 0 ⇔ ã2j 6= 0. �

In what follows we investigate the problem (1.6), (1.10) assuming that conditions
(1.10) are not weakly regular, i.e., conditions (1.9) are violated. In the following lemma
we describe all possible types of such boundary conditions.



10 A. V. AGIBALOVA, M. M. MALAMUD, AND L. L. ORIDOROGA

Lemma 2.7. Assume that the conditions (1.9) are violated. Then boundary conditions
(1.8) are equivalent either to conditions (1.10) or to conditions (1.11).

Proof. Let us consider the cases, when conditions (1.9) are violated. Then there are
four distinct possibilities: a) J14 = J12 = 0, b) J14 = J34 = 0, c) J23 = J12 = 0,
d) J23 = J34 = 0. The linear transform T1 :

(
y1

y2

)
7→
(
y2

y1

)
reduces the case a) to the case

d), the case b) to the case c) and vice versa. The linear transform T2 : y(x) 7→ y(1− x)
reduces the case b) to the case d) and vice versa. Therefore, it suffices to consider only
the case b).

In turn, the latter case splits into two subcases:

J14 = J34 = J13 = 0 and J14 = J34 = 0, J13 6= 0.

At first let J14 = J34 = J13 = 0. Then

rank

(
a11 a13 a14
a21 a23 a24

)
= 1

and hence boundary conditions (1.8) are equivalent to the conditions with the coefficient
matrix (

0 1 0 0
â21 0 â23 â24

)
.

Applying transform T2 we arrive at boundary conditions (1.10).
Further, let J14 = J34 = 0, J13 6= 0. Multiplying the coefficient matrix of the linear

algebraic system (1.8) by the matrix A−1
13 from the left, we obtain

(2.24)

(
a11 a13
a21 a23

)−1(
a11 a12 a13 a14
a21 a22 a23 a24

)
=

(
1 ã12 0 ã14
0 ã22 1 ã24

)
,

where ã12 = J−1
13 J23, ã22 = J−1

13 J12, ã14 = −J−1
13 J34 and ã24 = J−1

13 J14. Since J14 =
J34 = 0, one has ã14 = −J−1

13 J34 = 0, ã24 = J−1
13 J14 = 0 and we arrive at boundary

conditions (1.11). Further, if ã12ã22 6= 0 we arrive at conditions (1.11). If ã12 = 0 we
obtain conditions (1.10). Finally, if ã22 = 0 we apply transformation T2 and get boundary
conditions (1.10). �

The eigenvalues of problem (1.6), (1.10) are the zeros of the characteristic determinant

∆(λ) := detU(λ),

where

(2.25) U(λ) :=

(
U1(Φ1(·;λ)) U1(Φ2(·;λ))
U2(Φ1(·;λ)) U2(Φ2(·;λ))

)
=:

(
u11(λ) u12(λ)
u21(λ) u22(λ)

)
.

The characteristic determinant of the problem (1.6), (1.10) with Q(·) ≡ 0 is denoted by
∆0(λ).

Simple computations show that the characteristic determinant of the problem (1.6),
(1.10) is

(2.26) ∆(λ) = a22 + a23ϕ12(λ) + a24ϕ22(λ),

where ϕjk(λ) := ϕjk(1, λ), j, k ∈ {1, 2}. Moreover, if Q = 0 we have

(2.27) ∆0(λ) = a22 + a24e
ibλ.

Next we introduce a concept of degenerate and non-degenerate BVP (BC).

Definition 2.8. (i) Boundary conditions (1.8) are called degenerate if either ∆0(·) ≡ 0
or it has no zeros.

(ii) Boundary value problem (1.6), (1.8) is called degenerate if either ∆(·) ≡ 0 or it
has no zeros.

Otherwise boundary conditions (1.8) (problem (1.6), (1.8)) are called non-degenerate.
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By formula (2.27), boundary conditions (1.10) are non-degenerate if and only if
a22a24 6= 0. Hence the boundary conditions described in each of Theorems 1.4 and 1.5
are degenerate for some coefficients and non-degenerate for the rest of coefficients. On
the other hand, all boundary conditions that covered by Theorem 1.6 are degenerate.

Note, in addition, that in the case a23 = a24 = 0 problem (1.6), (1.8) is degenerate:
∆(λ) ≡ ∆0(λ) = a22 = const. It means that Theorems 1.4, 1.5, 1.6 cover all non-
degenarate BVP (1.6), (1.12), (1.10).

Note also that boundary conditions for Sturm-Liouville operator is degenerate if and
only if ∆0(·) = const. It is not the case for system (1.6). For instance, if a22 = 0 and
a24 6= 0 then ∆0(λ) = a24e

ibλ 6= const but has no zeros.

3. Proofs of the main results

3.1. Proof of Theorem 1.4. We divide the proof in several steps.
(i) The spectrum σ(L) of the operator L generated by problem (1.6), (1.12), (1.10) in

L2

(
[0, 1];C2

)
coincides with the zero set of the determinant ∆(λ) and the multiplicity

pn of the zero λn of the entire function ∆(λ) coincides with the dimension of the root
subspace

Hn := span{ker(L− λn)
k : k ∈ Z+}, dimHn = pn

(see [1, Sec. 5.6], [18]).
Introduce the solutions w1(x;λ) and w2(x;λ) of the equation (1.6) by setting

(3.1) w1(x;λ) := u22(λ)Φ1 − u21(λ)Φ2, w2(x;λ) := −u12(λ)Φ1 + u11(λ)Φ2.

It can easily be seen that Uj(wj) = ∆(λ), U1(w2) = U2(w1) = 0, Uj(wj(·, λn)) = 0.

Further, the functions w
(k)
j (x;λ) := Dk

λwj(x;λ) satisfy the equations

Lw
(k)
j = λw

(k)
j + kw

(k−1)
j , j ∈ {1, 2}.

Since Uν(D
k
λwj(·;λ)) = Dk

λ(Uν(wj(·;λ))) and λn is the zero of ∆(·) of multiplicity pn,

then the functions w
(k)
j (x;λn), k ∈ {0, 1, . . . , pn − 1}, satisfy boundary conditions (1.8)

and hence belong to the root subspace Hn.
Assuming that the root vector system of the operator L is incomplete in L2

(
[0, 1];C2

)
,

there exists a nonzero vector f = col(f1, f2), f ∈ L2

(
[0, 1];C2

)
, orthogonal to this

system. Then the entire functions

(3.2) wj(λ; f) :=

∫ 1

0

〈wj(x;λ), f(x)〉 dx, j ∈ {1, 2},

have a zero of multiplicity > pn at every point λn ∈ σ(L). Thus,

(3.3) Gj(λ; f) :=
wj(λ; f)

∆(λ)
, j ∈ {1, 2},

is the entire function. Since both wj(·; f) and ∆(·) are the entire functions of order not
exceeding one, the order of Gj(·; f) does not exceed one as well ([11, Chapter 1, § 3.9]).
In the next few steps we show that Gj(·; f) ≡ 0, j ∈ {1, 2}, by estimating it from above.

(ii) To estimate the determinant ∆(·) from below we transform its expression using
Lemmas 2.3, 2.4 and 2.5. Since Φ(0;λ) = I2 and e±(0;λ) =

(
1
±1

)
, we have

2Φ1(·;λ) = e+(·;λ) + e−(·;λ), 2Φ2(·;λ) = e+(·;λ)− e−(·;λ).
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Taking into account representations (2.3) for the solutions e±(·;λ), we obtain

ϕ12(1;λ) =
1

2

∫ 1

0

R+
21(t)e

iλtdt+
1

2

∫ 1

0

R−
22(t)e

ibλtdt,(3.4)

ϕ22(1;λ) = eibλ +
1

2

∫ 1

0

R−
21(t)e

iλtdt+
1

2

∫ 1

0

R+
22(t)e

ibλtdt.(3.5)

Noting that R±
jk(·) ∈ C1[0, 1], j, k ∈ {1, 2}, we integrate by parts in (3.4) and (3.5)

ϕ12(λ) =
R+

21(1)

2i

eiλ

λ
+

R−
22(1)

2ib

eibλ

λ
−

(
R+

21(0)

2i
+

R−
22(0)

2ib

)
1

λ

(3.6)

−

∫ 1

0

(R+
21)

′(t)

2i

eiλt

λ
dt −

∫ 1

0

(R−
22)

′(t)

2ib

eibλt

λ
dt,

ϕ22(λ) = eibλ +
1

2

∫ 1

0

R+
22(t)e

ibλtdt+
R−

21(1)

2i

eiλ

λ
−

R−
21(0)

2iλ
−

∫ 1

0

(R−
21)

′(t)

2i

eiλt

λ
dt.

(3.7)

It follows from conditions (2.11) that R−
21(1) = K+

21(1, 1)−K−
21(1, 1) = 0. Combining

this relation with equalities (3.6), (3.7) we arrive at the following expression for the
characteristic determinant (2.26)

(3.8)

∆(λ) = a22 + a24

(
eibλ +

1

2

∫ 1

0

R+
22(t)e

ibλtdt
)
+

a23R
+
21(1)

2i

eiλ

λ

+
a23R

−
22(1)

2ib

eibλ

λ
−
(a23R+

21(0) + a24R
−
21(0)

2i
+

a23R
−
22(0)

2ib

) 1
λ

−

∫ 1

0

a23(R
−
22)

′(t)

2ib

eibλt

λ
dt −

∫ 1

0

a23(R
+
21)

′(t) + a24(R
−
21)

′(t)

2i

eiλt

λ
dt.

Using (2.6) ∆(·) can be rewritten in the form

(3.9) ∆(λ) = a22 + a24e
ibλ +

ba23Q21(1)

b− 1

eiλ

λ
+ o(1) + o

(
eibλ

)
+ o

(
eiλ

λ

)
, |λ| → +∞.

(iii) In this step we estimate ∆(·) from below. To this end we introduce the following
sectors:

S1 = {λ : Re(ibλ) > 0, Re(iλ) < 0, |λ| > R},

S2 = {λ : Re(iλ) > 0, Re(ibλ) < 0, |λ| > R}
(3.10)

and denote by S1,ε and S2,ε the closed sectors strictly embedded into S1 and S2, re-
spectively (cf. with (2.1)). Denote also by S3,ε and S4,ε the remaining sectors, i.e.
S1,ε ∪ S2,ε ∪ S3,ε ∪ S4,ε = C

2\{λ : |λ| 6 R}.
First we estimate ∆(·) in S1,ε. Since a24 6= 0, it follows from (3.9) that there exists a

constant C1 > 0 such that for sufficiently large |λ| the following estimate holds:

(3.11) |∆(λ)| > C1|e
ibλ|, λ ∈ S1,ε.

Next, let us estimate ∆(·) in S2,ε. Since a23 6= 0 and Q21(1) 6= 0, representation (3.9)
implies the following estimate for the characteristic determinant ∆(·):

(3.12) |∆(λ)| =
|eiλ|

|λ|

(ba23Q21(1)

b− 1
+ o(1)

)
> C2

|eiλ|

|λ|
, λ ∈ S2,ε,

with some C2 > 0.
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(iv) In this step we estimate the growth of wj(·; f) from above in the sector S1,ε. We
put

Ũ(λ) :=
(
ũjk(λ)

)2
j,k=1

:=
(
Uj(Yk(·;λ))

)2
j,k=1

,

where Yj := col(y1j , y2j), j ∈ {1, 2}, are the solutions of equation (1.6) with asymptotic
behavior (2.2):

(3.13) Y1(x;λ) =

(
(1 + o(1))eiλx

o(1)eiλx

)
, Y2(x;λ) =

(
o(1)eibλx

(1 + o(1))eibλx

)
.

Alongside solutions (3.1) we introduce the solutions V1(x;λ) and V2(x;λ) by setting

(3.14) V1(x;λ) = ũ22(λ)Y1 − ũ21(λ)Y2, V2(x;λ) = −ũ12(λ)Y1 + ũ11(λ)Y2, λ ∈ S1,ε.

The fundamental matrices Φ(x, ·) and Y (x, ·) :=
(
Y1(·;λ) Y2(x, ·)

)
of equation (1.6) as

well as the matrices U(·) and Ũ(·) are connected by

(3.15) Φ(x;λ) = Y (x;λ)P (λ) and U(λ) = Ũ(λ)P (λ), λ ∈ S1,ε,

where P (·) is holomorphic in S1,ε and invertible 2× 2 matrix function. Hence

(3.16) wj(x;λ) = Vj(x;λ) detP (λ), λ ∈ S1,ε, j ∈ {1, 2}.

It follows from (3.13) that

(3.17) Ũ(λ) =

(
ũ11(λ) ũ12(λ)
ũ21(λ) ũ22(λ)

)
=

(
1 + o(1) o(1)
o(1)

(
a24 + o(1)

)
eibλ

)
, |λ| → ∞.

Substituting matrix entries (3.17) into (3.14), we have

(3.18) V1(x;λ) =

((
a24 + o(1)

)
eibλ+iλx + o

(
eibλx

)

o(1)eibλ+iλx + o
(
eibλx

)
)

=

(
a24e

ibλ+iλx + o
(
eibλ

)

o
(
eibλ

)
)
,

(3.19) V2(x;λ) =

(
o
(
eiλx

)
+o
(
eibλx

)

o
(
eiλx

)
+(1 + o(1))eibλx

)
=

(
o
(
eibλx

)

eibλx + o
(
eibλx

)
)

for |λ| → ∞, λ ∈ S1,ε. Setting x = 0 in the first of equalities (3.15) and taking into
account (3.13) and Φ(0, λ) = I2, we get P (λ) = I2 + o2(λ). Then the solutions w1(x;λ)
and w2(x;λ) (see (3.16)) have the asymptotic behavior

(3.20) w1(x;λ) =

(
a24e

ibλ+iλx + o
(
eibλ

)

o
(
eibλ

)
)
, |λ| → ∞, λ ∈ S1,ε,

(3.21) w2(x;λ) =

(
o
(
eibλx

)

eibλx + o
(
eibλx

)
)
, |λ| → ∞, λ ∈ S1,ε.

Now we can estimate |wj(λ; f)| in the sector S1,ε

(3.22)

|w1(λ; f)| 6 ‖f‖L2([0,1];C2)‖w1(·;λ)‖L2([0,1];C2) 6
C̃1|e

ibλ|√
| Imλ|

+ o
(
|eibλ|

)
= o
(
eibλ

)
,

|w2(λ; f)| 6
C̃2|e

ibλ|√
| Im(bλ)|

= o
(
eibλ

)
, λ ∈ S1,ε,

with some positive constants C̃1, C̃2.

(v) As in the previous step we obtain that the matrix function Ũ(λ) from (3.17) and
the solutions w1(x;λ) and w2(x;λ) have the following asymptotic behavior

Ũ(λ) =

(
1 + o(1) o(1)

a23e
iλ + o(eiλ) a22 + o(1)

)
, λ → ∞, λ ∈ S2,ε,



14 A. V. AGIBALOVA, M. M. MALAMUD, AND L. L. ORIDOROGA

w1(x;λ) =

( (
a22 + o(1)

)
eiλx + o

(
eiλ
)

−
(
a23 + o(1)

)
eiλ+ibλx + o

(
eiλ
)
)

=

(
a22e

iλx + o
(
eiλ
)

−a23eiλ+ibλx + o
(
eiλ
)
)
,

w2(x;λ) =

(
o
(
eiλx

)
+o
(
eibλx

)

o
(
eiλx

)
+
(
1 + o(1)

)
eibλx

)
=

(
o
(
eiλx

)

o
(
eiλx

)
)
, λ → ∞, λ ∈ S2,ε.

For |wj(λ; f)| the following estimate holds:

(3.23) |wj(λ; f)| = o
(
eiλ
)
, |λ| → ∞, λ ∈ S2,ε, j ∈ {1, 2}.

(vi) In this step we prove that Gj(λ; f) ≡ 0, j ∈ {1, 2}, λ ∈ C. Combining relations
(3.22) with (3.11), we get

(3.24) |Gj(λ; f)| = o(1), |λ| → ∞, λ ∈ S1,ε j ∈ {1, 2}.

Further, it follows from (3.12) and (3.23) that

(3.25) lim
|λ|→+∞

∣∣wj(λ; f)∆
−1(λ)λ−1

∣∣ = 0, λ ∈ S2,ε, j ∈ {1, 2}.

The last relation yields

(3.26) |Gj(λ; f)| = o(λ) for |λ| → ∞, λ ∈ S2,ε, j ∈ {1, 2}.

Let’s draw in the sectors S1,ε and S2,ε two lines passing through the origin. They di-
vide the complex plane into four sectors of opening less than π. Both relations (3.24)
and (3.26) hold at the boundary of these sectors. Applying to each of the sectors the
Phragmén-Lindelöf theorem and taking into account that Gj(λ; f) are functions of ex-
ponential type, we conclude that relations (3.26) hold in each of the sectors Sj,ε, j ∈
{1, 2, 3, 4}. Hence, Gj(λ; f), j ∈ {1, 2}, are the constant functions. Taking into account
relations (3.24), we obtain Gj(λ; f) ≡ 0, j ∈ {1, 2}, λ ∈ C.

(vii) In this step we prove the completeness property. In the previous step we proved
that wj(λ; f) ≡ 0, j ∈ {1, 2}, λ ∈ C. These equalities mean that f(·) is orthogonal to
wj(·;λ) for all λ ∈ C, j ∈ {1, 2}. It follows from (3.1) that f(·) is orthogonal to two linear
independent solutions Φ1(·, λ) and Φ2(·, λ) of Cauchy problem for all λ 6= λn, λn ∈ σ(L).
Since the corresponding integral is continuous in λ, f(·) is orthogonal to Φ1(·, λ) and
Φ2(·, λ) for λ = λn as well. Thus, by Lemma 2.2, f(·) ≡ 0. Therefore the root vector
system of problem (1.6), (1.12), (1.10) is complete in L2

(
[0, 1];C2

)
.

The minimality is implied, for instance, by [16, Lemma 2.4].
(viii) Let us prove the completeness property of the adjoint operator LC,D(Q)∗. It is

defined by the differential expression

(3.27) L∗ = −iB∗ d

dx
+Q∗(x), Q∗ =

(
0 Q21

Q12 0

)
,

and the boundary conditions

(3.28)

{
a24y2(0) + a22y2(1) = 0,

a24by1(1)− a23y2(1) = 0.

If a22 6= 0, these conditions are equivalent to the conditions (1.11) and the complete-
ness property of LC,D(Q)∗ is implied by Theorem 1.3 even without additional assump-
tions on the potential matrix Q(·).

If a22 = 0, we apply the transformation T1 to the problem (3.27), (3.28), and arrive at

the boundary value problem (1.6), (1.10) with the potential matrix Q̃ =

(
0 Q̃12

Q̃21 0

)

in place of Q(·), and the boundary conditions (1.10) that satisfy the assumptions of

Theorem 1.4. Clearly, Q̃21(·) = Q21(·), hence Q̃(·) satisfies the conditions of Theorem 1.4
which yields the completeness of the operator LC,D(Q)∗.
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3.2. The proof of Theorem 1.5. Now boundary conditions (1.10) take the form

(3.29)
U1(y) = y1(0) = 0,
U2(y) = a22y2(0) + a24y2(1) = 0.

We divide the proof in several steps.
(i) Introduce the solution w(x;λ) of equation (1.6) by setting

(3.30) w(x;λ) := u22(λ)Φ1(x;λ)− u21(λ)Φ2(x;λ).

Assume that the root vector system of the operator L is incomplete in L2
(
[0, 1];C2

)
.

Then there exists a vector f = col(f1, f2) ∈ L2
(
[0, 1];C2

)
\{0} orthogonal to this system.

Setting

w(λ; f) :=

∫ 1

0

〈w(x;λ), f(x)〉 dx,

we obtain an entire function w(λ; f) that has a zero of multiplicity > pn at every point
λn ∈ σ(L). Thus, the function

G(λ) := G(λ; f) :=
w(λ; f)

∆(λ)

is also the entire function. By [11, §1.3.9], the order of G(λ) does not exceed one.
(ii) In this step we transform the characteristic determinant ∆(·). Since a23 = 0, it

follows from (3.8) that
(3.31)

∆(λ) = a22 + a24

(
eibλ +

1

2

∫ 1

0

a24R
+
22(t)e

ibλtdt
)
−

a24R
−
21(0)

2iλ
−

∫ 1

0

a24(R
−
21)

′(t)

2i

eiλt

λ
dt.

The later expression can be rewritten as

∆(λ) = a22 + a24e
ibλ −

∫ 1

0

a24(R
−
21)

′(t)

2i

eiλt

λ
dt+ o (1) + o

(
eibλ

)
, |λ| → ∞.(3.32)

(iii) Next we estimate G(·) in the sector S1,ε. First we estimate ∆(·) from below.
Since a24 6= 0 it follows from (3.32) and (3.10) that with some positive constant C3

(3.33) |∆(λ)| > C3|e
ibλ|, λ ∈ S1,ε,

Alongside the solution w(x;λ) defined by (3.30) we introduce a solution

(3.34) V (x;λ) = ũ22(λ)Y1(x;λ)− ũ21(λ)Y2(x;λ),

where ũ2j(λ) = U2(Yj), j ∈ {1, 2}. As in Theorem 1.4 the fundamental matrices Φ(x, ·)
and Y (x, ·) :=

(
Y1(x, ·) Y2(x, ·)

)
of equation (1.6) as well as the matrix functions U(·)

and Ũ(·) are connected by

(3.35) Φ(x;λ) = Y (x;λ)P (λ) and U(λ) = Ũ(λ)P (λ), λ ∈ S1,ε,

where the 2× 2 matrix function P (·) is holomorphic and invertible in S1,ε. Hence

(3.36) w(x;λ) = V (x;λ)P (λ), λ ∈ S1,ε.

It follows from (3.13) that

(3.37)

Ũ(λ) =

(
ũ11(λ) ũ12(λ)
ũ21(λ) ũ22(λ)

)
=

(
1 + o(1) o(1)

o(1) + o
(
eiλ
)

a24e
ibλ + a22 + o

(
eibλ

)
+ o(1)

)

=

(
1 + o(1) o(1)
o(1) a24e

ibλ + o
(
eibλ

)
)
, |λ| → ∞, λ ∈ S1,ε.
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Combining (3.37) with (3.34) and (3.13), we get

V (x;λ) =

(
a24e

ibλ+iλx + o
(
eibλ

)

o
(
eibλ

)
)
, λ ∈ S1,ε.

As in the proof of Theorem 1.4 we obtain

w(x;λ) =

(
a24e

ibλ+iλx + o
(
eibλ

)

o
(
eibλ

)
)
, |λ| → ∞, λ ∈ S1,ε.

Let us estimate |w(·; f)| in the sector S1,ε. We have

|w(λ; f)| 6 ‖f‖L2([0,1];C2) · ‖w(·;λ)‖L2([0,1];C2) 6
C̃3|e

ibλ|√
| Imλ|

+ o
(
eibλ

)
= o
(
eibλ

)
,

where C̃3 > 0. Combining this estimate with (3.33) we arrive at the desired estimate

(3.38) |G(λ; f)| = o(1), |λ| → ∞, λ ∈ S1,ε.

(iv) In this step we estimate G(·) in the sector S2,ε. To estimate ∆(·) from below we
integrate by parts the last summand in (3.31). We obtain

(3.39)

∫ 1

0

a24(R
−
21)

′(t)

2i

eiλt

λ
dt = −

a24(R
−
21)

′(1)

2

eiλ

λ2
+ o

(
eiλ

λ2

)
, λ ∈ S2,ε.

By Lemma 2.5, the expression (3.32) for characteristic determinant ∆(·) takes the form

∆(λ) =
a24bQ12(0)Q21(1)

(b− 1)2
eiλ

λ2
+ o

(
eiλ

λ2

)
, λ ∈ S2,ε.

Since a24 6= 0 and Q12(0)Q21(1) 6= 0, by the assumption, we get the estimate

|∆(λ)| > C4
|eiλ|

|λ|2
, λ ∈ S2,ε, |λ| → ∞,

where C4 is a positive constant.

As in the step (iii) we obtain that the matrix function Ũ(λ), the solution w(x;λ) and
the function w(λ; f) have the following asymptotic behavior as |λ| → ∞, λ ∈ S2,ε,

Ũ(λ) =

(
1 + o(1) o(1)
o(eiλ) a22 + o(1)

)
,

w(x;λ) =

(
a22e

iλx + o(eiλx) + o
(
eiλ
)

o(eiλx) + o(eiλ)

)
=

(
a22e

iλx + o
(
eiλ
)

o(eiλ)

)
,

|w(λ; f)| = o
(
eiλ
)
.

Hence

(3.40) |G(λ; f)| = o(λ2) for |λ| → ∞, λ ∈ S2,ε.

(v) In this step we prove completeness and minimality. As in the proof of Theo-
rem 1.4 combining estimates (3.38) and (3.40) with the Phragmén-Lindelöf theorem,
yieldst G(λ; f) = a1λ+ a0. Then condition (3.38) yields G(λ; f) = w(λ; f) ≡ 0.

It follows that the vector-function f(·) is orthogonal to all solutions of system (1.6)
subject to the boundary conditions

(3.41)
y1(0) + y2(0) + y1(1) = 0,
a22y2(0) + a24y2(1) = 0.

If a22 6= 0, then J14J23 6= 0 and the boundary conditions (3.41) are weakly regular.
Therefore, by Theorem 1.2, the root vector system of problem (1.6), (1.12), (3.41) is
complete in L2

(
[0, 1];C2

)
.
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Let a22 = 0. Then the boundary value problem obtained from (1.6), (3.41) by applying
transformations T1 and T2 defined in Lemma 2.7 satisfy conditions of Theorem 1.4. Thus,
the root vector system of the problem (1.6), (1.12), (3.41) is complete in L2

(
[0, 1];C2

)
.

The minimality follows from [16, Lemma 2.4].
(vi) Let us prove the completeness of the adjoint operator LC,D(Q)∗. It is defined

by the differential expression (3.27) and the boundary conditions (3.28) with a23 = 0.
Applying the transformation T2 to the BVP corresponding to the operator LC,D(Q)∗

we arrive at the boundary value problem (1.6), (1.10) with the potential matrix Q̃ =(
0 Q̃12

Q̃21 0

)
in place of Q(·), and the boundary conditions (1.10) that satisfy the as-

sumptions of Theorem 1.5. Since, Q̃21(x) = Q12(1− x) and Q̃12(x) = Q21(1− x), one

has Q̃12(0)Q̃21(1) = Q21(1)Q12(0) 6= 0, hence Q̃ satisfies the conditions of Theorem 1.5.
Thus, the root vector system of the operator LC,D(Q)∗ is complete and minimal.

The proof of Theorem 1.6 is similar to that of Theorems 1.4 and 1.5 and is omitted.

Remark 3.1. Note in conclusion, that Theorems 1.4, 1.5, 1.6 remain valid for boundary

value problem (1.6), (1.7), (1.10), with not necessarily off-diagonal potential matrix Q̃(·).
Indeed, by Lemma 2.6,

Q̃(x) = W−1(x)

(
0 Q12(x)

Q21(x) 0

)
W (x).

Hence Q̃12(x) = W−1
11 (x)Q12(x)W22(x) and Q̃21(x) = W−1

22 (x)Q21(x)W11(x). Since
W11(x)W22(x) 6= 0 for x ∈ [0, 1], the following equivalences hold:

• Q21(1) 6= 0 ⇔ Q̃21(1) 6= 0;

• Q12(0)Q21(1) 6= 0 ⇔ Q̃12(0)Q̃21(1) 6= 0;

• Q21(0)Q21(1) 6= 0 ⇔ Q̃21(0)Q̃21(1) 6= 0.

Remark 3.2. Theorems 1.4, 1.5 and 1.6 demonstrate the following phenomenon similar
to that for Sturm-Liouville operators with degenerate boundary conditions (cf. [12]).

The completeness property does not preserve under weak perturbation. For instance,
the operator LC,D(εQ) = −iB d

dx
+ εQ subject to boundary conditions (1.10) is complete

for any ε 6= 0 whenever Q(·) satisfies the assumptions of Corollary 1.7. At the same
time, the unperturbed operator LC,D(0) = u− limε→0 LC,D(εQ)) is not complete. Indeed,
the system of root functions of LC,D(0) is Ψn(x) := col(ei2πnx, 0), n ∈ Z.
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