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INVERSE EIGENVALUE PROBLEMS FOR NONLOCAL

STURM-LIOUVILLE OPERATORS ON A STAR GRAPH

L. P. NIZHNIK

To the memory of A. G. Kostyuchenko.

Abstract. We solve the inverse spectral problem for a class of Sturm–Liouville
operators with singular nonlocal potentials and nonlocal boundary conditions on a
star graph.

1. Introduction

Mathematical theory of differential equations on graphs is one of topical areas in mo-
dern mathematical physics [1–4]. This is due to both the internal need of the development
of the theory and solving particular applied problems related to communication, power,
or transportation networks. During the last decade, the theory of quantum graphs un-
dergoes a rapid development. Here different mathematical methods and approaches to
solving important problems in quantum theory to create modern technologies, quantum
computers, etc. intertwine and enrich each other [5–7]. The most interesting for the
theory of quantum graphs is studying, on metric graphs, wave and diffusion equations,
as well as Schrödinger equations [7–10]. Construction of self-adjoint Schrödinger opera-
tors on metric graphs with corresponding boundary-value conditions is well known. This
allows to formulate and to solve a number of direct and inverse spectral problems and
scattering problems for quantum graphs [11–18].

In this paper, we study direct and inverse spectral problems for a Schrödinger operator
with nonlocal potential on a star graph. Inverse spectral problems on a finite length
interval for the Sturm-Liouville problem with nonlocal potential and various boundary-
value conditions were treated in detail in [19–22].

Let the center vertex of a star graph Γ is located at the origin, and its m edges that
have the origin as a vertex have lengths lj , j = 1, 2, . . . ,m. We will assume that there
is a function ψj(x) ∈ W 2

2 (0, lj) defined on each j-th edge. Let us consider the following
eigenvalue boundary-value problem with complex–valued nonlocal potentials vj(x) ∈
L2(0, lj):

(1) −d
2ψj(x)

dx2
+ vj(x)ψj(0) = λψj(x), 0 < x < lj , j = 1, 2, . . . ,m,

with the boundary-value conditions

(2) ψj(lj) = 0, j = 1, 2, . . . ,m; ψ1(0) = ψ2(0) = · · · = ψm(0);

and the nonlocal boundary-value conditions

(3)

m
∑

j=1

[

ψ′
j(0)−

∫ lj

0

ψj(x)vj(x) dx
]

= 0.
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This problem can be associated with an operator A on the space L2(Γ) =
⊕m

j=1 L2(0, lj)
that acts on the vector-valued function

ψ(x) = col (ψ1(x), ψ2(x), . . . , ψm(x))

as follows:

(4) Aψ = col (−ψ′′
1 (x) + v1(x)ψ1(0), . . . ,−ψ′′

m(x) + vm(x)ψm(0)).

The domain of the operator A is defined to be all the functions

ψ(x) = col (ψ1(x), ψ2(x), . . . , ψm(x))

with the components ψj ∈ W 2
2 (0, lj) all of which satisfy the boundary-value condi-

tions (2), (3).

Theorem 1. Let the complex–valued nonlocal potentials satisfy vj(x) ∈ L2(0, lj), j =
1, 2, . . . ,m. Then the operator A is a self-adjoint operator on the space L2(Γ), its spec-
trum consists of finite multiplicity eigenvalues λk tending to infinity as k → ∞.

The main goal of this paper is to solve the inverse spectral problem that consists in
recovering the nonlocal potentials vj , j = 1, 2, . . . ,m, from the set Λ = {λk}∞k=1 of all
eigenvalues of the problem (1)–(3), counting the multiplicities.

2. Dirichlet problem

Let the functions ψj in problem (1)–(2) satisfy the boundary Dirichlet conditions at
the center of the star graph,

(5) ψ1(0) = ψ2(0) = · · · = ψm(0) = 0.

Then problem (1)-(2)-(5) splits into m Dirichlet problems for each function ψj ,

(6) −ψ′′
j (x) = λψj(x), ψj(0) = ψj(lj) = 0, j = 1, . . . ,m.

Spectrum of problem (1)-(2)-(5) is a union of the spectrums of them problems of type (6),
that is, it consists of a union of the numbers nj

π
lj

as j ranges from 1 to m, where nj

are naturals. Here the number λ = (nj
π
lj
)2 is an eigenvalue of problem (1)-(2)-(5)

of multiplicity k ≤ m if and only if there exist, in the star graph Γ, k rays, which
have lengths lj1 , lj2 , . . . , ljk and integers nj1 , nj2 , . . . , njk such that njν

π
ljν

= nj
π
lj
, ν =

1, 2, . . . , k. Denote by {µn}∞n=1 an increasingly ordered sequence of the numbers n π
lj

with

different lj , j = 1, . . . ,m, and integer n corresponding to their multiplicities. Naturally,
µ1 = π

lmax
, where lmax = max(l1, . . . , lm) and µn = nπ(l1+ · · ·+ lm)−1+O(1) as n→ ∞.

The set {µ2
n}∞n=1 = ΛD is spectrum of the Dirichlet problem (6), i.e., an increasingly

ordered set of all eigenvalues of this problem, counting the multiplicities.

Proposition 1. Let the lengths lj of rays of a star graph Γ be rationally multiples of l,
that is,

(7) lj =
pj
qj
l, j = 1, . . . ,m,

where the integers pj and qj are mutually prime. Then the sequence {µn}∞n=1 has the
following periodicity property: there is an integer R such that

(8) µR+k = µR + µk.

Proof. If condition (7) is satisfied, then there exist the least integers nj such that
n1q1
p1

π

l
= · · · = nmqm

pm

π

l
= µR.

Here, nj = Q
P

pj

qj
, R = n1 + · · · + nm, where Q is the least common multiple of the

numbers (q1, . . . , qm) and P is the greatest common divisor of the numbers (p1, . . . , pm).
Since {µn}∞n=1 is a sequence of all the numbers n π

lj
increasingly ordered, we have (8). �
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Definition 1. Let a1 ≤ a2 ≤ · · · ≤ an ≤ · · · be an infinite sequence of real numbers. A
number k ≥ 2 will be called asymptotic multiplicity of the sequence {an}∞n=1 if for any ε >
0 there exists an infinite number of nonintersecting intervals of length ε containing k
numbers of the sequence {ak}∞k=1, and the number k is maximal.

Proposition 2. Let a star graph Γ have m ≥ 2 rays. Then the asymptotic multiplicity
of the sequence {µn}∞n=1 equals m.

Proof. If the lengths lj satisfy conditions of Proposition 1, then the numbers µR, µ2R, . . .
are m-multiples in the sequence {µn}∞n=1. Hence, the sequence {µn}∞n=1 has asymptotic
multiplicity equal to m. If lj , j = 1, . . . ,m, are arbitrary, we can use the Dirichlet
theorem [23] stating that for arbitrary real numbers α1, . . . , αm and a natural Q > 1
there exist integers q, n1, . . . , nm such that

(9) max(|α1q − n1|, . . . , |αmq − nm|) < Q− 1
m , 0 < q ≤ Q.

Assume that the sequence {µn}∞n=1 does not have asymptotic multiplicity m. Then there
exist ε0 > 0 and a number A such that any interval Iε0 of length ε0 and lying to the right
of the point A can not contain m numbers of the sequence {µ}∞n=1. This contradicts the

inequalities (9). Indeed, by setting αj =
lj
π
(A + 1) in (9) and choosing the number Q

sufficiently large so that π
lj
Q− 1

m < ε0
2 , we obtain from (9) that |(A + 1)q − nj

π
lj
| < ε0

2 ,

j = 1, . . . ,m. This means that the m numbers nj
π
lj

∈ {µ}∞n=1 lie in the interval Iε0(A) =

[(A + 1)q − ε0
2 , (A + 1)q + ε0

2 ]. The interval Iε0(A) itself is located to the right of the
point A. �

The fact that the sequence {µn}∞n=1 is a union of m arithmetic sequences nπ
lj
, n =

1, 2, . . . , j = 1, . . . ,m, allows to recover the entire sequence {µn}∞n=1 from its asymptotic
behavior.

Proposition 3. Let {µ2
n}∞n=1 = ΛD be spectrum of Dirichlet problem (6) on a graph Γ

with m ≥ 2 rays. Let a sequence {an}∞n=1 be asymptotically equivalent to a sequence
{µn}∞n=1, that is,

(10) lim
n→∞

(an − µn) = 0.

Then the sequence {µn}∞n=1 is uniquely defined by the sequence {an}∞n=1.

Proof. Using Proposition 2 we see, since the asymptotic multiplicity of the sequence
{µn}∞n=1 equals m, that the asymptotic multiplicity of the sequence {an}∞n=1 is also m.

Let ε > 0 be chosen and Ĩε = [q − ε, q] be a line segment containing m numbers of
the sequence {an}∞n=1 with the minimal value being q(ε) ≥ ε−1. Let zk(ε) be the k-th

number of the sequence {an}∞n=1 located to the right of the line segment Ĩε. Then

(11) µk = lim
ε→0

[zk(ε)− q(ε)].

Indeed, identity (11) holds if the sequence {an}∞n=1 is taken to be {µn}∞n=1, since {µn}∞n=1

consists of an increasingly ordered union of numbers of the form n π
lj
, where n are integers

and {lj}mj=1 are lengths of rays of the graph Γ. By (10), identity (11) remains true
if {µn}∞n=1 is replaced with {an}∞n=1. �

Remark 1. Let {a2n}∞n=1 be a known spectrum of the perturbed problem (6). Then
Proposition 3 implies that the spectrum {µ2

n}∞n=1 of Dirichlet problem (6) can be uniquely
determined, hence the same is true for all the lengths l1, . . . , lm.



INVERSE EIGENVALUE PROBLEM . . . 71

3. Spectral analysis of unperturbed problem

Consider the unperturbed problem (1)–(3), that is a problem with zero nonlocal po-
tentials, v1 ≡ v2 ≡ · · · ≡ vm ≡ 0,

(12) −ψ′′
j = λψj , ψj(lj) = 0, ψ1(0) = ψ2(0) = · · · = ψm(0),

m
∑

k=1

ψ′
k(0) = 0.

Theorem 2. The eigenvalues λ of problem (12), which are different from the eigen-
values {µ2

n}∞n=1 = ΛD of the Dirichlet problem, are simple. A number λ = µ2
n is a

multiplicity k eigenvalue of the unperturbed problem (12) if and only if µ2
n is a multiplic-

ity k + 1 eigenvalue of a Dirichlet problem. All eigenvalues {ν2n}∞n=1 of the unperturbed
problem (12), indexed in an increasing order counting their multiplicities, are positive
and weakly alternate with eigenvalues of the Dirichlet problem

(13) νn ≤ µn ≤ νn+1.

The numbers νn are all positive zeros, counting the multiplicities, of the characteristic
function

(14) χ0(z) =

m
∑

j=1

cos zlj
∏

k 6=j

sin zlk.

Proof. Let λ be a multiple eigenvalue of the initial problem (1)–(3). Then there exist at
least two linearly independent eigenfunctions corresponding to this eigenvalue. But then
there is a nonzero linear combination of these functions such that all ψj become zero
in x = 0. This means that λ is an eigenvalue of Dirichlet problem (6).

Let λ be a multiplicity k+1 eigenvalue of the Dirichlet problem. This means that the
graph Γ has k+1 rays with lengths lj1 , . . . , ljk+1

and there are integers nj1 , . . . , njk+1
such

that λ = (njp
π
ljp

)2 for any p = 1, . . . , k + 1. But then this number λ is a multiplicity k

eigenvalue of problem (12). The corresponding linearly independent eigenfunctions can
be written explicitly as

ψj(x) = sin
√
λ(lj1 − x) · (−1)njp , ψjp(x) = sin

√
λ(ljp − x) · (−1)nj1 ,

ψj(x) ≡ 0, if j 6= j1, j 6= jp, p = 2, . . . , k + 1.

If the number λ = (njp
π
ljp

)2 is not a multiple eigenvalue of the Dirichlet problem, then

problem (12) does not have a nontrivial solution. All eigenfunctions of the Dirichlet prob-
lem, which correspond to the eigenvalue λ, can not be eigenfunctions of problem (12).
Hence, a k-multiple eigenvalue λ = z2 of problem (12) is a k + 1-multiple eigenvalue
of the Dirichlet problem, and z is a k-multiple zero of the characteristic function χ0(z)
of the form (14). If λ = ν2n /∈ {µ2

n}∞n=1, then this eigenvalue of problem (12) has mul-
tiplicity one. The corresponding eigenfunction ψ = col (ψ1, . . . , ψm) has the compo-

nents ψj =
sin νn(lj−x)

sin νnlj
, j = 1, . . . ,m. The boundary-value condition

∑m
j=1 ψ

′
j(0) = 0 im-

plies that z = νn is a simple zero of the characteristic function χ0(z) of the form (14). �

Definition 2. Real numbers α1, . . . , αm, m ≥ 2, are called rationally independent if the
identity

∑m
j=1 njαj = 0 with integer nj ∈ Z implies that n1 = n2 = · · · = nm = 0.

Theorem 3. Let a star graph Γ have all the lengths l1, . . . , lm of its rays rationally
independent. Then the following is true.

1. All eigenvalues of Dirichlet problem (6) have multiplicities one.
2. All eigenvalues of the unperturbed problem (12) have multiplicities one.
3. Eigenvalues of the unperturbed problems alternate with eigenvalues of the Dirich-

let problem,

ν1 < µ1 < ν2 < · · · < νn < µn < νn+1 < · · ·
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4. All positive zeros of the characteristic function χ0(z) of the form (14) are simple
and coincide with {νn}∞n=1. The characteristic function χ0(z) takes values of
opposed signs on two subsequent members of the sequence {µn}∞n=1,

(15) χ0(µn)χ0(µn+1) < 0.

There exists a sequence µnk
→ ∞ such that limk→∞ χ0(µnk

) = 1.
5. The sequence {νn}∞n=1 has asymptotic multiplicity m− 1.
6. The sequence {νn}∞n=1 can be uniquely determined from an asymptotically equi-

valent sequence {bn}∞n=1 such that limn→∞(bn − νn) = 0.
7. If m ≥ 3, the spectrum {ν2n}∞n=1 of the unperturbed problem (12) uniquely defines

the number of rays in the graph Γ and their lengths l1, . . . , lm.

Proof. Property 1 follows from the explicit form of the numbers {νn}∞n=1 that are a
union of different numbers of the form nj

π
lj
. These numbers are distinct, since the iden-

tity nj
π
lj

= nk
π
lk

with integer nj and nk is equivalent to the identity nj lk−nklj = 0 which

is impossible due to the assumption of rational independence of the lengths l1, . . . , lm.
Property 2 follows from Theorem 2 and the proved Property 1. In the case under

consideration, none of the numbers νn can coincide with any of the numbers µk for,
otherwise, the number µk would have multiplicity 2, which is impossible in virtue of 1.
The numbers ν2n are eigenvalues of the unperturbed problem (12) and they differ from
eigenvalues of the Dirichlet problem. The eigenfunction corresponding to this eigen-
value is ψ(x) = col (ψ1(x), ψ2(x), . . . , ψm(x)) with the components of the form ψj(x) =
sin νn(x−lj)

sin νnlj
, j = 1, . . . ,m, and must satisfy the boundary-value condition

∑m
j=1 ψ

′
j(0) = 0.

This leads to a characteristic equation for νn,

(16)

m
∑

j=1

cos νnlj
sin νnlj

= 0.

It immediately follows from (16) that positive solutions νn of this equation lie between
neighboring zeros of all the denominators, i.e., between the numbers {µn}∞n=1. Also, there
is exactly one solution of characteristic equation (16) between two consecutive values µn

and µn+1. This gives Property 3.
Since positive roots of equation (16) coincide with positive roots of the characteristic

function χ0(z) =
∑m

j=1 cos zlj
∏

k 6=j sin zlk, we obtain the first part of property 4. Let us

now prove (15). Let µn = nj
π
lj

and µn+1 = nk
π
lk

be two consecutive values in {µn}∞n=1.

As z ranges over the interval (µn, µn+1), all the functions sin zlp, p = 1, . . . ,m, pre-
serve their signs. From the explicit form (14) of the characteristic function, we see
that χ0(µn) = cosµnlj

∏

p 6=j sinµnlp and χ0(µn+1) = cosµn+1lk
∏

p 6=k sinµn+1lp. This

gives (15). Using the Dirichlet theorem in the form of (9), one can show that there is a
sequence µnk

→ ∞ such that limk→∞ χ0(µnk
) = 1.

Property 5 holds, since asymptotic multiplicity of {νn}∞n=1 is always less then or equal
to m − 1. Numbers in the sequence {νn}∞n=1 alternate with the numbers {µn}∞n=1, and
their asymptotic multiplicity equals m by Proposition 2.

To prove Property 6, we use the construction in Proposition 3. Let us show that

(17) νk = lim
ε→0

[bk(ε)− p(ε)],

where bk(ε) is the k-th member of the sequence {bn}∞n=1 after the interval Ĩε ∈ [p− ε, p].

Here, the interval Ĩε contains m− 1 consecutive numbers from {bn}∞n=1. Since

lim
n→∞

(bn − νn) = 0,

we can assume that the interval Ĩε itself containsm−1 consecutive numbers from {νn}∞n=1,

and the number p is a multiple of π. This can be achieved by shifting the interval Ĩε to
the right. Let δ > 0 be arbitrary. Choose ε to be so small that the first k zeros of the
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equation
m
∑

j=1

cot z(lj − δj) = 0

with |δj | < ε would differ from the corresponding first k zeros of the characteristic

equation (16) by less than δ
2 and |bn − νn| < δ

2 for all bn lying on the right of the

interval Ĩε. Then |νk − (bk(ε)− p(ε))| < δ. Hence, the limit in (17) always exists, and it
gives a method for constructing {νn}∞n=1 from {bn}∞n=1. �

Theorem 4. Let a star graph Γ have m ≥ 3 rays with rationally independent lengths
l1, . . . , lm. Let a given sequence {bn}∞n=1 be asymptotically equivalent to a sequence
{νn}∞n=1. Then the sequence {bn}∞n=1 uniquely determines the metric on the graph Γ,
i.e., the lengths l1, . . . , lm of all the rays.

Proof. Using Properties 6 and 4 in Theorem 3 construct the entire sequence {νn}∞n=1

from {bn}∞n=1. Since νn are zeros of the characteristic function χ0(z), which is an analytic
function of exponential type 1 and has zeros symmetric with respect to the point z = 0,
and the zeros have the asymptotics νn = nπ

l1+···+lm
+ o(1) as n → ∞, the function χ0(z)

can be represented as an infinite product

(18) χ0(z) = C0z
m−1

∞
∏

k=1

(

1− z2

ν2k

)

.

The constant C0 =
∏m

k=1 lk
∑m

j=1 l
−1
j and the integer m are uniquely defined, since it

follows from Property 4 in Theorem 3 that limk→∞ χ0(µnk
) = 1. The explicit form (14)

for the characteristic function χ0(x) shows that it is almost periodic with a finite number
of periods, that is,

(19) χ0(x) =
∑

k

Cke
iωkx,

where k = (k1, . . . , km), kj = 0, 1, |k| =
∑m

j=1 kj , ωk =
∑m

j=1 (−1)kj lj , and Ck =
1

2mim−1 (m − 2|k|). Since all the lengths l1, . . . , lm are rationally independent, all the
frequencies ωk are distinct and can be uniquely determined from χ0, since

lim
T→∞

1

T

∫ T

0

χ0(x)e
−iωx dx 6= 0

only for ω = ωk.
But then all ωk uniquely define all lengths l1, . . . , lm of the rays of the graph Γ. �

4. Spectral analysis of the problem with nonlocal potential

We will be studying problem (1)–(3) only in the case where the lengths lj of the rays
of the graph are rationally independent. Having nonlocal potentials vj(x) ∈ L2(0, lj),
j = 1, 2, . . . ,m, in problem (1)–(3), it is useful to represent them in the form of a Fourier
series,

(20) vj(x) =

∞
∑

n=1

vj,n sin
[nπ

lj
(lj − x)

]

,

where the coefficients are expressed in terms of the potentials,

(21) vj,n(x) =
2

lj

∫ lj

0

vj(x) sin
[nπ

lj
(lj − x)

]

dx.

Theorem 5. Let, in problem (1)–(3), the nonlocal potentials satisfy vj(x) ∈ L2(0, lj)
and the lengths l1, . . . , lm of rays of the star graph Γ be rationally independent. Then the
following holds true.

1. All eigenvalues of problem (1)–(3), distinct from (nπ
lj
)2, n ∈ N , are simple.
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2. The number λ = (nπ
lj
)2 is an eigenvalue of problem (1)–(3) if and only if

(22) vj,n = (−1)n+1 2nπ

l2j
.

3. The number λ = (nπ
lj
)2 is a double eigenvalue of problem (1)–(3) if and only if,

in addition to (22), we have

(23)
3

2lj
+

∑

k 6=n

αj,k(−1)k kπ
lj

(nπ
lj
)2 − (kπ

lj
)2

+
∑

p 6=j

(nπ

lj
cot

nπlp
lj

+

∞
∑

k=1

αp,k(−1)k kπ
lp

(nπ
lj
)2 − (kπ

lp
)2

)

= 0,

where

αj,k = vj,k + vj,k + (−1)k
l2j
2kπ

|vj,k|2.
4. The number λ = 0 is an eigenvalue of problem (1)–(3) if and only if

(24)

m
∑

j=1

( 1

lj
−

∞
∑

k=1

αj,k(−1)k

kπ
lj

)

= 0.

5. Problem (1)–(3) has no eigenvalues with multiplicity exceeding 2.

Proof. The proof of Proposition 1 was given at the beginning of the proof of Theorem 2.
Let λ = (nπ

lj
)2 be an eigenvalue of problem (1)–(3). Then nontrivial solutions of the

equation −ψ′′
j (x) + vj(x)ψj(0) = λψj(x) satisfying the condition ψj(lj) = 0 become

either zero in x = 0 and then they are multiples of sin[nπ
lj
(lj − x)] or they are distinct

from zero. In the latter case, solutions exist only if conditions (22) are satisfied. This

solution is a multiple of the function ψ̂j ,

(25) ψ̂j = (−1)n
(lj − x)

lj
cos

[nπ

lj
(lj − x)

]

+
∑

k 6=n

vj,k sin[
kπ
lj
(lj − x)]

(nπ
lj
)2 − (kπ

lj
)2

.

If ψj(x) = sin[nπ
lj
(lj − x)], then all ψk(x) ≡ 0 for k 6= j in problem (1)–(2), since the

lengths lk can not be rationally expressed in terms of lj . Substituting these functions

into the boundary-value condition (3) leads to (23). If, in problem (1)–(2), ψj(x) = ψ̂j

given by (25), then ψj(0) = 1 and all ψp(x), for p 6= j, can be represented as

(26) ψ̂p =
sin[nπ

lj
(lp − x)]

sin nπ
lj
lp

+
∑

k

vp,k sin[
kπ
lp
(lp − x)]

(nπ
lj
)2 − (kπ

lp
)2

, p 6= j.

By substituting such a solution into the boundary-condition (3) we obtain condi-

tion (23). It is easy to see that the functions ψ = (ψ̂1, . . . ψ̂m), where ψ̂j , ψ̂p, are given
by identities (25), (26), become solutions of problem (1)–(2) with λ = 0, if we formally
make n → 0. Substituting this solution into the boundary-value condition (3) leads to
identity (24), which is a condition that this function is an eigenfunction of problem (1)–
(3) corresponding to the eigenvalue λ = 0.

It was shown above that problem (1)–(2) can not have two linearly independent so-
lutions, hence problem (1)-(2)-(3) can not have eigenvalues with multiplicities exceed-
ing 2. �

To give an exact description of the distribution of eigenvalues of problem (1)–(3), it is
convenient to show that the eigenvalues are connected with zeros of an analytic function,
which is a characteristic function of problem (1)–(3).

To this end, consider a special solution of equation (1) with λ = z2, satisfying condi-
tion (2),

(27) ϕj(x; z) =
(

sin z(lj − x) + sin zlj
∑

k

vj,k sin[
kπ
lj
(lj − x)]

z2 − (kπ
lj
)2

)

∏

k 6=j

sin zlk.
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The function ϕ is an eigenfunction of problem (1)-(3) if it satisfies the boundary-value
condition (3). This gives the characteristic equation χ(z) = 0, where the characteristic
function χ(z) is defined by χ(z) =

∑m
j=1 [ϕ

′
j(0)− (ϕj , vj)] and has the form

(28) χ(z) =

m
∑

j=1

(

cos zlj +
sin zlj
z

∞
∑

n=1

αj,n(−1)n nπ
lj

z2 − (nπ
lj
)2

)

∏

k 6=j

sin zlk,

where

(29) αj,n = vj,n + vj,n + (−1)n
l2j
2nπ

|vj,n|2.

Lemma 1. The characteristic function χ(z) of the form (28) is an entire analytic func-
tion of z and, for z = nπ

lj
, n ∈ N , takes the values

(30) χ
(nπ

lj

)

=
∣

∣

∣
1 + (−1)n

l2j
2nπ

vj,n

∣

∣

∣

2

χ0

(nπ

lj

)

.

Proof. The proof is carried out by direct computations using the explicit form (28) of
the characteristic function. �

Theorem 6. The number λ = z2 6= 0 is an eigenvalue of problem (1)-(3) if and only
if z is a zero of the characteristic function χ(z). The number λ = z2 6= 0 is a double
eigenvalue of the problem (1), (2) if and only if z is a double zero of the characteristic
function. All zeros z 6= 0, z2 /∈ ΛD, of the characteristic function are simple. The
characteristic function does not have zeros of multiplicities greater than 2, distinct from
z = 0. The number λ = 0 is an eigenvalue of problem (1)–(3) if and only if z = 0 and is
a zero of the characteristic function χ(z) with multiplicity m+ 1.

Proof. It follows that the squares z2 /∈ {µ2
n}∞n=1 of zeros of the characteristic function

χ(z) are eigenvalues from the fact that the special solution (27) is an eigenfunction and
vice versa. For z2 = (nπ

lj
)2 = λ, the number λ = z2 is an eigenvalue if and only if (22) is

satisfied which, by (30), is equivalent to χ(nπ
lj
) = 0. It is easy to check that condition (23)

is equivalent to χ̇(nπ
lj
) = 0 which, in its turn, together with χ(nπ

lj
) = 0, is equivalent to

that nπ
lj

is a double eigenvalue. Condition (24), is equivalent to z = 0 is a zero of the

characteristic function χ(z) with multiplicity m + 1. Hence, the eigenvalues, counting
multiplicities, coincide with squares of zeros of χ(z), counting multiplicities.

If the function χ(z) had a multiple root z0 6= nπ
lj
, this would imply that ∂

∂z
ϕ(x; z)|z=z0

were a generalized eigenfunction, which is impossible since the operator A is self-adjoint.
In the same way, we can prove that there are no zeros of χ(z) that have multiplicities
greater than 2 for z ∈ {µn}∞n=1. �

Since eigenvalues of problem (1)–(3) are squares of zeros of the characteristic func-
tion χ(z), it is important to describe the distribution of zeros of the function χ(z) having
form (28). Write the characteristic function in (28), χ(z), as

(31) χ(z) =

m
∑

j=1

(

cos zlj +
1

z

∫ lj

0

αj(t) sin z(lj − t) dt
)

∏

k 6=j

sin(zlk),

where αj(t) ∈ L2(0, lj), and the numbers αj,n in (29) are coefficients in the Fourier sine
expansion of the function αj .

Representation (31) for the characteristic function χ permits to recover the function
χ from the set of its zeros. We use the following analogue of a result due to Marchenko,
see [24], Lemma 3.4.2.

Lemma 2. For an entire function of the form (31) to admit the representation

(32) χ(z) = Czm−1
∞
∏

k=1

z2k − z2

ν2k
,
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it is necessary and sufficient that

z2k = ν2k + αk,

where {αk}∞k=1 ∈ l2 and {βn}∞n=1 ∈ l2, βn =
∑m

k=−m αn+k(νn+k − µn)
−1.

Theorem 7. The increasingly ordered sequence λ1 ≤ λ2 ≤ · · · ≤ λn ≤ λn+1 ≤ · · · of all
eigenvalues of problem (1)–(3), counting multiplicities, has the following properties:

1. the sequence weakly alternates with the sequence {µ2
n}∞n=1 = ΛD of eigenvalues

of the Dirichlet problem,

(33) λn ≤ µ2
n ≤ λn+1, n ∈ N ;

2. there is an asymptotic representation,

(34) λn = ν2n + αn,

where {ν2n}∞n=1 is spectrum of the unperturbed problem (12),
∑∞

j=1 α
2
j < +∞,

∑∞
n=1 β

2
n < +∞ and βn =

∑m
k=−m αn+k(νn+k − µn)

−1.

Conditions 1 and 2 are necessary and sufficient for a sequence Λ = {λj}∞j=1 to be an
ordered sequence of all eigenvalues of problem (1)–(3) with nonlocal potentials vj ∈
L2(0, lj).

Proof. By Property 4 in Theorem 3, there exists a sequence µnk
such that

(35) lim
nk→∞

χ0(µnk
) = 1.

Indeed, by the Rouché theorem, the entire function χ(z) and the function χ0(z) have
the same number of zeros, counting multiplicities, in the strip −µnk

< Re z < µnk
for

large nk. Hence, by Theorem 6, the eigenvalues λn of problem (1)–(3) are squares of
zeros of the function χ(z). The functions χ(z) and χ0(z) have zeros that are symmetric
with respect to the point z = 0. Hence, the number of eigenvalues λn in problem (1)–(3)
satisfying the condition λn < µ2

nk
equals the number of eigenvalues of the unperturbed

problem, ν2n, satisfying the condition ν2n < µnk
. By Theorem 3, the number of them is

exactly nk. This gives the inequality λn < µ2
nk

for nk → ∞.
On the other hand, if

(36) vj,n 6= (−1)n+1 2nπ

l2j
,

then, by Theorem 5, χ(µn) 6= 0 for any n. Hence, in every interval (µn, µn+1), the
characteristic function χ has at least one zero z0, since both the function χ(z) and the
function χ0(z) take different values at the endpoints of the interval (µn, µn+1) by (15)
and (30). Consequently, there is one eigenvalue λ = z2 in the interval In = (µ2

n, µ
2
n+1).

The assumption that at least one interval In contains more than one eigenvalue leads
to a contradiction with the estimate λn < µ2

nk
. Hence, if conditions (38) are satisfied,

inequality (34) holds,

(37) λn < µ2
n < λn+1, n ∈ N.

Since condition (38) can be satisfied by an arbitrary small change of the potential, passing
to the limit in (38) we get (34).

The asymptotic representations (34) follows from the asymptotic representation of
zeros of the characteristic function χ(z) defined by Lemma 2.

Sufficiency of Properties 1 and 2 in Theorem 6 for a sequence {λn}∞n=1 to be a se-
quence of eigenvalues of problem (1)–(3) follows from Lemma 2. The sequence {λn}∞n=1

uniquely defines the functions αj ∈ L2(0, lj) and their Fourier coefficients αj,n. But
then equation (29) permits to determine {vj,n}∞n=1 ∈ l2 and, consequently, the nonlo-
cal potentials vj ∈ L2(0, lj) as Fourier series (20). Here, {λn}∞n=1 will be spectrum of
problem (1)–(3) with such nonlocal potentials. �
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5. Inverse spectral problem

The Sturm-Liouville nonlocal inverse spectral problem on a star graph, i.e., the prob-
lem inverse to the eigenvalue problem (1)–(3) consists in finding the number m of rays
of the graph Γ, the lengths lj of the rays, and the local potentials vj(x), j = 1, . . . ,m,
from the entire set Λ = {λn}∞n=1 of all eigenvalues of problem (1)–(3), counting their
multiplicities. If the number of rays of the graph is m ≥ 3 and all their lengths are
rationally independent, Theorem 6 gives a description of the set Λ and formulas (30)
and (32) allow to formulate an algorithm for solving the inverse problem in the form of
the following 6 steps.

Step 1. From the spectrum Λ = {λn}∞n=1, using Theorem 4, construct a sequence {νn}∞n=1

the squares of which give spectrum of the unperturbed problem, and their as-
ymptotic multiplicity, m− 1, defines the number of rays of the graph Γ.

Step 2. Using the sequence {νn}∞n=1 determine the characteristic function χ0(z) of the un-
perturbed problem in the form of an infinite product, χ0(z) = C0z

m−1
∏∞

k=1 (1−
z2

ν2
k

). Using the function χ0(z), we determine all lengths l1 > l2 > · · · > lm of the

rays of the graph and the numbers {µn}∞n=1.
Step 3. Construct the characteristic function χ(z) for problem (1)–(3) in the form of an

infinite product

χ(z) = C0z
m−1

∞
∏

k=1

λ2k − z2

ν2k
.

Step 4. Find the values χ(nπ
lj
), j = 1, . . . ,m, n ∈ N .

Step 5. Solving a quadratic equation for vj,n,

(38)
∣

∣

∣
1 +

(−1)nl2j
2nπ

vj,n

∣

∣

∣

2

= χ
(nπ

lj

)

χ−1
0

(nπ

lj

)

,

find the value of vj,n having the least modulus.
Step 6. The nonlocal potentials vj(x) are given by their Fourier series (20) with the

determined Fourier coefficients vj,n.

If the graph Γ has two rays with the lengths l1 and l2 being rationally independent
and given, then one can find the nonlocal potentials v1 and v2 from the spectrum Λ of
problem (1)–(3) using the above algorithm starting with step 3.

Example 1. Let the lengths l1, l2, . . . , lm of the rays of the graph Γ be known and
rationally independent. Assume we are given eigenvalues {λk}∞k=1 of problem (1)–(3)
and, starting with k = n + 1, they coincide with eigenvalues of the unperturbed prob-
lem, λk = ν2k , k > n. Then the nonlocal potentials vj(x) in problem (1)–(3) can be found
using the above algorithm starting with step 3. In this case, the characteristic function
χ(z) differs from χ0(z) only by a rational function R(z),

R(z) =

n
∏

k=1

λk − z2

ν2k − z2
.

Hence, identity (38) becomes

∣

∣

∣
1 +

(−1)nl2j
2nπ

vj,n

∣

∣

∣

2

= R
(nπ

lj

)

,

which gives vj,n.

Remark 2. For star graphs, as in the case of a finite interval, there exist isospectral
nonlocal potentials. This is connected with non-uniqueness of a solution of the quadratic
equations (38). However, for star graphs as well, one can give an effective description
of isospectral nonlocal potentials and describe large classes of potentials for which the
inverse spectral problem has a unique solution, similarly as it is done in [19–22].
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