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EIGENVALUE ASYMPTOTICS OF PERTURBED SELF-ADJOINT

OPERATORS

A. A. SHKALIKOV

Dedicated to the memory of my dear Teacher A. G. Kostyuchenko.

Abstract. We study perturbations of a self-adjoint positive operator T , provided

that a perturbation operator B satisfies the ”local” subordinate condition ‖Bϕk‖ 6

bµ
β
k
with some β < 1 and b > 0. Here {ϕk}

∞

k=1 is an orthonormal system of the eigen-
vectors of the operator T corresponding to the eigenvalues {µk}

∞

k=1. We introduce
the concept of α-non-condensing sequence and prove the theorem on the comparison
of the eigenvalue-counting functions of the operators T and T + B. Namely, it is
shown that if {µk} is α−non-condensing then

|n(r, T )− n(r, T +B)| 6 C [n(r + arγ , T )− n(r − arγ , T )] + C1

with some constants C,C1, a and γ = max(0, β, 2β + α− 1) ∈ [0, 1).

1. Introduction

Throughout this paper T shall stand for a self-adjoint and bounded below operator
with domain D(T ) acting in a separable Hilbert space H. We always suppose that T
has a discrete spectrum which is denoted by {µk}∞k=1 and each eigenvalue µk is repeated
in the sequence in accordance with its geometric multiplicity. A complete orthonormal
system of the eigenvectors that correspond to these eigenvalues we denote by {ϕk}∞k=1.
For convenience we always assume that 1 < µk ≤ µk+1 for all integers k ≥ 1. Let

(1.1) n(r, T ) =
∑

µk<r

1

be the eigenvalue-counting function of the operator T . We suppose that there is a positive
number α, such that

(1.2) limr→∞
n(r, T )

tα
= C <∞.

This condition is natural as it is fulfilled for a large class of differential operators (ordinary
and with partial derivatives on a bounded domain in R

n, see [13], for example). In the
case α = 1 we say that a sequence {µk}∞k=1 is non-condensing if there is a number l
such that each segment (t, t+ 1], t ∈ R

+, contains at most l eigenvalues of the operator
T . Obviously, this condition is equivalent to the following: for all t > 1 the inequality
n(t+0, T )−n(t− 1, T ) 6 l holds. In the case α 6= 1 we introduce the concept of α-non-
condensing sequence. Namely, we say that a sequence {µk}∞k=1 satisfying the condition
(1.2) is α-non-condensing if a sequence {µα

k}∞k=1 is non-condensing, or equivalently if

n(t1/α + 0, T )− n((t− 1)1/α, T ) 6 l with some l ∈ N.
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The goal of this paper is to obtain results on the distribution of the eigenvalues for
the perturbations A = T + B, provided that the perturbation operator B satisfies the
conditions

(1.3) D(B) ⊃ D(T ), ‖Bϕk‖ ≤ bµβ
k , −∞ < β < 1,

where b is a constant. The main our result is as follows.

Theorem 1. Let conditions (1.2) and (1.3) be fulfilled and the sequence {µk}∞k=1 be
α-non-condensing. Assume that

(1.4) γ = max(0, β, 2β + α− 1) < 1.

Then the spectrum of the operator A = T + B consists of isolated eigenvalues {λk} and
there exist positive constants a,C and C1 such that the eigenvalue-counting function

n(r, A) =
∑

|λk|<r

1

is subject to the relation

(1.5) |n(r, A)− n(r, T )| ≤ CSγ(r) + C1,

where

Sγ(r) = n(r + arγ , T )− n(r − arγ , T ).

Viewing in mind applications, it is worth mentioning the following corollary.

Corollary 1. Assume that

n(r, T ) = rα +O(rη), with some η < α.

Then under assumptions of Theorem 1 we have

|n(r, A)− n(r, T )| = O(rα+γ−1) +O(rη).

The proof is obvious.

The asymptotic behavior of the eigenvalues of self-adjoint operators and their pertur-
bations has long been studied by many authors. Asymptotic formulae for the Sturm-
Liouville operator were found in 19-th century. The first general results on the eigenvalue
distribution of the eigenvalues of ordinary differential operators were obtained by Birkhoff
[3], and for partial differential operators by Weyl [16]. Keldysh [7] proved the first result
for relatively compact perturbations of general self-adjoint operators in Hilbert space
using Tauberian technique. The most complete and sharp results for compact pertur-
bations and for the so-called β-subordinate perturbations of self-adjoint operators are
due to Markus and Matsaev [10] (see more details in [9, Ch.1]. Another information on
eigenvalue distribution of self-adjoint operators and their perturbations can be found in
the book of Naimark [11], the survey of Rosenblum, Solomyak and Shubin [13], the book
of Markus [9], the survey of Agranovich [2].

Here we remark that the main novelty of our paper is the subordinate condition (1.3).
The sharpest results on the comparison of spectra of original and perturbed operators
which are due to Markus and Matsaev [10], dealt with subordinate conditions of the form

(1.6) ‖Bf‖ ≤ C‖T βf‖ ∀f ∈ D(B) ⊃ D(T β)

or

(1.7) ‖Bf‖ ≤ C‖Tf‖β‖f‖1−β ∀f ∈ D(T ).

Here β < 1 and C is a constant independent on f . We also note that the second
condition here is weaker than the first one. Obviously, our condition (1.3) is essentially
weaker than conditions (1.7). We shall demonstrate this by a simple example.
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Consider the self-adjoint operator T = i d
dx on the domain

D(T ) = {f : f ∈W 1
2 (0, 2π), f(0) = f(2π)}

in the Hilbert space H = L2[0, 2π]. The eigenvalues of T are equal µk = k, k ∈ Z, and
the eigenfunctions coincide with trigonometric system ϕk = {eikx}∞k=−∞. Then, consider
as a perturbation the multiplication operator Bf = b(x)f(x), where b(x) ∈ L2(0, 2π)
and has sufficiently strong singularity at some point x0 ∈ [0, 2π], say b(x) = 1

ln(x/4π)
√
x
.

Then ‖Bϕk‖ ≤ ‖b(x)‖, i.e. the condition (1.3) holds with β = 0. It is known [4] that

D(|T |β) = W β
2 ) for any 0 ≤ β < 1/2, where W β

2 = W β
2 (0, 2π) is the Sobolev space with

smooth index β. It can easily be verified that the function f0(x) = ln(x/4π) belongs to the

space W β
2 for any β < 1/2. Hence, for these values of β we have Bf0 6= L2(0, 2π), while

|T |βf0 ∈ L2(0, 2π). Therefore, condition (1.6) is not fulfilled for any β < 1/2. Then, the
same is true for condition (1.7), because the validity of (1.7) with some β < 1 implies the
validity of (1.6) with any β′ < β (see [9, Ch. 1], for example). This example shows that
in particular situations the subordinate condition (1.3) can be much more effective than
(1.6) or (1.7). Simultaneously we have to say that Theorem 1 does not generalize the
Markus–Matsaev Theorem [10]. Condition (1.6) or (1.7) implies the validity of Theorem 1
with the function

S(r) = n(r + arβ , T )− n(r − arβ , T ),

i.e. γ can be replaced by β. In particular, in the case α = 1 we have to pay a double
prise assuming a weaker assumption (1.3) instead of (1.6) or (1.7). However, it is not
sensitive for β = 0, and generally, in the case α 6 1 we always have β = γ, provided that
α+ β 6 1.

Finally, we remark that ”local” subordinate condition (1.3) was originated in author’s
paper [14], where Theorem 1 was proved for the case α = 1 and β = 0.

2. Proof of Theorem 1

First, we shall prove Theorem 1 for the case α = 1. In this case the proof is more
transparent and technically much easier. Later on we will explain how to overcome the
technicalities in the case α 6= 1. While proving this result we will use the trick of ”artificial
lacuna” proposed by Markus and Matsaev in [10]. However, the implementation of this
trick will be organized in a technically different way. Our plan to prove the theorem
is the following. First, we prove relation (1.4) for a fixed r, provided that the interval
(r − 2ar2β , r + 2ar2β) does not contain the eigenvalues of the operator T , where a is a
certain number depending on the numbers b and β and independent of r. For such r we
show the equality n(r,A) = n(r, T ). Then, for each fixed r we construct a finite-rank
self-adjoint operator Kr commuting with T , such that

• the operator Tr = T −Kr has no eigenvalues in the interval (r− ar2β , r+ ar2β);
• the property (1.3) remains valid for T −Kr with the constant 2b instead of b;
• The inequality |n(r, T )− n(r, Tr)| 6 Sγ(r) holds.

Then we apply the Weinstein-Aronszain formula from the theory of perturbation de-
terminants (see [6, Ch. 5])

(2.1) n(r,A) = n(r, T −Kr +B) + ν(r, h),

where ν(r, h) denotes the difference between the numbers of zeros and poles of the scalar
meromorphic function D(λ) := det(1−Kr(λ− T +Kr −B)−1), that lie in the rectangle
R which is bounded by vertical lines Reλ = r, Reλ = −R and the horizontal lines
Imλ = ±R with sufficiently large R = R(r). We remark that formula (2.1) can easily be
proved by using the identity

1−Kr(λ− T +Kr −B)−1 = (λ−A)(λ− T +Kr −B)−1.
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Since the operator Tr = T −Kr has no eigenvalues in the interval (r− 2ar2β , r+ 2ar2β)
we get n(r, Tr + B) = n(r, Tr). On the other hand, by construction we have |n(r, Tr) −
n(r, T )| 6 N = Sγ(r). Therefore, we will prove (1.5) if we show that the function
|ν(r, h)| is bounded by the right hand-side of (1.5). To show the latter assertion is the
main technical difficulty in the proof of Theorem 1 which we shall divide into several
steps.

Step 1. We will use in the sequel the following result from complex analysis.

Lemma 2. Let f be a function that is bounded and analytic in the rectangle

(2.2) Π = {λ : |Reλ− r| < c, | Imλ| < d}.
For δ ∈ (0, 1), set c′ = c(1− δ) and d′ = d(1− δ), and denote by Π′ the rectangle defined
by (2.2) where c and d are replaced by c′ and d′. Denote

M = sup
λ∈Π

f(λ), M ′ = sup
λ∈Π′

f(λ).

Then there is a constant C depending on δ and the ration c/d and independent of f
such that the following holds:

(i) The number nf (Π
′) of the zeros of the function f inside the rectangle Π′ is subject

to the estimate

(2.3) nf (Π
′) 6 C(lnM − lnM ′).

(ii) If γ is a straight line segment contained in Π′ that does not pass through the zeros
of f in Π′, then the variation of the argument of the function f along γ is subject
to the estimate

(2.4) | [arg f(λ)]γ | 6 C(lnM − lnM ′).

Proof. Some versions of this assertion can be found in the monograph [8, Ch. 1] and in
[15]. In the form presented here this result is contained in [10, Lemmas 1.1 and 1.3]. �

Step 2.

Lemma 3. Under assumptions of Theorem 1 the operator A = T + B has discrete
spectrum.

Proof. Since T is self-adjoint the following representation for the resolvent holds

(2.5) (λ− T )−1 =
∞
∑

k=1

(·, ϕk)ϕk

λ− µk
.

Without loss of generality we have assumed that the point λ = 0 belongs to the resolvent
set of T . Denoting fk = (f, ϕk) and taking into account that

∑ |fk|2 = ‖f‖2 we get

(2.6)

∥

∥

∥
BT−1f −

N
∑

k=1

fkBϕk

µk

∥

∥

∥
=
∥

∥

∥

∞
∑

k=N+1

fkBϕk

µk

∥

∥

∥
6 ‖f‖2

∞
∑

k=N+1

‖Bϕk‖2
µ2
k

6 b2‖f‖2
∞
∑

k=N+1

µ2β−2
k 6 ε‖f‖2,

where ε → 0 as N → ∞. The latter assertion holds since condition (1.2) with α = 1

implies µk ≥ C−1k, hence, the series
∑

µ2β−2
k 6 C2−2β

∑

k2β−2 converges, provided that
β < 1/2. The estimate (2.6) shows that BT−1 is compact, therefore B is a relatively
compact perturbation of T . Then the discreteness of the spectrum of T +B follows from
lemma of Keldysh (see, for example, [9, Lemma 3.6]). �

Step 3.
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Lemma 4. Let the spectrum of the operator T be non-condensing and let its eigenvalue-
counting function n(t) = n(t, T ) satisfy

(2.7) n(t+ 0)− n(t− 1) 6 l for all t > 1.

Then there is a continuous piece-wise linear function ψ(t) such that

|n(t)− ψ(t)| 6 l

and

|ψ′(t)| 6 l.

Proof. Without loss of generality we have already assumed that µ1 > 1. Define the
integers sm := n(m + 0). Then the segments ∆m = (m − 1, m], m = 1, 2, . . . , contain
lm = sm − sm−1 6 l eigenvalues from the sequence {µk}∞k=1. Now define the function
ψ(t) on the interval ∆m+1 = (m, m+ 1] as follows

ψ(t) = sm + lm(t−m), t ∈ (m, m+ 1].

It follows from the construction that |ψ(t) − n(t)| 6 sup{lm} = l and ψ′(t) 6 l. The
lemma is proved. �

Step 4. Let us prove the following lemma.

Lemma 5. Let a be a fixed positive number and suppose that the interval (r− 2ar2β , r+
2ar2β) does not contain the points µk of the spectrum of the operator T . Assume also
that the constant b participating in condition (1.3) is such that

(2.8) a > 48 l b2.

Then the following estimate is valid in the strip r − ar2β 6 Reλ 6 r + ar2β :

(2.9)
∞
∑

k=1

‖Bϕk‖2
|λ− µk|2

<
1

4
,

provided that r > C where C = C(a, β) depends only on a and β (hence, only on l, b
and β).

Proof. Denote λ = Reλ + i Imλ := σ + iτ and r− = r − 2ar2β , r+ = r + 2ar2β . We
have to estimate the sum for the values σ ∈ (r − r2β , r + r2β) and τ ∈ R. Recall that
according to Lemma 4 we have the representation

n(t) = ψ(t) + ζ(t), where |ψ′(t)| 6 l, |ζ(t)| 6 l, n(t) = n(t, T ).

Using condition (1.3) we obtain

(2.10)
∞
∑

k=1

‖Bϕk‖2
|λ− µk|2

6 b2
∞
∑

k=1

µ2β
k

(σ − µk)2 + τ2

= b2
∫ ∞

1

t2β dn(t)

(σ − t)2 + τ2
6 b2l

(

∫ r−

1

+

∫ ∞

r+

)

t2β dt

(σ − t)2 + τ2

+ b2

(

∫ r−

1

+

∫ ∞

r+

)

(

2βt2β−1[(σ − t)2 + τ2] + 2t2β |σ − t|
)

|ζ(t)| dt
[(σ − t)2 + τ2]2

.

Remark that we have integrated by parts while transforming here the integrals. Taking
into account the inequalities

|σ − t|/
√

(σ − t)2 + τ2 6 1, 2β < 1, |ζ(ξ)| 6 l,
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we estimate the last sum of the integrals as follows

(2.11) 6 l
(

∫ r−

1

+

∫ ∞

r+

)[ 2βt2β−1

(σ − t)2 + τ2
+

2t2β
(

(σ − t)2 + τ
)3/2

]

dt

6 3l
(

∫ r−

1

+

∫ ∞

r+

) t2β dt

(σ − t)2 + τ2
6 3l

(

∫ r−

1

+

∫ ∞

r+

) t2β dt

(σ − t)2
,

provided that min[(σ − r−), (r+ − σ)] = ar2β > 1. Therefore, to prove the lemma it is
sufficient to estimate the integral

(2.12)

(

∫ r−

1

+

∫ ∞

r+

) t2β dt

(σ − t)2
6

∫ σ

σ−r−

(σ − ξ)2β

ξ2
dξ +

∫ ∞

r+−σ

(ξ + σ)2β

ξ2
dξ

6 σ2β

∫ ∞

ar2β

1

ξ2
dξ +

∫ σ

ar2β

(2σ)2β

ξ2
dξ +

∫ ∞

σ

(2ξ)2β

ξ2
dξ

<
(1 + 22β)σ2β

ar2β
+

22β

(1− 22β)
σ2β−1

<
1 + 22β

a

(

1 + ar2β−1
)2β

+
22β

(1− 2β)

(

r − ar2β
)2β−1

<
3

a
−
(

2− 22β
)

a
+ Cr2β−1 <

3

a
,

provided that r is sufficiently large, i.e. r1−2β > Ca/(2− 22β) where C depends only on
β and a. Now, the assertion of lemma straightly follows from (2.10), (2.11) and (2.12).
The lemma is proved. �

Step 5. Here we estimate the left hand-side of (2.9) outside the parabolic domain
defined as follows

(2.13) P (h, 2β) = {λ : | Imλ| 6 h(Reλ)2β , Reλ > 0}.

Lemma 6. Let the conditions of Theorem 1 hold. Let h be a positive number and

σh =

[

2h

π(1− 2β)(21−2β − 1)

]1/(1−2β)

.

Then for all λ = σ+ iτ lying in the half-plane σ > σh and outside the parabola P (h, 2β)
defined by (2.13) the following estimate holds

(2.14)

∞
∑

k=1

‖Bϕk‖2
|λ− µk|2

<
6πb2l

h
.

Proof. Repeating the arguments in proving Lemma 5 (see estimates (2.10) and (2.11))
we get

(2.15)
∞
∑

k=1

‖Bϕk‖2
|λ− µk|2

< 4b2l

∫ ∞

1

t2β dt

(σ − t)2 + τ2
.

Further we proceed

∫ ∞

1

t2β dt

(σ − t)2 + τ2
<

∫ σ

0

(σ − ξ)2β

ξ2 + τ2
dξ +

(

∫ σ

0

+

∫ ∞

σ

) (σ + ξ)2β

ξ2 + τ2
dξ

< σ2β π

2τ
+ (2σ)2β

π

2τ
+

∫ ∞

σ

(2ξ)2β

ξ2
dξ.
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Outside the parabola Ph we have τ > hσ2β . Therefore, for λ = σ + iτ /∈ Ph the right
hand-side of the last inequality can be estimated as follows

<
3π

2h
− (2− 22β)π

2h
+

22β

(1− 2β)
σ2β−1

6
3π

2h
,

provided that σ > σh. This completes the proof of the lemma. �

Step 6.

Lemma 7. Let conditions of Lemma 5 hold. Then there is a large number R = R(r)
such that the estimate (2.9) holds on the boundary of the rectangle Rr whose horisontal
sides are the segments of the lines Imλ = ±R and the vertical sides are the segments of
the lines Reλ = −R and Reλ = r.

Proof. The validity of estimate (2.9) on the line Reλ = r is proved in Lemma 5. It
follows from the proof of Lemma 6 that the left hand-side of (2.9) obeys the estimate
6 C(Imλ)−1 as Imλ → ∞ uniformly in the half-plane Reλ < σh. We do not show
here details because they are obviously seen from the proof of Lemma 6. Finally, the
estimate on the line Reλ = −R with sufficiently large R also follows easily from the
above representations. �

Step 7. Our goal at this step is to show the equality n(r, Tr + B) = n(r, Tr), where
Tr is a special finite-dimensional ”correction” of the unperturbed operator T . First we
construct the operator Tr.

Take a positive a such that the inequality

(2.16) a > 96 b2 l

holds. We pay attention that this condition differs from (2.8) by changing l to 2l (we
will use this further). Fix a number r such that r − 2ar2β > 1. Define the interval
∆r = (r − 2ar2β , r + 2ar2β) and the operator

Kr = 4ar2β
∑

µk∈∆r

(·, ϕk)ϕk.

Obviously, Kr is a self-adjoint operator of finite rank not exceeding the value

(2.17) N = n(r + 2ar2β , T )− n(r − 2ar2β , T ).

Now define Tr = T +Kr. Obviously, this operator preserves the system of eigenfunctions
{ϕk}∞1 but changes the eigenvalues lying in the interval ∆r = (r − 2ar2β, r + 2ar2β); it
shifts them by 4ar2β to the right from this interval. The condition Tr > 1 is preserved
(since Kr > 0). The sequence of the eigenvalues {µ′

k}∞k=1 of the operator Tr remains non-
condensing but we have to take into account that the number l = supt>0

∑

µk∈[t,t+1) 1

is changed to 2l. Then, by construction µ′
k > µk, therefore condition (1.3) is preserved

for Tr.
Let us estimate the norm of the operator function B(λ − Tr)

−1 in the strip Reλ ∈
(r − ar2β , r + ar2β). We apply the method used by Adduci and Mityagin [1, §4]. Let
f ∈ H, ‖f‖ = 1, and fk = (f, ϕk) be the Fourier coefficients of the element f . Then
(2.18)

‖B(λ− Tr)
−1f‖2 =

∥

∥

∥

∞
∑

k=1

fkBϕk

λ− µ′
k

∥

∥

∥

2

6

∞
∑

k=1

|fk|2
∞
∑

k=1

‖Bϕk‖2
|λ− µ′

k|2
=

∞
∑

k=1

‖Bϕk‖2
|λ− µ′

k|2
.

Applying Lemma 5 and taking into account that the number a is selected by (2.16)
instead of (2.8) (because the number l for Tr has to be changed by 2l), we obtain the
following estimate

(2.19) ‖B(λ− Tr)
−1‖ <

√

1

4
=

1

2
, Reλ ∈ (r − ar2β , r + ar2β).
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Now, by virtue of Lemma 7 take a number R = R(r) such that estimate (2.19) holds on
the boundary of the rectangle R. Then, for all t ∈ [0, 1] the Riesz projectors

Qt =
1

2πi

∫

∂Ω

(λ− Tr − tB)−1 dλ =
1

2πi

∫

∂Ω

(λ− Tr)
−1(1− tB(λ− Tr)

−1 dλ

are well defined and depend continuously on t in the norm operator topology. By virtue
of Szökefalvi-Nagy’s lemma (see [5, Ch. 1, Lemma 3.1]) dimQt = dimQξ, provided that
‖Qt −Qξ‖ < 1. Therefore, it follows from the continuity of Qt that

(2.20) n(r, Tr) = dimP0 = dimP1 = n(r, Tr +B).

This proves lemma.
Step 8. Consider the scalar function

D(λ) = det(1−Kr(λ− Tr −B)−1).

By virtue of Lemma 3 the spectrum of the operator Tr + B is discrete. Hence, the
operator function K(λ) := Kr(λ − Tr − B)−1 is meromorphic and its values are finite-
rank operators for λ /∈ σ(Tr +B). Therefore, the determinant D(λ) is well defined ( as a
meromorphic function) and is equal to the product

∏

j(1−λj(K)), where λj(K) are the

eigenvalues of the operator K(λ). Since dimKr 6 4ap, this product contains at most
4ar2β factors.

Lemma 8. In the strip Reλ ∈ (r − ar2β , r + ar2β) the function D(λ) is holomorphic
and is estimated as

(2.21) |D(λ)| 6 9N ,

where the number N is defined by (2.17). At the point λ = r+ ihr2β the following lower
estimate holds

(2.22) |D(λ)| >
(

1

2

)N

, provided that h > 16 a.

Proof. We shall use the identity

(λ− Tr −B)−1 = (λ− Tr)
−1(1−B(λ− Tr)

−1)−1

and the estimates

‖(λ− Tr)
−1‖ 6

1

dist(λ, σ(Tr))
6

1

ar2β
, ‖(1−B(λ− Tr)

−1)−1‖ 6 2,

which hold for λ in the strip Reλ ∈ (r− ar2β , r+ ar2β). The first estimate here is valid
because Tr is self-adjoint, and the second one is proved in Lemma 7. In particular, we
find that the operator function K(λ) is holomorphic in the strip |Reλ − r| < ar2β and
its eigenvalues obey the inequalities

|λj(K)| 6 ‖Kr‖ ‖(λ− Tr −B)−1‖ 6 4ar2β · 1

ar2β
· 2 = 8.

The number of the eigenvalues is equal to the rank of the operator K(λ), which does not
exceed the rank of the operator Kr equal to N . Therefore, the product of N factors of
the form (1− λj(K)) is subject to estimate (2.21).

Next, by virtue of Lemma 5 the estimate ‖B(λ − Tr)
−1‖ < 1/2 is valid for λ on the

line Reλ = r. Using the resolvent estimate for the self-adjoint operator Tr we get for
λ = r + ihr2β

(2.23)

|λj(K(λ))| < ‖Kr‖ ‖(λ− Tr)
−1‖ ‖(1−B(λ− Tr)

−1)−1‖

6 4ar2β · 1

r2β
√
1 + h2

· 2 <
8a

h
< 1/2,
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provided that h > 16a. Then |1− λj(K)| > 1/2. Therefore, the product of N factors of
this form can be estimated as follows

|D(λ)| >
(

1− 1

2

)N

>

(

1

2

)N

, | Imλ| > hr2β > 16 a r2β .

The lemma is proved. �

Step 9. Now we are ready to prove the main lemma.

Lemma 9. Fix numbers a > 48 b2 l and h > 16a. Take sufficiently large r and consider
a rectangle R defined in Lemma 5 with R > 2hr2β. Suppose that the line Reλ = r does
not contain the eigenvalues of the operator A. Then the variation of the argument along
the boundary of the rectangle R is subject to the estimate

|[argD(λ)]|∂R| 6 CN + C1,

where N is defined by (2.17) and C, C1 are constants depending only on l and b.

Proof. We have proved in the previous lemma estimate (2.23) for all λ ∈ ∂R except the
segment on the line Reλ = r with the endpoints r ± ihr2β . Hence, the variation of the
argument of the functions (1 − λj(K(λ)) when λ varies along ∂R between these points
outside this segment does not exceed π/3. Then the variation of the argument of the
function D along this curve is 6 πN/3.

To complete the proof we have to estimate the variation of the argument along the
segment Ir = [r−ihr2β , r+ihr2β ]. For this purpose we shall use Lemma 2. First, we chose
a number a satisfying condition (2.16). Then, we take a number h, say, h = 16 a b2 such
that inequality (2.22) holds. Assume that r > C where C is the constant from Lemma
5. Consider the rectangle Ra,h bounded by the straight lines Reλ = r ± a, Imλ = ±2h
and denote by R′

a,h the twice contracted rectangle with the same center at the point

r. Lemma 2 together with estimates (2.21) and (2.22) imply that the variation of the
argument of the function D along the segment Ir (provided that this segment does not
passes through the zeros of the function D) does not exceed C ′(ln 9+ ln 2)N where C ′ is
an absolute constant. This proves the lemma.

�

Step 10. It follows from Lemma 2 that the difference between the number of zeros and
poles of the function D inside the rectangle R = Rr does not exceed CN 6 C ′(b2l)N
where C ′ is an absolute constant. Note also that by construction of Tr we have 0 6

n(r, T )−n(r, Tr) 6 N . Therefore, formula (2.1) gives |n(r,A)−n(r, T )| 6 CN , provided
that r > C0. Taking C1 = n(C0, T ) we get the assertion of Theorem. We have only to
explain what to do with exceptional values of r when the segment Ir passes through the
zeros of the function D which coincide with the eigenvalues of A. To explain this we
remark that all these zeros of the function D lie in the rectangle R′(a, h) and by virtue
of Lemma 2 the number of these zeros is 6 CN . Therefore, the jump of the function
n(r,A) does not exceed this value, and the relation (1.5) remains valid for all r ∈ R

+.
This ends the proof of Theorem 1 for the case α = 1.

Step 11. Let α > 0 and γ := 2β+α− 1, 0 6 γ < 1. An important step in the proof of
the theorem for the case α = 1 was made in Lemma 5. In the general case we also have
the estimate

(2.24)

∞
∑

k=1

‖Bϕk‖2
|λ− µk|2

6 b2
∞
∑

k=1

µ2β
k

(σ − µk)2 + τ2
= b2

∫ ∞

1

t2β dn(t)

(σ − t)2 + τ2
.

Since the sequence {µk}∞k=1 is α-non-condensing, the function n(ξ1/α) = n(ξ1/α, T )
by virtue of Lemma 4 can be represented in the form

n(ξ1/α) = ψ(ξ) + ζ(ξ), 0 6 ψ′(ξ) 6 l, |ζ(ξ)| 6 l.
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Denote λ = σ + iτ , r− = r − 2arγ , r+ = r + 2arγ and assume that this interval does
not contain the eigenvalues of the operator T . Then, we can rewrite the integral on the
right hand-side of (2.24) as follows

(2.25)

∫ ∞

1

ξ2β/α d[ψ(ξ) + ζ(ξ)]

(σ − ξ1/α)2 + τ2

6 l

∫ ∞

1

ξ2β/α dξ
(

σ − ξ1/α
)2

+ τ2
+

∫ ∞

1

∣

∣

∣

∣

[

ξ2β/α
(

σ − ξ1/α
)2

+ τ2

]′ ∣
∣

∣

∣

|ζ(ξ)| dξ.

The second integral in the right hand-side of (2.25) obeys the estimate

(2.26) 6 l

∫ ∞

1

[

2βt2β−1

(σ − t)2 + τ2
+

2t2β

[(σ − t)2 + τ2]
3/2

]

dt.

Recalling that µk /∈ (r−, r+) we can replace the integral
∫∞
1

by
∫ r−

1
+
∫∞
r+

. Then, the
left hand-side in (2.25) is subject to estimate (for all τ ∈ R)

(2.27) 6 αl
(

∫ r−

1

+

∫ ∞

r+

)

[

tγ

(σ − t)2 + τ2
+

2βt2β−1

(σ − t)2 + τ2
+

2t2β

(σ − t)3

]

dt

Here the integral from the first summand can be estimated in the same way as in Lemma

5, namely, it is 6
(1+2γ)

a + Crγ−1. There are no problems with the estimation of the
integral from the second summand because 2β − 1 < γ. Finally, let us estimate, for
example, the first integral from the third summand. We have

∫ r−

1

t2β

(σ − t)3
dt 6 σ2β

∫ σ−1

arγ

1

x3
dx 6

σ2β

a2r2γ
6

2

a2
,

provided that r > C = C(a, β) and β 6 γ. In the case β > γ = 2β + α − 1 we have to
put γ = β. Then the last estimate holds. The previous estimates for the first and the
second summand in (2.27) are also valid because 2β + α− 1 < β.

Therefore, we have proved that the assertion of Lemma 5 remains valid in the general
case α > 0 if the number 2β is replaced by γ = max(0, β, 2β + α − 1). All the other
arguments in proving Theorem 1 for the general case remain the same with obvious
changes.
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