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LINEARIZATION OF DOUBLE-INFINITE TODA LATTICE BY

MEANS OF INVERSE SPECTRAL PROBLEM

YURIJ M. BEREZANSKY

Dedicated to the fond memory of dear Tolya Kostyuchenko

Abstract. The author earlier in [3, 4, 6, 7] proposed some way of integration the
Cauchy problem for semi-infinite Toda lattices using the inverse spectral problem for
Jacobi matrices. Such a way for double-infinite Toda lattices is more complicated

and was proposed in [9]. This article is devoted to a detailed account of the result
[3, 4, 6, 7, 9]. It is necessary to note that in the case of double-infinite lattices
we cannot give a general solution of the corresponding linear system of differential

equations for spectral matrix. Therefore, in this case the corresponding results can
only be understood as a procedure of finding the solution of the Toda lattice.

1. Introduction

The classical double-infinite Toda lattice [60] is a nonlinear difference-differential equa-
tion of the form

α̇n(t) =
1

2
αn(t)(βn+1(t)− βn(t)),

β̇n(t) = α2
n(t)− α2

n−1(t), n ∈ Z = {. . . ,−1, 0, 1, . . .}, t ∈ [0, T ), T > 0.
(1)

Here the unknowns αn(t), βn(t) are real continuously differentiable functions, · = d
dt . For

(1) it is possible to pose a Cauchy problem as follows: for given initial data αn(0), βn(0), n ∈
Z, it is necessary to find solutions αn(t), βn(t), n ∈ Z, t ∈ [0, T ).

Note, that this system in fact is some Hamiltonian system describing the dynamics
of a chain of particles qn(t), n ∈ Z, on a straight line with exponential interactions. To
be more specific, αn(t), βn(t) are some coordinates of qn(t) and q̇n(t) (Flashka variables
[34, 35]). To stufy a Cauchy problem for (1) is an essential problem with large physical
literature. We mention some of corresponding articles, which are essential for us.

In the case of a finite number of equations in (1), where Z is replaced with the finite
set {0, . . . , N}, the initial essential for us result were obtained in [44, 55].

For semi-infinite case, where Z is replaced with N0 = {0, 1, 2, . . .}, there were results
similar to the classical method of integration of the Cauchy problem for the KdV equation
on (x, t) ∈ [0,∞)×[0, T ) by means of the inverse spectral problem for the Sturm-Liouville
equation for x ∈ [0,∞). In our case, instead of the Sturm-Liouville equation, we take its
difference analogue, — the classical Jacobi matrix. Corresponding results are published
in [3, 4, 6, 7]. Now, the unknowns αn(t) are supposed to be positive and the functions
αn(t), βn(t) are bounded uniformly w.r.t. n ∈ N0.

Let us explain the main idea of this approach. The equation (1) is connected with a
classical Jacobi matrix J(t) having (βn(t))

∞

n=0 in the main diagonal and (αn(t))
∞

n=0 in
two neighboring equal diagonals. The knowledge of a solution of our Cauchy problem
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is equivalent to the knowledge of the matrix J(t). The matrix J(t) acts in the space
ℓ2 = C1 ⊕C1 ⊕ . . . (i.e. ℓ2 on N0) and generates a bounded selfadjoint operator J(t) (its
boundness follows from our assumption: we consider only bounded solutions of (1)).

The essential point is that the evolution in time t ∈ [0, T ) of the matrix J(t) is
complicated and is given by equation (1), but the evolution of its spectral measure
dρ(λ; t) is simple, namely

(2) dρ(λ; t) = eλtdρ(λ; 0), λ ∈ R, t ∈ [0, T ).

This fact is a main exception of Toda system. Note that, from (2), it follows that the
spectrum of the operator J(t) does not depend on t. Let us also explain that using (1)
we can find, for ρ(λ; t), a simple differential equation w.r.t. t and (2) is its solution.

Now finding a solution of our Cauchy problem is very simple, — using the initial data
α0(0), β0(0), n ∈ N0, i.e., the matrix J(0) we find its spectral measure dρ(λ; 0). Then
using (2) we know the spectral measure dρ(λ; t) of the matrix J(t). This knowledge gives
the knowledge of J(t) by classical formulas (it is necessary to use the orthogonalization of
powers 1, λ, λ2, . . . etc, i.e., to solve the inverse spectral problem for the Jacobi matrix).
So, we find a solution of our Cauchy problem.

Some articles give generalizations of this approach to semi-infinite case. So, [58] inves-
tigates solutions of a Toda lattice, which are not necessarily bounded (then the Hermit-
ian operators J(t) are in general unbounded). Lattices more general than (1) in the case
where the formula (2) is more complicated, were considered in [12, 17, 57, 18, 53, 54] (a
”nonisospectral case” when the spectrum of J(t) changes in time). A case of matrix (or
operator) equations of type (1) were considered in [36, 15]; see also [22, 23]. Now the
corresponding operators J(t) act on the space Cd⊕Cd⊕. . . , where d > 1 is the dimension
of matrix-values of the solutions (or in an orthogonal sum of the fixed Hilbert space in
which the values of our solutions lie). A spectral theory for the corresponding Jacobi-
type matrices was developed in [50, 2, 10, 11]. New classes of Toda soliton solutions were
found in [39]. For some other results on Toda lattices, which are connected with this
inverse spectral approach, see [45, 26, 24, 40, 48, 49, 59, 33, 38]. The application of such
an approach to Schur flows was given in [41].

Let us now pass to the double-infinite Toda lattices. Note that a direct application
of the spectral theory of classical Jacobi matrices now is impossible since n must range
over Z and cannot serve as indexes m,n of elements of the Jacobi matrix (am,n)

∞

m,n=0.
The situation with such Toda lattices is essentially more complicated as compared with
the case N0. At first we note some essential results which are not directly connected with
our inverse spectral problem approach.

In the classical work [60], Toda has applied, to the integration of a Cauchy problem
for (1), the difference analogue of the inverse scattering problem for the Sturm-Liouville
equation on the whole axis R ∋ x with the operator equal to a discrete analog of the
Laplacian. This approach gives a possibility to find the set of corresponding solutions.
Earlier works in this direction are [52, 34, 35].

In the work [51] the case of periodic solutions was investigated by using theta functions
(also see the previous work [44]). In the series of works [59, 19, 20, 21, 27, 28, 29, 30,
31, 32], finding solutions of Cauchy problem for (1) was given in terms of a difference
analogue of the scattering theory for the Schroedinger equation with periodic potential;
also there was considered the case where the potential tends to different constants when
n → +∞ and n → −∞. Such an approach was generalized in the above mentioned works
as to find solutions connected with the case more general than the periodic one. Namely,
finite-zones potentials of the corresponding underlying operators were investigated. Let
us explain that an application of the scattering theory for finding solutions of (1) is based
on the fact that if the underlying potential changes in according to (1), then scattering
data changes in a simple way (similar to (2) in our approach) .
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Essential results concerning finding of the solutions of a Cauchy problem for double-
infinite equation (1) were obtained in [63, 64, 65]. In particular, solutions that strongly
tend to zero as |n| → ∞ were founded. These results are intimately connected with our
approach.

The problem of integrating a Cauchy problem for (1) without some essential conditions
on the structure of solutions was open. In the work [13] the authors tried to find general
solutions of this problem for (1) using an interpretation of equation (1) as a 2×2−matrix
equation in the space C2⊕C2⊕ . . . . So, we get some matrix-valued Toda system, but the
noncommutativity of matrices gives a complicated differential equation for the matrix
ρ(λ; t).

In this approach, the authors used the standard duplication method, — the double
infinite vector ξ = (. . . , ξ−1, ξ0, ξ1, . . .), ξn ∈ C1, is understood as the vector (x0, x1, . . .) ∈
C2 ⊕C2 ⊕ . . . , where xn = (ξn, ξ−n−1) ∈ C2, i.e. ξ ↔ (x0 = (ξ0, ξ−1), x1 = (ξ1, ξ−2), . . .).

But, it is possible to make another more convenient duplication,

(3) ξ = (. . . , ξ−1, ξ0, ξ1, . . .) ↔ (x0 = ξ0, x1 = (ξ1, ξ−1), x2 = (ξ2, ξ−2), . . .).

In this duplication, vectors ξ transfer into vectors from the space

(4) C1 ⊕ C2 ⊕ C2 ⊕ · · · .

In our duplication, a Toda lattice transfers into an equation relatively the unknowns
with values in the space (4). To apply the approach [3, 4, 6, 7] in our case, it is necessary
to develop a spectral theory of Jacobi-type matrices acting on the space (4). Note that
this theory is essentially a spectral theory of ordinary double-infinite Jacobi matrices in
the space ℓ2 on Z.

It is possible to make such a generalization, and the corresponding results are pub-
lished in the article [9]. Note that the spectral theory of such Jacobi-type matrices is
nonstandard, its development connect with some construction found in articles [8, 43].

It is necessary to say that the above mentioned spectral theory of selfadjoint Jacobi-
type matrices in the space (4) can be developed thanks to the general theory of generalized
eigenvectors of selfadjoint operators and expansions with respect to such eigenvectors.
Such notions were at first introduced in the article [37, 1]; we used the corresponding
results from the books [2, 14, 16].

The present article is devoted to a complete exposition of the above mentioned results
from [9] (the last article also contains many other facts but we will touch only the
results connected with equation (1)). It is also necessary to say that some of the results
from [3, 4, 6, 7, 9] were proved in a formal way (for example, deduction of differential
equations for the spectral measure). In the present article, we give a mathematically
strong deduction of the corresponding results.

We start with a semi-infinite Toda lattice (Section 2) and give a mathematically strong
account of these results. Note that we do not include some examples of finding a solution
of the corresponding Cauchy problem, some of them are contained in [6, 7]. Section 3 is
devoted to a proof of notation of Toda lattice (1) as a Lax equation with some coefficient
matrix A(t) in the space (4); for us is essential the properties of A(t). In the Section 4 we
develop the direct and inverse spectral theory of Jacobi-type matrices in the space (4).
Note, that by construction of such theory there are some exceptions since the first space
in the sum (4) is C1, different from other spaces C2. Now the spectral measure dρ(λ) is
2× 2−matrix measure, corresponding inverse problem is more difficult, as for the space
C2 ⊕ C2 ⊕ · · · .

In Section 5 we have derived a differential equation on t for elements of a spectral
matrix, dρ(λ; t) = (dρα,β(λ; t))

1
α,β=0, of the corresponding operator J(t) acting on the

space (4). Now ρ0,1(λ; t) = ρ1,0(λ; t), our differential equation is a linear system of
equations of the first order w.r.t. the real functions r0,0(λ; t), r0,1(λ; t), r1,1(λ; t), which
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are derivatives of dρα,β(λ; t) with respect to some scalar measure dσ(λ) : rα,β(λ; t) =
dρα,β(λ;t)

dσ(λ) . Here t ∈ [0, T ), λ is a parameter, coefficients of the system un a simple way

depend on α0(t), β0(t), and λ, but, unfortunately, we cannot give a general solution of
this system. This is the main difference between the semi-infinite and the double-infinite
cases for Toda lattice: in the first case we can find a general solution of the corresponding
(one dimensional) differential equation, it gives formula (2), in our second case we have
only a procedure for finding a solution, so we get only a linearization of our problem, not
its solution.

Section 6 contains the main Theorem 11 of this work, — we give a procedure for
finding a solution of the Cauchy problem for (1).

This section also contains some applications obtained with results on differential equa-
tions. Hamiltonian system in the form of a second order equation connected with (1) has
the form

(5) ẍn(t) = exn−1(t)−xn(t) − exn(t)−xn+1(t), n ∈ Z, t ∈ [0, T )

(the connection between (5) and (1) is given by the Flashka change of variables, αn(t) =
e1/2(xn(t)−xn+1(t)), βn(t) = −ẋn(t)). The Cauchy problem for (5) with the given initial
data xn(0), ẋn(0), n ∈ Z, by the Flashka change of variables, transfers into our Cauchy
problem for (1) and Theorem 11 gives a possibility to investigate it.

The last part of this Section is devoted to the shock problem for (5). This problem
following [42] (see also [25]) is, for the equation (5) with n ∈ N0, to find a solution of
the mixed Cauchy problem if xn(0), ẋn(0), n ∈ N0, and x−1(t) are given (the “mixed
semi-infinite Toda lattice”). Some approaches to the investigation of this and similar
problems were given in the works [46, 47, 5, 56, 61, 62, 25]. We consider one version of
this problem, that is, it is assumed that the following is given: xn(0), ẋn(0), n ∈ N0, and
x−1(t) − x0(t), t ∈ [0, T ) (instead of x−1(t)). In the article, we show that a solution of
such Toda shock problem is connected with finding a solution of some Riccati equation.
If in the above x−1(t) = 0, then we have a problem similar to [42] but moved one step
further. Note that these results connected with the shock problem use only the material
of Section 2.

2. Semi-infinite Toda lattice

In this Section we present old base results [3, 4, 6, 7] for a Toda lattice on N0 =
{0, 1, . . .}, in a little more accurate mathematical fashion. This lattice has the form

α̇n(t) =
1

2
α(t)(βn+1(t)− βn(t)),

β̇n(t) = α2
n(t)− α2

n−1(t), n ∈ N0, α−1(t) = 0,
(6)

where αn(t), βn(t) are real continuously differentiable functions of t ∈ [0, T ), T ≤ ∞; · =
d
dt . System (6) is a systems of differential-difference nonlinear equations, for (6) it is pos-
sible to consider the following Cauchy problem: from given initial data αn(0), βn(0), n ∈
N0, it is necessary to find a solution αn(t), βn(t), n ∈ N0, for t ∈ [0, T ).

We will assume that the all the functions αn(t), βn(t) are bounded uniformly w.r.t.
n ∈ N0, and

(7) αn(t) > 0, t ∈ [0, T ), n ∈ N0.

For our method of the inverse spectral problem, to integrate (6) it is necessary to
rewrite (6) as a Lax equation for operators in the ordinary space ℓ2 of sequences f =
(fn)

∞

n=0, fn ∈ C.
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Using the unknowns αn(t), βn(t) from (6) introduce the classical Jacobi matrix J(t)
that depends on t,

(8) J(t) =




β0(t) α0(t) 0 0 0 . . .
α0(t) β1(t) α1(t) 0 0 . . .
0 α1(t) β2(t) α2(t) 0 . . .
...

...
...

...
...

. . .


 , t ∈ [0, T ).

Matrix (8), for every t, generates a Hermitian operator J(t) in the space ℓ2 in a classical
way; it is the closure of the Hermitian operator ℓfin ∋ f = (fn)

∞

n=0 7→ ((J(t)f)n)
∞

n=0 ∈ ℓ2.
The boundness of αn(t), βn(t) and their differentiability gives that this operator J(t)∀t
is bounded selfadjoint and weakly differentiable w.r.t. t ∈ [0, T ).

Introduce the matrix

(9) A(t) =
1

2




0 −α0(t) 0 0 0 . . .
α0(t) 0 −α1(t) 0 0 . . .
0 α1(t) 0 −α2(t) 0 . . .
...

...
...

...
...

. . .


 , t ∈ [0, T ),

which generates in ℓ2, similar to J(t), an antisymmetric bounded operator A(t), weakly
differentiable w.r.t. t ∈ [0, T ).

The following classical results is well known: the Toda equation (6) and the corre-
sponding Lax equation

(10) J̇(t) = J(t)A(t)−A(t)J(t) or J̇(t) = J(t)A(t)−A(t)J(t), t ∈ [0, T ),

are equivalent.
The proof of this fact is very simple. We calculate J(t)A(t)− A(t)J(t) using (8) and

(9). Then the first equality in (10) is the same as (6).
Further we will consider another linear operators in the space ℓ2. Introduce some

notations. In this space we will use the standard orthonormal basis

(11) εn = (0, . . . , 0, 1︸︷︷︸
n place

, 0, 0, . . .), n ∈ N0.

Then for every bounded linear operator A : ℓ2 → ℓ2 we can construct its matrix A =
(Aj,k)

∞

j,k=0, where Aj,k = (Aεk, εj)ℓ2 ∈ C. Then

(12) (Af)j =
∞∑

k=0

Aj,kfk, f = (fn)
∞

n=0 ∈ ℓ2, j ∈ N0.

Conversly, every matrix A = (Aj,k)
∞

j,k=0 with uniformly bounded Aj,k ∈ C generates by

(12) a corresponding operator A.
Consider the resolvent Rz(t) = (J(t)− z1)−1, z ∈ C \R, t ∈ [0, T ), of our selfadjoint

bounded operator J(t). According to (12) this resolvent has the matrix

(13) Rz(t) = (Rz;j,k(t))
∞

j,k=0, Rz(t) = (Rz(t)εk, εj)ℓ2 .

Our nearest aim is to deduce some differential equation w.r.t. t for the zero matrix
element of (13) ( the “Weyl function”),

(14) m(z; t) = Rz;0,0(t) = (Rz(t)ε0, ε0)ℓ2 , z ∈ C \ R, t ∈ [0, T ); m(z; t) = m(z; t).

Theorem 1. The Weyl function m(z; t) satisfies the following differential equation:

(15) ṁ(z; t) = (z − β0(t))m(z; t) + 1, z ∈ C \ R, t ∈ [0, T ).

Proof. We will use the well known formula for the derivative with respect to t of the
inverse of the smooth operator-valued function [0, T ) ∋ t 7→ C(t), namely,

(16) (C−1(t))̇ = −C−1(t)Ċ(t)C−1(t), t ∈ [0, T ).
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According to (10) we get ∀z ∈ C \ R

(17) (J(t)− z1)̇ = J̇(t) = J(t)A(t)−A(t)J(t) = (J(t)− z1)A(t)−A(t)(J(t)− z1),

therefore using (16) and (17) we have ∀z ∈ C \ R

Ṙz(t) = ((J(t)− z1)−1)̇ = −Rz(t)(J(t)− z1)̇Rz(t)

= −Rz(t)((J(t)− z1)A(t)−A(t)(J(t)− z1))Rz(t)

= Rz(t)A(t)−A(t)Rz(t) = [Rz(t),A(t)], or

Ṙz(t) = [Rz(t), A(t)], t ∈ [0, T )

(18)

(we use in the article the standard notation for the commutator, [B,C] = BC − CB).
Let us calculate ṁ(z; t). Observe that A∗(t) = −A(t), therefore using (18) ∀z ∈

C \ R, t ∈ [0, T ) we get

ṁ(z; t) = (Ṙz(t)ε0, ε0)ℓ2 = ((Rz(t)A(t)−A(t)Rz(t))ε0, ε0)ℓ2

= (Rz(t)A(t)ε0, ε0)ℓ2 + (Rz(t)ε0,A(t)ε0)ℓ2 .
(19)

From (9) we conclude that

(20) A(t)ε0 = (0,
1

2
α0(t), 0, 0, . . .) =

1

2
α0(t)ε1.

The equalities (19), (20) give

ṁ(z; t) =
1

2
α0(t)(Rz(t)ε1, ε0)ℓ2 +

1

2
α0(t)(Rz(t)ε0, ε1)ℓ2

=
1

2
α0(t)((Rz(t)ε0)1 + (Rz̄(t)ε0)1), z ∈ C \ R, t ∈ [0, T ).

(21)

But 1 = (J(t)− z1)Rz(t), therefore,

1 =
∞∑

k=0

(J(t)− z1)0,k(Rz(t))0,k = (β0(t)− z)m(z; t) + α0(t)(Rz(t)ε0)1.

So, we have

(22) (Rz(t)ε0)1 = α−1
0 (t)((z − β0(t))m(z; t) + 1), z ∈ C \ R, t ∈ [0, T ).

Using (22), we conclude from (21) and (14) that

ṁ(z; t) = (z − β0(t))m(z; t) + 1, z ∈ C \ R, t ∈ [0, T ). �

Further we will need some facts from the classical theory of Jacobi matrices (see, for
example, [2], Ch. 7 and also [16], Ch. 15). Let us recall these facts.

Consider a Jacobi matrix J of type (8) with constant coefficients αn > 0, βn ∈ R,
n ∈ N0. For simplicity we assume that αn, βn are bounded w.r.t. n. Such a matrix J
generates in the space ℓ2 (as above) a bounded selfadjoint operator J. For this operator,
the Borel spectral measureB(R) ∋△7→ ρ(△) (or dρ(λ)) exists. This measure has bounded
support (equals to the spectrum of J) and is a probability measure, ρ(R) = 1. It is

also convenient to use corresponding spectral function ρ(λ) =
∫ λ

−∞
dρ(λ) = ρ((−∞, λ)),

λ ∈ R.
The expansion of the space ℓ2 in the continual linear combination of generalized eigen-

vector of J has the following form. Consider the solution P (λ) = (Pn(λ))
∞

n=0, λ ∈ R, of
the following difference equation with the initial data indicated below,

(JP (λ))n = αn−1Pn−1(λ) + βnPn(λ) + αnPn+1(λ) = λPn(λ),

n ∈ N0, P−1(λ) = 0, P0(λ) = 1; λ ∈ R.
(23)

Every Pn(λ) is a polynomial of degree n with real coefficients (the “polynomial of the
first kind”).

The sequence P (λ) = (Pn(λ))
∞

n=0 is a generalized eigenvector of the operator J corre-
sponding to the “eigenvalue λ”. If λ belongs to discrete spectrum of J, then P (λ) ∈ ℓ2
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is an ordinary eigenvector of J with the eigenvalue λ. For a general λ, the sequence P (λ)
is arbitrary, i.e. belongs to ℓ := C∞. More exactly, for a given matrix J it is possible to
construct some weighted space ℓ2(h

−1) (the “negative space”, i.e., the space of sequences
u = (un)

∞

n=0, un ∈ C for which
∑

∞

n=0 |un|
2h−1

n < ∞, where h = (hn)
∞

n=0, hn ≥ 1). The
construction is such that P (λ) ∈ ℓ2(h

−1) ⊂ ℓ.
The generalized eigenvector expansion for our J has the following form. For a finite

sequence f = (fn)
∞

n=0, fn ∈ C (the set of such sequences is denoted by ℓfin) we construct
the Fourier transform

(24) f̂(λ) =
∞∑

n=0

fnPn(λ), λ ∈ R.

The generalized eigenvectors expansion now is equivalent to existence of the Parseval
equality, for arbitrary f, g ∈ ℓfin,

(25) (f, g)ℓ2 =

∫

R

f̂(λ)ĝ(λ)dρ(λ).

Extending it by continuity, the equality (25) is possible to extend to arbitrary f, g ∈ ℓ2.

In this case, f̂(λ) is the limit, in the space L2(R, dρ(λ)), expressions (24) for sequence
f (n) ∈ ℓfin, n ∈ N, which tends to f in ℓ2.

From (24), (25) it follows that the polynomials Pn(λ) are orthonormal in the space
L2(R, dρ(λ)) and form a basis in this space. This basis can be constructed following the
Gramm-Schmidt procedure of orthogonalization of the functions 1, λ, λ2, . . . in the space
L2(R, dρ(λ)). It is easy to understand that for elements αn, βn of the matrix J can be
calculated as

(26) αn =

∫

R

λPn(λ)Pn+1(λ)dρ(λ), βn =

∫

R

λP 2
n(λ)dρ(λ), n ∈ N0.

We also note that for the Weyl function m(z) = (Rzε0, ε0)ℓ2 , where Rz is the resolvent
of operator J, we have the representation

(27) m(z) =

∫

R

1

λ− z
dρ(λ), z ∈ C \ R.

The latter is a general fact. Let E(△),△∈ B(R), be an expansion of the identity for
the operator J. Then it is possible to write

(28) E(△) =

∫

△

Φ(λ)dρ(λ), △∈ B(R),

where Φ(λ) is an operator-valued function of λ the values of which are bounded linear
operators acting from some dense linear subset of ℓ2 into some other linear subset in
ℓ (more exactly, from the space ℓ2(h) ⊂ ℓ2 with “positive norm” into the space with
negative norm, ℓ2(h

−1) ⊂ ℓ). The operator Φ(λ) is called the generalized projection

operator. It is possible to write it as Φ(λ) = dE(λ)
dρ(λ) , it projects the vectors from positive

space into its images in negative space.
After these remindings we return to our matrices and operators J(t),J(t), depending

on t ∈ [0, T ). For fixed t, to these objects, it is possible to apply the above mentioned
theory. Now the spectral measure dρ(λ; t), the generalized projection operator Φ(λ; t)
etc., all of them depend on t.

It is easy to understand, that we can choose a spectral measure dσ(λ) (a joint spectral
measure), which is common for every operator J(t), t ∈ [0, T ). Namely, introduce the
following measure:

(29) B(R) ∋△7→

∫ T

0

ρ(△; t)dt =: σ(△) ≥ 0.
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This definition is correct, since ∀t ∈ [0, T ) ρ(R; t) = 1. It is obvious that every measure
dρ(λ; t) is absolutely continuous w.r.t. dσ(λ).

For the operators J(t), t ∈ [0, T ), all relations (23)–(28) take place for every fixed t
if we use the corresponding spectral measure dρ(λ; t). Our nearest aim is to rewrite the
equation (15) as an equation for a function closely connected with the spectral measure.
For this we introduce ∀t ∈ [0, T ) the derivative of the spectral measure,

(30) r(λ; t) =
dρ(λ; t)

dσ(λ)
, λ ∈ R, i.e. ρ(△; t) =

∫

△

r(λ; t)dσ(λ), △∈ B(R).

We will rewrite (15) in terms r(λ; t).

Theorem 2. For dσ(λ)−almost all λ ∈ R, the function r(λ; t) is continuously differen-
tiable w.r.t. t on [0, T ) and is a solution of the following differential equation:

(31) ṙ(λ; t) = (λ− β0(t))r(λ; t), t ∈ [0, T ).

Proof. From the definition (30) of the function r(λ; t), it is impossible to directly conclude
that this function is smooth w.r.t. t. Therefore it is necessary to use the notion of a
generalized solution of equation (31).

Let L2([0, T ), dt) be the ordinary space of functions on [0, T ), constructed from the
Lebesgue measure dt; (u, v)L2 is the corresponding scalar product. For arbitrary infinitely
differentiable function [0, T ) ∋ t 7→ u(t) ∈ C, vanishing in some neighborhoods of 0 and
T, we have according to (30) and (27), (15) the following: ∀z ∈ C \ R

−

∫

R

1

λ− z
(r(λ; ·), u̇(·))L2dσ(λ) = −

∫

R

1

λ− z
d(ρ(λ; ·), u̇(·))L2

= −(m(z; ·), u̇(·))L2 = (ṁ(z; ·), u(·))L2 = ((z − β0(·))m(z; ·) + 1, u(·))L2

= ((λ− β0(·))m(z; ·), u(·))L2 =

∫

R

1

λ− z
((λ− β0(·))dρ(λ; ·), u(·))L2

=

∫

R

1

λ− z
((λ− β0(·))r(λ; ·), u(·))L2dσ(λ).

(32)

We will now use the well-known fact: if dω(λ) is a charge on B(R) with bounded
support, then the condition

∫
R
(λ − z)−1dω(λ) = 0, z ∈ C \ R, is equivalent to the

equality dω(λ) = 0. Using this fact, we conclude from (7) that, for dσ(λ)−almost all
λ ∈ R,

(33) −(r(λ; ·), u̇(·))L2 = ((λ− β0(·))r(λ; ·), u(·))L2 .

Relation (33) means that r(λ; t) is a generalized solution of equation (31). But for
ordinary differential equations every generalized solution is a smooth solution up to the
point 0 (see, for example, [16], Ch. 16, Section 6). Therefore r(λ; t) is a smooth solution
of equation (31) on [0, T ). �

For equation (31) with arbitrary λ ∈ R it is easily to write a solution of the corres-
ponding Cauchy problem,

(34) r(λ; t) = e
∫

t

0
(λ−β0(s))dsr(λ; 0) = eλte−

∫
t

0
β0(s)dsr(λ; 0), t ∈ [0, T ), λ ∈ R.

Using (30) and (34) we calculate that for the spectral function ρ(λ; t) = ρ((−∞, λ); t), λ ∈
R, of the operator J(t), t ∈ [0, T ), we have

ρ(λ; t) =

∫ λ

−∞

r(µ; t)dσ(µ) = e−
∫

t

0
β0(s)ds

∫ λ

−∞

eµtr(µ; 0)dσ(µ)

= e−
∫

t

0
β0(s)ds

∫ λ

−∞

eµtdρ(µ; 0), i.e.

(35) dρ(λ; t) = e−
∫

t

0
β0(s)dseλtdρ(λ; 0), λ ∈ R, t ∈ [0, T ).
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This formula gives a rule to calculate the spectral measure of the operator J(t) from such
measure of the initial operator J(0).

The function β0(t) can not be arbitrary; since ∀t ∈ [0, T ) ρ(R; t) = 1, from (35) we
conclude that

e
∫

t

0
β0(s)ds =

∫

R

eλtdρ(λ; 0), t ∈ [0, T ).

Therefore,

(36) β0(t) =
(∫

R

eλtdρ(λ; 0)
)
−1

∫

R

λeλtdρ(λ; 0), t ∈ [0, T ).

We can formulate now the main theorem of this section, which is a simple consequence
of the previous consideration.

Theorem 3. Consider the Cauchy problem for the semi-infinite Toda lattice (6). It is
necessary to find a solution αn(t) > 0, βn(t), t ∈ [0, T ), n ∈ N0, of (6) from the given
initial data αn(0), βn(0), n ∈ N0.

The procedure of finding this solution is the following: using the initial data we con-
struct the Jacobi matrix J(0) (8) and then find its spectral measure dρ(λ; 0). Using for-
mulas (35) and (36) we find the spectral measure dρ(λ; t) of the matrix J(t) and then
find the solution by the formulas

αn(t) =

∫

R

λPn(λ; t)Pn+1(λ; t)dρ(λ; t),

βn(t) =

∫

R

λP 2
n(λ; t)dρ(λ; t), n ∈ N0, t ∈ [0, T ).

(37)

In (37), Pn(λ; t) are polynomials of the first kind connected with the measure dρ(λ; t)
and constructed from the orthogonalization procedure applied to 1, λ, λ2, . . . in the space
L2(R, dρ(λ; t)) (note that β0(t) from (37) is equal to (36)).

Of course, to actually find a solution of the Cauchy problem for (6) following this
procedure is very hard, but it is possible to find such initial data for which the calculations
can be carried out.

In the conclusion of this Section we will make two remarks.

Remark 1. Using (31) it is possible to deduce a similar equation for the spectral function
ρ(λ; t) = ρ((−∞, λ); t), λ ∈ R, t ∈ [0, T ).

Remark 2. Instead of Theorem 3 it is possible to get some another result of such type.
Namely, using equation (15), we can find some equations for moments of the measure
dρ(λ; t), i.e., for the functions sn =

∫
R
λndρ(λ; t), n ∈ N0, t ∈ [0, T ). We can find

solutions of these equations and then find the elements αn(t), βn(t) of the corresponding
Jacobi matrix J(t) using the classical formulas of the theory of moments. More detailed
explanation of this approach will be given in Section 6, Theorem 12.

3. The Toda lattice as the Lax equation for block Jacobi matrix

In this Section we will rewrite the Cauchy problem for double-infinite Toda lattice as
corresponding problem for Lax equation for block Jacobi matrices.

Unlike the constructions of Section 2, we will use instead of the ordinary space ℓ2 on
N0, the following space:

l2 = H0 ⊕H1 ⊕H2 ⊕ · · · , H0 = C1, H1 = H2 = · · · = C2;

l2 ∋ f = (fn)
∞

n=0, f0 =: f0,0 ∈ C1, fn = (fn,0, fn,1) ∈ C2.
(38)
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Standard orthonormal basis in this space is

(εn,vn
)∞n=0, vn = 0, 1, where ε0,0 = (1, 0, 0, . . .),

εn,0 = (0, . . . , 0, (1, 0)︸ ︷︷ ︸
n place

, 0, 0, . . .), εn,1 = (0, . . . , 0, (0, 1)︸ ︷︷ ︸
n place

, 0, 0, . . .), n ∈ N;

(1, 0) =: e0, (0, 1) =: e1

(39)

(in (39) for n = 0 v0 always takes the only value 0; in other words, we put f0 = (f0,0, 0)).
So, every vector from l2 is a linear combination (finite or not) of the vectors εn,vn

.
Every bounded operator A : l2 → l2 can be written in the basis (39) as a block infinite

matrix

(40) A =




A0;0 A0;1 A0;2 . . .
A1;0 A1;1 A1;2 . . .
A2;0 A2;1 A2;2 . . .
...

...
...

. . .


 ,

where the matrices Aj;k from (40) act in the following way:

A0;0 : C
1 → C1; A0;k : C

2 → C1, k ∈ N; Aj;0 : C
1 → C2, j ∈ N;

Aj;k : C
2 → C2, j, k ∈ N.

(41)

These matrices Aj;k, j, k ∈ N0 have the forms

Aj;k =

[
Aj,0;k,0 Aj,0;k,1

Aj,1;k,0 Aj,1;k,1

]
: C2 → C2, j, k ∈ N;

A0;k =
[
A0,0;k,0 A0,0;k,1

]
: C2 → C1, Aj;0 =

[
Aj,0;0,0

Aj,1;0,0

]
: C1 → C2, j, k ∈ N;

A0;0 = [A0,0;0,0] : C
1 → C1;

∀j, k ∈ N0, vj , vk ∈ {0, 1} Aj,vj ;k,vk
= (Aεk,vk

, εj,vj
)l2 .

(42)

The notation for the action of A by (40), (42) is the following: ∀f = (fk)
∞

k=0 ∈ l2

(43) (Af)j =
∞∑

k=0

Aj;kfk =
∞∑

k=0

[
Aj,0;k,0 Aj,0;k,1

Aj,1;k,0 Aj,1;k,1

]
(fk,0, fk,1).

Note that for the adjoint operator A∗ : l2 → l2 we have

(A∗εk,vk
, εj,vj

)l2 = (εk,vk
,Aεj,vj

)l2 = (Aεj,vj
, εk,vk

)
l2
,

i.e., its matrix A∗ is also of type (40), namely, it is a block matrix adjoint to (40) (on
every place with indices j, k, the matrix A∗

k;j is located).

Consider the double infinite Toda lattices. Such a lattice has the form (compare
with (6))

(44) α̇n =
1

2
αn(βn+1 − βn), β̇n = α2

n − α2
n−1, n ∈ Z = {. . . ,−1, 0, 1, . . .},

where αn = αn(t), βn = βn(t) are real continuously differentiable function of t ∈
[0, T ). Expression (44) is a system of differential-difference nonlinear equations and for
(44) it is possible to consider the following Cauchy problem: from given initial data
αn(0), βn(0), n ∈ Z, find a solution αn(t), βn(t), n ∈ Z, for t ∈ [0, T ).

We will assume, as in (7), that all the functions αn(t), βn(t) are bounded uniformly
w.r.t. n and

(45) αn(t) > 0, t ∈ [0, T ), n ∈ Z.

In the article [9] it was shown that the above formulated Cauchy problem for (44),
(45) can be rewritten as a Cauchy problem for some semi-infinite block Toda lattice.



LINEARIZATION OF DOUBLE-INFINITE TODA LATTICE 29

This lattice can be rewritten as a Lax equation to which we can apply the approach of
type [3, 4, 6, 7].

Now we will actually repeat the considerations of [9] and directly prove that the
Cauchy problem (44), (45) can be put in the Lax form for block matrices in the space l2.

Using the functions αn(t), βn(t), n ∈ Z, t ∈ [0, T ) we construct ∀t ∈ [0, T ) the following
block Jacobi matrices of type (40) acting in the space l2 (38):

J(t) =




b0(t) a∗0(t) 0 0 0 . . .
a0(t) b1(t) a1(t) 0 0 . . .
0 a1(t) b2(t) a2(t) 0 . . .
...

...
...

...
...

. . .


 ;

b0(t) = [β0(t)] : C
1 → C1,

a0(t) =

[
α0(t)
α−1(t)

]
: C1 → C2,

a∗0(t) = [α0(t) α−1(t)] : C
2 → C1;

an(t) =

[
αn(t) 0
0 α−n−1(t)

]
: C2 → C2, bn(t) =

[
βn(t) 0
0 β−n(t)

]
: C2 → C2, n ∈ N;

(46)

i.e.

J(t) =




β0 α0 α−1 0 0 0 0 0 0 . . .
α0 β1 0 α1 0 0 0 0 0 . . .
α−1 0 β−1 0 α−2 0 0 0 0 . . .
0 α1 0 β2 0 α2 0 0 0 . . .
0 0 α−2 0 β−2 0 α−3 0 0 . . .
0 0 0 α2 0 β3 0 α3 0 . . .
0 0 0 0 α−3 0 β−3 0 α−4 . . .
...

...
...

...
...

...
...

...
...

. . .




.

The action of (46) on a vector f = (fn)
∞

n=0 ∈ l2 is three-diagonal, ∀t ∈ [0, T )

(J(t)f)n = an−1(t)fn−1 + bn(t)fn + an(t)fn+1, n ∈ N,

(J(t)f)0 = b0(t)f0 + a∗0(t)f1, f = (fn)
∞

n=0 ∈ l2.
(47)

The condition (45) on the coefficients of the matrix J(t) gives that the corresponding
operator J(t) in the space l2 is bounded, real, and selfadjoint.

The knowledge of the block matrix J(t) (46) is equivalent to the knowledge of all
functions αn(t), βn(t), n ∈ Z, from (44). The Lax equation for the matrix J(t) (46) has
the form

J̇(t) = J(t)A(t)−A(t)J(t) = [J(t), A(t)] or

J̇(t) = J(t)A(t)−A(t)J(t), t ∈ [0, T ),
(48)

where A(t) is some coefficient matrix of type (40) (depending on t); J(t),A(t) the
bounded operators in l2, corresponding to (46) and A(t).

The aim of this Section is to show that for a special matrix A(t) the equations (44)
and (48) are the same.

Introduce the following matrix A(t) of type (46): ∀t ∈ [0, T )

(49) A(t) =




b̃0 c̃0 0 0 . . .

ã0 b̃1 c̃1 0 . . .

0 ã1 b̃2 c̃2 . . .

0 0 ã2 b̃3 . . .
...

...
...

...
. . .
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:=
1

2




0 −α0 α−1 0 0 0 0 . . .
α0 0 0 −α1 0 0 0 . . .

−α−1 0 0 0 α−2 0 0 . . .
0 α1 0 0 0 −α2 0 . . .
0 0 −α−2 0 0 0 α−3 . . .
0 0 0 α2 0 0 0 . . .
0 0 0 0 −α−3 0 0 . . .
...

...
...

...
...

...
...

. . .




(its elements are αn, n ∈ Z, and the matrices ãn, c̃n, n ∈ N0 depend on t).

Theorem 4. The Toda equation (44) with conditions (45) and the Lax equation (48)
with three-diagonal block matrices J(t) (46) and A(t) (49) are equivalent.

Proof. For the block matrices A,B of type (40) we have the ordinary rule to calculate
the elements of their product,

(AB)j;k =

∞∑

l=0

Aj;lBl;k, j, k ∈ N0.

Using this rule it is easy to calculate that for the matrices J and A, (46), (49) with
the notations c0 = a∗0, cn = an, n ∈ N, we have for arbitrary n ∈ N0

(JA)n−2;n = cn−2c̃n−1,

(JA)n−1;n = bn−1c̃n−1 + cn−1b̃n,

(JA)n;n = an−1c̃n−1 + bnb̃n + cnãn,

(JA)n+1;n = anb̃n + bn+1ãn,

(JA)n+2;n = an+1ãn,

(50)

where every element with negative index is assumed to be equal to zero (see also [15],
equalities (20)).

For AJ equalities similar to (50) are true, if an, bn, cn are replaces with ãn, b̃n, c̃n and,

conversely, ãn, b̃n, c̃n with an, bn, cn.
Comparing the elements in the left- and right-sides of equality (48) and using the

formulas (50) and analogical formulas for AJ we get for ∀n ∈ N that

0 = cnc̃n+1 − c̃ncn+1,

ċn = bnc̃n + cnb̃n+1 − b̃ncn − c̃nbn+1,

ḃn = an−1c̃n−1 + bnb̃n + cnãn − ãn−1cn−1 − b̃nbn − c̃nan,

ȧn = anb̃n + bn+1ãn − ãnbn − b̃n+1an,

0 = an+1ãn − ãn+1an

(51)

(as before, every element from (51) with negative index is equal to zero).
According to (49) we have

ã0 =
1

2

[
α0

−α−1

]
, ãn =

1

2

[
αn 0
0 −α−n−1

]
, n ∈ N;

c̃0 =
1

2

[
−α0 α−1

]
, c̃n =

1

2

[
−αn 0
0 α−n−1

]
, n ∈ N;

b̃n = 0, n ∈ N0.

(52)
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The second equality and (46), (52) gives

ċ0 = ȧ∗0 =
[
α̇0 α̇−1

]
=

1

2
β0

[
−α0 α−1

]
−

1

2

[
−α0 α−1

] [β1 0
0 β−1

]
,

i.e. α̇0 =
1

2
α0(β1 − β0), α̇−1 =

1

2
α−1(β0 − β−1);

ċn = ȧn =

[
α̇n 0
0 α̇−n−1

]
=

1

2

[
βn 0
0 β−n

] [
−αn 0
0 α−n−1

]

−
1

2

[
−αn 0
0 α−n−1

] [
βn+1 0
0 β−n−1

]
,

i.e. α̇n =
1

2
αn(βn+1 − βn), α̇−n−1 =

1

2
α−n−1(β−n − β−n−1), n ∈ N.

So, we see that the second equality in (51) is equivalent to the first equation in (44).
The third equalities in (51) and (46), (52) give

ḃ0 = [β̇0] = c0ã0 − c̃0a0 =
1

2
[α0 α−1]

[
α0

−α−1

]
−

1

2
[−α0 α−1]

[
α0

α−1

]
,

i.e. β̇0 = α2
0 − α2

−1;

ḃ1 =

[
β̇1 0

0 β̇−1

]
=

1

2

[
α0

α−1

]
[−α0 α−1] +

1

2

[
α1 0
0 α−2

] [
α1 0
0 −α−2

]

−
1

2

[
α0

−α−1

] [
α0 α−1

]
−

1

2

[
−α1 0
0 α−2

] [
α1 0
0 α−2

]
,

i.e. β̇1 = α2
1 − α2

0, β̇−1 = α2
−1 − α2

−2;

ḃn =

[
β̇n 0

0 β̇−n

]
=

1

2

[
αn−1 0
0 α−n

] [
−αn−1 0

0 α−n

]

+
1

2

[
αn 0
0 α−n−1

] [
αn 0
0 −α−n−1

]
−

1

2

[
αn−1 0
0 −α−n

] [
αn−1 0
0 α−n

]

−
1

2

[
−αn 0
0 α−n−1

] [
αn 0
0 α−n−1

]
,

i.e. β̇n = α2
n − α2

n−1, β̇−n = α2
−n, n = 2, 3, . . . .

These calculations shows, that the third equation in (51) is equivalent to the second
equation in (44).

It is easy to calculate, that the forth equality in (51) for considered matrices is also
equivalent to the first equation in (44). Namely, we have

ȧ0 =

[
α̇0

α̇−1

]
=

1

2

[
β1 0
0 β−1

] [
α0

−α−1

]
−

1

2

[
α0

−α−1

]
[β0],

i.e. α̇0 =
1

2
α0(β1 − β0), α̇−1 =

1

2
α−1(β0 − β−1);

ȧn =

[
α̇n 0
0 α̇−n−1

]
=

1

2

[
βn+1 0
0 β−n−1

] [
αn 0
0 −α−n−1

]
−

1

2

[
αn 0
0 −α−n−1

] [
βn 0
0 β−n

]
,

i.e. α̇n =
1

2
αn(βn+1 − βn), α̇−n−1 =

1

2
α−n−1(β−n − β−n−1), n ∈ N.

The first and the last equalities in (51) for considered matrices are automatically
fulfilled. So, for the first equality we have

cnc̃n+1 − c̃ncn+1 =
1

2

[
αn 0
0 α−n−1

] [
−αn+1 0

0 α−n−2

]

−
1

2

[
−αn 0
0 α−n−1

] [
αn+1 0
0 α−n−2

]
= 0, n ∈ N.
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Consider the last equality. We have

a1ã0 − ã1a0 =
1

2

[
α1 0
0 α−2

] [
α0

−α−1

]
−

1

2

[
α1 0
0 −α−2

] [
α0

α−1

]
= 0;

an+1ãn − ãn+1an =
1

2

[
αn+1 0
0 α−n−2

] [
αn 0
0 −α−n−1

]

−
1

2

[
αn+1 0
0 −α−n−2

] [
αn 0
0 α−n−1

]
= 0.

As a result, we have proved that the Toda equation (44) and the Lax equation (48)
are equivalent. �

4. Spectral theory of the block Jacobi matrix in the space l2.

In this Section we construct a spectral theory of an arbitrary block Jacobi matrix J
acting in the space l2 (38) and not depending on t ∈ [0, T ). According to (40), (46) this
matrix has the form

J =




b0 a∗0 0 0 0 . . .
a0 b1 a1 0 0 . . .
0 a1 b2 a2 0 . . .
...

...
...

...
...

. . .


 ;

b0 = [β0] : C
1 → C1,

a0 =

[
α0

α−1

]
: C1 → C2,

a∗0 = [α0 α−1] : C
2 → C1;

an = a∗n : C
2 → C2, bn = b∗n : C

2 → C2, n ∈ N.

(53)

We assume that all elements of the matrices an, bn, n ∈ N0, are real bounded numbers,
α−1 > 0 and a−1

n , n ∈ N, exist. The matrix J generate, in a usual way, in the space l2 a
bounded selfadjoint operator J.

For us it is necessary to construct an expansion in generalize eigenvectors of this
operator using the scheme of books [2], Ch. 5 and [16], Ch. 15. For this we consider the
quasinuclear rigging of the space l2,

(54) l = (lfin)
′ ⊃ l2(p

−1) ⊃ l2 ⊃ l2(p) ⊃ lfin.

In (54) l2(p) denotes the space l2 with the weight p = (pn)
∞

n=0, p ≥ 1,
∑

∞

n=0 p
−1
n < ∞

(i.e. ‖f‖
2
l2(p)

= ‖f0‖
2
C1 p0 + ‖f1‖

2
C2 p1 + ‖f2‖

2
C2 p2 + . . .), l2(p

−1) is a similar space with p

replaced with p−1 = (p−1
n )∞n=0. Here l is a space of all sequences f = (fn)

∞

n=0, f0 ∈ C1,
∀n ∈ N fn ∈ C2; lfin is a space of finite sequences.

Then for our operator J and its resolution of identity E(△) a probability Borel measure
dρb(λ) on R exists (a base spectral measure), for which

(55) E(△)f =

∫

△

Φ(λ) dρb(λ)f, Jf =

∫

R

λΦ(λ) dρb(λ), f ∈ l2(p).

Here △ is an arbitrary Borel set from R, i.e., △∈ B(R). For every λ ∈ R, Φ(λ) is
a bounded operator acting from l2(p) into l2(p

−1) (a generalized projection operator):
∀f ∈ l2(p)Φ(λ)f is a generalized eigenvector of the operator J. The operator Φ(λ) is
positive in the following sense: ∀f ∈ l2(p) (Φ(λ)f, f) ≥ 0. Note also that the base
spectral measure dρb(λ) is defined not uniquely.

For our operator J and rigging (54), the sequence ϕ(λ) = (ϕn(λ))
∞

n=0, where ϕ0(λ) =
ϕ0,0(λ) ∈ C1, ∀n ∈ N ϕn(λ) = (ϕn,0(λ), ϕn,1(λ)) ∈ C2, is a generalized eigenvector of the
operator J with an eigenvalue λ if (ϕ(λ),Ju)l2 = λ(ϕ(λ), u)l2 for arbitrary u ∈ l2(p) ⊃
lfin. Using (53) we conclude that the last equality means: ∀λ ∈ R

β0ϕ0,0(λ) + α0ϕ1,0(λ) + α−1ϕ1,1(λ) = b0ϕ0(λ) + a∗0ϕ1(λ) = λϕ0(λ),

an−1ϕn−1(λ) + bnϕn(λ) + anϕn+1(λ) = λϕn(λ), n ∈ N.
(56)
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Consider the difference equation (56). Since α−1 > 0 and every matrix an, n ∈ N is
invertible, we can find ϕ(λ) = (ϕn(λ))

∞

n=0 step by step from given initial two scalar data

(57) ϕ0,0(λ) = c0,0, ϕ1,0(λ) = c1,0.

Note that now the situation is another as for the classical Jacobi matrix, when the
analogous solution is defined by one scalar data.

For α = 0, 1 let θ(α)(λ) = (θ
(α)
n )∞n=0 = (θ

(α)
n,vn(λ))

∞

n=0,vn=0,1 be two solutions of equa-
tions (56) with the following initial data (57):

(58) θ
(0)
0,0(λ) = 1, θ

(0)
1,0(λ) = 0; θ

(1)
0,0(λ) = 0, θ

(1)
1,0(λ) = 1.

From linearity of system (56) it is easy to conclude that every solution ϕ(λ) of (56) is
a linear combination of solutions θ(0)(λ) and θ(1)(λ)

(59) ϕ(λ) = ϕ0(λ)θ
(0)(λ) + ϕ1,0(λ)θ

(1)(λ).

Note, that in accordance with (39), we will often write f0 = f0,0 for the zero coordinate
of the vector f = (fn)

∞

n=0 ∈ l.
For us it is essential to get a representation of type (59) for the matrix of the operator

Φ(λ) which we will now understand as an operator lfin → l.
At first we note that for every linear operator A : lfin → l we can introduce its block

matrix of type (40), elements of this block matrix A can be introduced by rules (41)–(43).
Let

Φ(λ) = (Φj;k(λ))
∞

j,k=0, Φj;k(λ) = (Φj,vj ;k,vk
(λ))vj ,vk=0,1,

i.e. Φ(λ) = (Φj,vj ;k,vk
(λ))∞j,k=0;vj ,vk=0,1,

(60)

be a matrix of type (40) for the operator Φ(λ). The formula of type (59) for Φ(λ) is the
following.

Lemma 1. The elements of the matrix Φ(λ) (60) have the following representation:

Φj,vj ;k,vk
(λ) = Φ0,0;0,0(λ)θ

(0)
j,vj

(λ)θ
(0)
k,vk

(λ) + Φ0,0;1,0(λ)θ
(0)
j,vj

(λ)θ
(1)
k,vk

(λ)

+ Φ1,0;0,0(λ)θ
(1)
j,vj

(λ)θ
(0)
k,vk

(λ) + Φ1,0;1,0(λ)θ
(1)
j,vj

(λ)θ
(1)
k,vk

(λ),

j, k ∈ N0, vj , vk = 0, 1; λ ∈ R.

(61)

Proof. Using (42) for Φ(λ) we conclude that ∀j, k ∈ N0, vj , vk = 0, 1,

(62) Φj,vj ;k,vk
(λ) = (Φ(λ)εk,vk

, εj,vj
)l2 = (Φ(λ)εk,vk

)j,vj
,

and, therefore, for fixed k, vk (62) is a vector from l which is a generalized eigenvector
of the operator J with eigenvalue λ. Therefore it is a solution of the difference equations
(56) with initial data Φ0,0;k,vk

(λ) and Φ1,0;k,vk
(λ), and according to (59) we can write

(63) Φj,vj ;k,vk
(λ) = Φ0,0;k,vk

(λ)θ
(0)
j,vj

(λ) + Φ1,0;k,vk
(λ)θ

(1)
j,vj

(λ), j ∈ N0, vj = 0, 1.

In a general case, the generalized projection operator Φ(λ) is formally Hermitian,
therefore our matrix (60) is Hermitian. Since the operator J is real, so is Φ(λ) and,
therefore, its matrix (60). As a result, the matrix (60) is real and symmetric.

Applying this fact similarly to (63) we get

Φ0,0;k,vk
(λ) = Φk,vk;0,0(λ) = Φ0,0;0,0(λ)θ

(0)
k,vk

(λ) + Φ1,0;0,0(λ)θ
(1)
k,vk

(λ),

Φ1,0;k,vk
(λ) = Φk,vk;1,0(λ) = Φ0,0;1,0(λ)θ

(0)
k,vk

(λ) + Φ1,0;1,0(λ)θ
(1)
k,vk

(λ).

Substituting these expressions into (63) we get (61). �

Let us return to the first equality in (55). For f, g ∈ lfin and △= R, this and the
matrix (60) give

(64) (f, g)l2 =

∫

R

(Φ(λ)f, g)l2dρb(λ) =

∫

R

[ ∞∑

j,k=0,vj ,vk=0,1

Φj,vj ;k,vk
(λ)fk,vk

gj,vj

]
dρb(λ).
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Rewrite this equality in a more convenient form. To this end introduce the Fourier
transform (w.r.t. generalized eigenvectors of the operator J): for f = (fn)

∞

n=0 ∈ lfin we
put ∀λ ∈ R

(65) f̂(λ) = (f̂0(λ), f̂1(λ)) ∈ C2, f̂α(λ) =

∞∑

n=0,vn=0,1

θ(α)n,vn
(λ)fn,vn

, α = 0, 1.

Using the representation (61) and (65), we get
∞∑

j,k=0,vj ,vk=0,1

Φj,vj ;k,vk
(λ)fk,vk

gj,vj
= Φ0,0;0,0(λ)f̂0(λ)ĝ0(λ)

+ Φ0,0;1,0(λ)f̂1(λ)ĝ0(λ) + Φ1,0;0,0(λ)f̂0(λ)ĝ1(λ) + Φ1,0;1,0(λ)f̂1(λ)ĝ1(λ)

= (C(λ)f̂(λ), ĝ(λ))C2 ;

C(λ) :=

[
Φ0,0;0,0(λ) Φ0,0;1,0(λ)
Φ1,0;0,0(λ) Φ1,0;1,0(λ)

]
.

(66)

Therefore we can rewrite (64) in the form: ∀f, g ∈ lfin

(f, g)l2 =

∫

R

(C(λ)f̂(λ), ĝ(λ))C2dρb(λ) =

∫

R

(dρ(λ)f̂(λ), ĝ(λ))C2 , where

B(R) ∋△7→ ρ(△) =

∫

△

C(λ) dρb(λ) =

∫

△

[
Φ0,0;0,0(λ) Φ0,0;1,0(λ)
Φ1,0;0,0(λ) Φ1,0;1,0(λ)

]
dρb(λ).

(67)

This 2 × 2−matrix measure dρ(λ) = (dρµ,ν(λ))µ,ν=0,1 is called a matrix (standard)
spectral measure of the operator J; the first equality in (67) is the corresponding Parseval
equality. This measure has the following properties.

Lemma 2. For every △∈ B(R), the matrix ρ(λ) is real, symmetric, and positive definite,
i.e., the matrix spectral measure dρ(λ) is real nonnegative. It is a probability measure,
ρ(R) = 1.

Proof. As was said above, the matrix Φ(λ) (60) is real and symmetric, therefore the
matrix C(λ) from (66) is also real and symmetric. The definition (67) gives that such
properties take place also for ρ(△).

The nonnegativity of the measure dρ(λ) follows from positivity of the operator Φ(λ).
Namely, ∀x = (x0, x1) ∈ C2 we construct the vector f = (x0, (x1, 0), 0, 0, . . .) = x0ε0,0 +
x1ε1,0 ∈ lfin. We have

(C(λ)x, x)C2 = Φ0,0;0,0(λ)x0x0 +Φ0,0;1,0(λ)x1x0 +Φ1,0;0,0(λ)x0x1 +Φ1,0;1,0(λ)x1x1

= (Φ(λ)ε0,0, ε0,0)l2x0x0 + (Φ(λ)ε1,0, ε0,0)l2x1x0 + (Φ(λ)ε0,0, ε1,0)l2x0x1

+ (Φ(λ)ε1,0, ε1,0)l2x1x1 = (Φ(λ)f, f)l2 ≥ 0.

It remains to prove that dρ(λ) is a probability measure. We will use the vectors ε0,0 and
ε1,0, their Fourier transform, according to (65), (58), are ε̂0,0(λ) = (1, 0), ε̂1,0(λ) = (0, 1).
Therefore, the Parseval equality (67) gives

1 = (ε0,0, ε0,0)l2 = ρ0,0(R), 0 = (ε0,0, ε1,0)l2 = ρ1,0(R),

1 = (ε1,0, ε1,0)l2 = ρ1,1(R), i.e. ρ(R) = 1: C2 → C2.

�

In investigation of the spectral problem for our matrix J (53), it is convenient to go
from the generalized eigenvectors θ(0)(λ) and θ(1)(λ) to the corresponding matrix-valued
solutions of systems (56) (as in the case of difference equations with operator-valued
coefficients, see [2], Ch. 7, Section 2). At first we will give a simple, but essential
remark.
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Remark 3. It is also convenient to understand our operator J as an operator acting in
the space

(68) ℓ2(C
2) = C2 ⊕ C2 ⊕ · · ·

instead of the space l2 (38). For this we consider the matrix J (53) as a 2 × 2−block
Jacobi matrix, where an, bn for n ∈ N are old, but

(69) b0 =

[
β0 0
0 0

]
, a0 =

[
α0 0
α−1 0

]
, a∗0 =

[
α0 α−1

0 0

]
.

Such matrix generates in ℓ2(C
2), on finite vectors from (68) ℓfin(C

2), an operator that
we will denote, as earlier, by J. This operator (and its closure) acts in ℓ2(C

2) but its
RanJ ⊂ l2 ⊂ ℓ2(C

2). We will not to introduce new notations for such modified J and J.
In short,, we can say that we have a situation of difference equations with operator

C2 7→ C2 coefficients, stated in [2], Ch. 7, Section 2, but with following difference: the
operator a0 has the form (69) instead of being selfadjoint and invertible.

Now for us it is essential to rewrite the notion of θ(0)(λ), θ(1)(λ) as matrix-solutions.
We put (see (58))

Pn(λ) =

[
Pn;0,0(λ) Pn;0,1(λ)
Pn;1,0(λ) Pn;1,1(λ)

]
=

[
θ
(0)
n,0(λ) θ

(1)
n,0(λ)

θ
(0)
n,1(λ) θ

(1)
n,1(λ)

]
, n ∈ N and

P0(λ) =

[
θ
(0)
0,0(λ) θ

(1)
0,0(λ)

0 0

]
=

[
1 0
0 0

]
(or [1 0]).

(70)

The following formal result holds true.

Lemma 3. The matrices Pn(λ), n ∈ N0, satisfy the following equations: ∀λ ∈ R

b0P0(λ) + a∗0P1(λ) = λP0(λ),

an−1Pn−1(λ) + bnPn(λ) + anPn+1(λ) = λPn(λ), n ∈ N.
(71)

Conversely, the solution P (λ) = (Pn(λ))
∞

n=0 of equation (71) with the initial data

(72) P0;0,0(λ) = 1, P0;0,1(λ) = 0; P1;0,0(λ) = 0, P1;0,1(λ) = 1

is given by (70).

Proof. Let apply the left-hand side of the second equality in (71) to the vector (1, 0) ∈ C2.
Using (70), we get

(73) an−1(θ
(0)
n−1,0(λ), θ

(0)
n−1,1(λ)) + bn(θ

(0)
n,0(λ), θ

(0)
n,1(λ)) + an(θ

(0)
n+1,0(λ), θ

(0)
n+1,1(λ)),

i.e., the left-hand side of the second equality in (56) for solution ϕ(λ) = θ(0)(λ). Therefore,

(73) is, according to (71), equals to λ(θ
(0)
n,0(λ), θ

(0)
n,1(λ)) = λPn(λ)(1, 0). As a result, the

second equality in (71), after this application to vector (0, 1), takes place.
Similarly we prove that the second equality in (71), after applying it to the vector

(0, 1), also takes place (now ϕ(λ) = θ(1)(λ)). Since the vectors (1, 0), (0, 1) make a basis
in C2, the second equality in (71) takes place.

The first equality is also true: application of its left side to (1, 0) gives b0(θ
(0)
0,0(λ), 0)+

a∗0(θ
(0)
1,0(λ), θ

(0)
1,1(λ)), i.e., the left-hand side of the first equality in (56) for ϕ(λ) = θ(0)(λ).

Such an application to (0, 1) gives zero, i.e., λP0(λ)(0, 1).
The inverse result of the lemma is obvious; since equations (71) and (56) are equivalent,

the solutions ϕ(λ) = (P0;0,0(λ), (P1;0,0(λ), P1;1,0(λ)), (P2;0,0(λ), P2;1,0(λ)), . . .) of (56) has
the first initial data from (58) and ϕ(λ) = (P0;0,1(λ), (P1;0,1(λ), P1;1,1(λ)), (P2;0,1(λ),
P2;1,1(λ)), . . .) has the second initial data. From this the representation (70) follows. �

We can formulate the above obtained results in a form of the following theorem about
direct spectral problem for operator J.
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Theorem 5. Consider a Jacobi matrix J of the form (53) with conditions on its elements
formulated at the beginning of Section 4. This matrix gives rise to a selfadjoint bounded
operator J on the space l2 (38). With J we connect the rigging (54).

The direct spectral problem for J consists of the following. The complete system of
generalized eigenvectors of the operator J is the following: ∀λ ∈ R

(74) ϕα(λ) = ((Pn;0,α(λ), Pn;1,α(λ))
∞

n=0) ∈ l, α = 0, 1,

where the “matrix polynomials”

(75) Pn(λ) =

[
Pn;0,0(λ) Pn;0,1(λ)
Pn;1,0(λ) Pn;1,1(λ)

]

are solutions of system (71) with the initial conditions (72) (the last index in Pn;α,β(λ)
is the number of the solution).

This system is complete in the following sense: if we introduce ∀f ∈ lfin and λ ∈ R

the Fourier transform

(76) f̂(λ) = (f̂0(λ), f̂1(λ)) ∈ C2, f̂(λ) =

∞∑

n=0

P ∗

n(λ)fn,

then we have the Parseval equality

(77) (f, g)l2 =

∫

R

(dρ(λ)f̂(λ), ĝ(λ))C2 , f, g ∈ lfin.

Here dρ(λ) = (dρα,β(λ))
1
α,β=0 is a 2 × 2−matrix nonnegative spectral measure of the

operator J; it is a probability measure, ρ(R) = 1. The mapping lfin ∋ f 7→ f̂(λ), after its
extension by closure, is a unitary operator between the spaces l2 and L2(C2,R, dρ(λ)).

Note that here L2(C,R, dρ(λ)) denotes the L2−Hilbert space of functions R ∋ λ 7→
F (λ) ∈ C2, which is constructed using the scalar product

(78) (F,G)L2(C2,R,dρ(λ)) =

∫

R

(dρ(λ)F (λ), G(λ))C2

in a classical manner, — we introduce at first an integral in (78) for simple functions
F (λ), G(λ) (i.e. finite combinations of C2− characteristic functions) and then we take
the completion (for a more detailed account, see [2], Ch. 7, Section 2).

Proof. The first part of the theorem follows from Lemma 3. To prove the second part, it
is necessary first to note that definitions (65) and (76) are the same, see formulas (70).

Further it is necessary to apply (67). The density of f̂(λ), f ∈ l2, we be discussed later,
when we will consider the inverse spectral problem for J. �

So, we pass to the inverse spectral problem for J, i.e., the problem of reconstructing
the matrix J from its spectral measure dρ(λ).

At first, we give some simple consequences from the Parseval equality (77), which we
will understand to be extended to f, g ∈ l2. Let in (77) g = εn,vn

, then according to (76),

(79) (ε̂n,vn
)(λ) = (Pn;vn,0(λ), Pn;vn,1(λ)) = P ∗

n(λ)evn
, n ∈ N0, vn = 0, 1.

Therefore we have the following formula for reconstruction of f from its Fourier trans-
form:

(80) fn,vn
=

∫

R

(dρ(λ)f̂(λ), (Pn;vn,0(λ), Pn;vn,1(λ)))C2 =

∫

R

(Pn(λ)dρ(λ)f̂(λ), evn
)C2 .

Taking f = εj,vj
in (70) and using (79) we get the following conditions for orthogo-

nality of Pn;α,β(λ) :∫

R

(dρ(λ)(Pj;α,0(λ), Pj;α,1(λ)), (Pk;β,0(λ), Pk;β,1(λ)))C2

= (εj,α)k,β = δj,kδα,β , j, k ∈ N0, α, β = 0, 1

(81)
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(here δm,n is ordinary Kronecker symbol).
From (81) it follows that the following R2−valued functions of λ ∈ R are orthonormal:

(P0;0,0(λ), P0;0,1(λ)); (P1;0,0(λ), P1;0,1(λ)), (P1;1,0(λ), P1;1,1(λ));

(P2;0,0(λ), P2;0,1(λ)), (P2;1,0(λ), P2;1,1(λ)); . . . .
(82)

Using equalities (71) and the initial data (72) it is easy to calculate Pn(λ), n ∈ N0

step by step. So, we have

(83) P0(λ) = [1 0] =

[
1 0
0 0

]
, P1(λ) =

[
0 1

1
α

−1
(λ− β0) −α0

α1

]
.

The next matrix polynomials P2(λ), P3(λ), . . . have a more complicated distribution of
powers of λ among the elements of the matrix Pn(λ). We will later consider the most
simple case, when all the matrices an, bn, n ∈ N, in (53) are diagonal. This case is
sufficient for our purpose to investigate the Toda lattice. So, we have the following.

Lemma 4. Let all the matrices an, bn, n ∈ N, in (53) be diagonal. Then for n ≥ 2 in the
matrix Pn(λ), its elements are polynomials of the following degrees: Pn;0,0(λ) of n − 2,
Pn;0,1(λ) and Pn;1,1(λ) of n−1 and Pn;1,0(λ) of n. Their leading coefficients are nonzero.

Proof. At first we note that if c is a diagonal 2×2−matrix with nonzero diagonal elements
c0,0, c1,1 ∈ C then its multiplication by the matrix d = (dα,β)

1
α,β=0 is a matrix with

elements equal to the products of dα,β by the scalars c0,0 or c1,1. Therefore the structure
of matrix d after its multiplication on the left by c remains the same.

Let n = 2. Them from (71) we conclude that P2(λ) = a−1
1 (λP1(λ)−b1P1(λ)−a0P0(λ))

and it has, according to (83), the structure indicated in the lemma.
For n = 3, 4, . . ., we conclude from (71) step by step, as above, that the structure of

the matrix Pn(λ) is as required. �

Denote by Rm(λ) some ordinary polynomial of degree m ∈ N0 with real coefficients,
with the leading coefficient being nonzero. Then from Lemma 4 we can conclude that
the sequence (82) of R2−polynomials has the form

(1, 0); (0, R0(λ)), (R1(λ), R0(λ)); (R0(λ), R1(λ)), (R2(λ), R1(λ));

(R1(λ), R2(λ)), (R3(λ), R2(λ)); . . . ; (Rn(λ), Rn+1(λ)), (Rn+2(λ), Rn+1(λ)); . . .
(84)

(with different polynomials Rn(λ) with some index n, but standing in different places).
It is easy to construct elementary R2−polynomials linear combinations of which give

the R2−polynomials from (84).
Consider the following sequence of basis R2−polynomials

(85) (1, 0); (0, 1), (λ, 0); (0, λ), (λ2, 0); . . . ; (0, λn), (λn+1, 0); . . . .

Then every R2−polynomials (P (λ), Q(λ)) where P (λ), Q(λ) are some real polynomials
of degree m,n ∈ N0 corresponding, is some linear combination of the basis polynomials
(85). Namely, let P (λ) =

∑m
j=0 pjλ

j , Q(λ) =
∑n

k=0 qkλ
k, then evidently (P (λ), Q(λ)) =∑m

j=0 pj(λ
j , 0) +

∑n
k=0 qk(0, λ

k).
It is also possible to say that if m ∈ N0 and n = m + 1, then the corresponding

R2−polynomial (P (λ), Q(λ)) is a linear combination of the first R2−polynomials from
(85) up to (0, λm+1). If m ∈ N and n = m − 1, then for (P (λ), Q(λ)) it is necessary to
take, in (85), such polynomials up to (λm, 0).

To solve the inverse spectral problem, it will be necessary to take the orthogonal-
ization of R2−polynomials (85) in the space L2(R2,R, dρ(λ)) ⊂ L2(C2,R, dρ(λ)). All
R2−polynomials belong to the space L2(R2,R, dρ(λ)) and they are linearly independent
in this space if the measure dρ(λ) has bounded support and is not concentrated on finitely
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many points from R (the proof of this assertion immediately follows from an analogous
fact for ordinary polynomials and a scalar measure on R).

From above mentioned facts it is easy to prove the following theorem.

Theorem 6. Let J be a bounded selfadjoint operator in the space l2, generated by the
matrix J (53). Its spectral measure dρ(λ) has bounded support and is not concentrated
on finitely many points from R. The generalized eigenvectors (82) corresponding to J can
be obtained by means of the classical Gramm-Schmidt orthogonalization procedure in the
space L2(R2,R, dρ(λ)), which is applied to the sequence (85).

Proof. At first we explain the existence of above mentioned properties of dρ(λ). Its sup-
port is bounded, since operator J is bounded. Assume that the measure dρ(λ) concen-
trated on a finite number of points λ from R. Then from (78) it follows that the space
L2(C2,R, dρ(λ)) must be finite-dimensional, but this is in contradiction with isometry
(77) between l2 and L2(C2,R, dρ(λ)).

Consider the generalized eigenvectors (82) of the operator J. The first and the second
are (1, 0), (0, 1), i.e., the first two vectors from (85). Further we apply the Gramm-
Schmidt procedure in the real space L2(R2,R, dρ(λ)). Lemma 4 and orthonormality of
the vectors from (82) show that our assertion takes place. �

Also note that from boundedness of the support of dρ(λ), it follows that the set of
all R2−polynomials is dense in L2(R2,R, dρ(λ)). Therefore the Theorem 6 gives that the

set {f̂(λ), f ∈ lfin} is dense in L2(C2,R, dρ(λ)) (this fact has been used in the proof of
Theorem 5).

The elements of the matrix J can be expressed in terms of its spectral measure dρ(λ)
of J, which is similar to the case of classical Jacobi matrices. For this, it is convenient
to introduce the integral of the type

(86)

∫

R

A(λ) dρ(λ)B(λ) = C,

where R ∋ λ 7→ A(λ), B(λ) are 2 × 2−matrix-valued functions. By the definition, the
matrix C is such that ∀x, y ∈ C2

(Cx, y)C2 =

∫

R

(dρ(λ)B(λ)x,A∗(λ)y)C2 .

Using this definition (86) and (75) it is easy to rewrite the orthogonal conditions (81)
in the form ∫

R

Pj(λ) dρ(λ)P
∗

k (λ) = δj,k1, j, k ∈ N0, (j, k) 6= (0, 0);

∫

R

P0(λ) dρ(λ)P
∗

0 (λ) =

[
1 0
0 0

]
.

(87)

Lemma 5. The following equalities take place:

a∗n =

∫

R

λPn(λ) dρ(λ)P
∗

n+1(λ), bn =

∫

R

λPn(λ) dρ(λ)P
∗

n(λ), n ∈ N0;

a∗n = an, n ∈ N.

(88)

Proof. Let n ∈ N. We consider the second equality in (71), multiply it by P ∗

n+1(λ) and
integrate over R. The conditions (87) gives the first formula in (88), since an = a∗n.

For obtaining the second formula in (88), it is necessary to repeat the above calculation
replacing P ∗

n+1(λ) with P ∗

n(λ).
Let n = 0. We will use the matrices (69), (83), and the first equality in (71). Then,

as above, we get formulas (88) for n = 0. �

The results formulated above give the following theorem.
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Theorem 7. Let J (53) be a block Jacobi matrix with properties indicated at the beginning
of this Section with diagonal matrices an, bn, n ∈ N. Then the elements of the matrix J
are reconstructed by formulas (88).

It is also possible to construct the matrix J by formulas (88) for an apriori given
2 × 2−matrix measure dρ(λ) with the above mentioned properties. At first it is neces-
sary to construct the matrix polynomials P (λ), n ∈ N0. To construct them, we apply
the Gramm-Schmidt orthogonalization procedure in the space L2(R2,R, dρ(λ)) to the
R2−polynomials (85) and get the sequence (82). The formulas (75) give Pn(λ), n ∈ N0.

Then it is possible to prove that the matrix J constructed in such way has necessary
properties and an, bn, n ∈ N are diagonal matrices; apriory given dρ(λ) is a spectral
measure of the corresponding operator J. But we will not investigate this results in this
article in detail.

In the last part of this Section we will give some additional constructions connected
with the direct spectral problem for the matrix J (53) and the corresponding operator
J.

I. Recall that matrix polynomials (75) are an analog of the polynomials Pn(λ) of the
first kind connected with the classical Jacobi matrix. We construct now an analog of
polynomials Qn(λ) of the second kind (see [2], Ch. 7, Sections 1,2). The matrix J now
is general: ∀n ∈ N the matrices an, bn are not necessarily diagonal.

From (55), (60), (61), and (65), it follows that ∀z ∈ C\R the resolvent Rz of operator
J can be written as

(89) (̂Rzf)(λ) = (λ− z)−1f̂(λ), λ ∈ R, f ∈ l2.

Therefore (79) gives

̂(Rzεn,β)(λ) = (λ− z)−1(Pm;β,0(λ), Pm;β,1(λ)) = (λ− z)−1P ∗

m(λ)eβ ,

β = 0, 1, z ∈ C \ R, λ ∈ R.
(90)

Using (80) we conclude from (90): ∀z ∈ C \ R and α = 0, 1,

(Rzεm,β)n,α =

∫

R

1

λ− z
(Pn(λ) dρ(λ)ε̂m,β(λ), eα)C2 , i.e.

(Rzεm,β)n =

∫

R

1

λ− z
Pn(λ) dρ(λ)ε̂m,β(λ), m, n ∈ N0, β = 0, 1.

(91)

Using last equality we get

(Rzεm,β)n =

∫

R

(λ− z)−1(Pn(λ)− Pn(z)) dρ(λ)ε̂m,β(λ)

+ Pn(z)

∫

R

(λ− z)−1dρ(λ)ε̂m,β(λ),

m, n ∈ N0, β = 0, 1, z ∈ C \ R.

(92)

Let, in (92), m = 0, β = 0 and m = 1, β = 0. According to (79) and (83), we have
∀n ∈ N0

(Rzε0,0)n =

∫

R

(λ− z)−1(Pn(λ)− Pn(z)) dρ(λ)(1, 0)

+ Pn(z)

∫

R

(λ− z)−1dρ(λ)(1, 0),

(Rzε1,0)n =

∫

R

(λ− z)−1(Pn(λ)− Pn(z)) dρ(λ)(0, 1)

+ Pn(z)

∫

R

(λ− z)−1dρ(λ)(0, 1).

(93)
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Let x = (x0, x1), y = (y0, y1) be two arbitrary vectors from C2; introduce the
2× 2-matrix

(94)

[
x0 y0
x1 y1

]
=: [x y].

With these notations, the two equalities (93) we can be rewritten in the form

[
(Rzε0,0)n (Rzε1,0)n

]
=

∫

R

(λ− z)−1(Pn(λ)− Pn(z)) dρ(λ)

+ Pn(z)

∫

R

(λ− z)−1dρ(λ), n ∈ N0, z ∈ C \ R

(95)

( we used above the symmetry of the matrix dρ(λ)).
As for the classical Jacobi matrices, we will say that the matrix

(96) Qn(z) =

∫

R

(λ− z)−1(Pn(λ)− Pn(z)) dρ(λ), n ∈ N0, z ∈ C \ R

is a matrix polynomial of the second kind. The matrix-valued function

(97) m(z) =

∫

R

(λ− z)−1dρ(λ), z ∈ C \ R,

is, by definition, the matrix Weyl function. The relation (95) has now the form:

(98)
[
(Rzε0,0)n (Rzε1,0)n

]
= Qn(z) + Pn(z)m(z), n ∈ N0, z ∈ C \ R.

So, we have proved the essential relation (98).
We will show now that (as in the classical theory) the sequence (Qn(z))

∞

n=0 is a solution
of the difference equations (71) for n ∈ N but with initial data other than for (Pn(λ))

∞

n=0.

Lemma 6. The sequence Q(z) := (Qn(z))
∞

n=0, z ∈ C, is well defined and is a solution of
the difference equations (71) for n ∈ N with λ replaced by z and the initial data

(99) Q0(z) = 0, Q1(z) =

[
0 0

α−1
−1 0

]
.

Proof. At first we note that every element of the matrix Pn(λ) is a polynomial, therefore
the expression (λ − z)−1(Pn(λ) − Pn(z)) is well defined for every z ∈ C and (96) takes
place for all z ∈ C. If we apply the difference expression L from the second equality in
the left-hand side of (71) to (96) we get: ∀n ∈ N and z ∈ C

(LQ(t))n =

∫

R

(λ− z)−1((LP (λ))n − (LP (t))n) dρ(λ)

=

∫

R

(λ− z)−1(λPn(λ)− zPn(z)) dρ(λ) = z

∫

R

(λ− z)−1(Pn(λ)− Pn(z)) dρ(λ)

+

∫

R

Pn(λ) dρ(λ) = zQn(z)

(the equality
∫
R
Pn(λ)dρ(λ) = 0 follows from (87) and ρ(R) = 1).

The initial data (99) is obtained from (83) and ρ(R) = 1. Note that we can find a
solution of the second equality in (71) by replacing Pn(λ) with Qn(λ) step by step for
n ∈ N since such an are invertible. �

Remark 4. It is necessary to note that the above stated spectral theory takes place
also for general Hermitian matrices J (53) when the corresponding operator J in the
space l2 is not bounded. But it is Hermitian with equal defect numbers (since J is real).
Therefore it has a selfadjoint extension in the space l2. These extensions can be described
and representation (98) plays an essential role in such a description.
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II. The construction of Subsection I allow, in some cases, to find the Weyl function
m(z) (97) and consequently the spectral measure dρ(λ). Let us explain this approach.

For our matrix J (53) and its matrix polynomials Pn(z) (75), consider the series

(100)

∞∑

n=0

P ∗

n(z)Pn(z), z ∈ C.

It is easy to understand that the series (100) is divergent in the following sense: ∀x ∈
C2, x 6= 0,

(101) lim
N→∞

N∑

n=0

(P ∗

n(z)Pn(z)x, x)C2 =

∞∑

n=0

‖Pn(z)x‖
2
C2 = ∞, z ∈ C \ R.

In fact, it follows from (71) that in the case of a finite sum in (101), the vector
ϕ(z) = (Pn(z)x)

∞

n=0 belongs to l2 and is a nonzero eigenvector of the operator J with
complex eigenvalue z. But this is impossible since J is selfadjoint.

Remark 5. Such situation takes place also for J with unbounded elements but in the
case when the corresponding operator J is selfadjoint in l2.

We can now prove a simple but, in some cases, useful theorem.

Theorem 8. Assume that we can find a 2 × 2−matrix function C \ R ∋ z 7→ f(z) for
which ∀x ∈ C2

(102)

∞∑

n=0

‖(Qn(z) + Pn(z)f(z))x‖
2
C2 < ∞.

Then m(z) = f(z), z ∈ C \ R.

Proof. At first we note that the condition (102) for f(z) = m(z) takes place. Namely,
using (98) and definition (94) we conclude that ∀x = (x0, x1) ∈ C2

(Qn(z) + Pn(z)m(z))x =((Rzε0,0)n,0x0 + (Rzε1,0)n,0x1,

(Rzε0,0)n,1x0 + (Rzε1,0)n,1x1), n ∈ N0,

and the last sequence of vectors from C2 belongs to l2.
From (102) for m(z) and f(z), by subtraction, we get

( ∞∑

n=0

‖Pn(z)(m(z)− f(z))x‖
2
C2

)1/2

≤
( ∞∑

n=0

‖(Qn(z) + Pn(z)m(z))x‖
2
C2

)1/2

+
( ∞∑

n=0

‖(Qn(z) + Pn(z)f(z))x‖
2
C2

)1/2

< ∞.

(103)

If m(z) 6= f(z) for some z ∈ C \ R, then ∃x ∈ C2 for which (m(z) − f(z))x 6= 0 and
inequality (103) contradicts to (101). �

5. The equations for Weyl function and spectral matrix

In the Section 3 we have shown that the double-infinite Toda equation can be written
as a Lax equation (48) for block type Jacobi matrices J(t), A(t). The corresponding
operator J(t) in the space l2 (38) for every fixed t ∈ [0, T ) is a block Jacobi operator of
the type investigated in the Section 4. Our aim now is to deduce from (48), equations
on elements of the Weyl matrix function and derivatives of the spectral measure. These
results are similar to Theorems 1, 2.

We will start with deducing the corresponding differential equation for the Weyl matrix
function m(z; t) of the operator J(t) in the space l2. According to (97), this 2×2−matrix
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function has the form

m(z; t) =

[
m0,0(z; t) m0,1(z; t)
m1,0(z; t) m1,1(z; t)

]
=

∫

R

1

λ− z
dρ(λ; t)

=

[
(Rz(t)ε0,0, ε0,0)l2 (Rz(t)ε1,0, ε0,0)l2
(Rz(t)ε0,0, ε1,0)l2 (Rz(t)ε1,0, ε1,0)l2

]
, z ∈ C \ R, t ∈ [0, T ),

(104)

where dρ(λ; t) is the matrix spectral measure of the operator J(t), Rz(t) its resolvent
and (see (39))

(105) ε0,0 = (1, 0, 0, . . .), ε1,0 = (0, (1, 0), 0, 0, . . .).

Note that selfadjointness of the operator J(t) and it being real gives that R∗

z(t) =

Rz̄(t) = Rz(t) where ” ” denotes the complex conjugation in the space l2 and its
extension on operators in l2. The last equality, since εn,vn

is real, gives that

(Rz(t)εk,vk
, εj,vj

)l2 = (εk,vk
,Rz(t)εj,vj

)l2 = (Rz(t)εj,vj
, εk,vk

)l2 .

So, we have ∀j, k ∈ N0, vj , vk = 0, 1

(Rz(t)εk,vk
, εj,vj

)l2 = (Rz(t)εj,vj
, εk,vk

)l2 , in particular

m0,1(z; t) = m1,0(z; t), z ∈ C \ R, t ∈ [0, T ).
(106)

To find a system of differential equations w.r.t. t for the functions mα,β(z; t), we will
use the idea of deduction of the equation (15) from the Lax equation, but now this deduc-
tion is more complicated as in Section 2 since our block matrices Rz(t) (corresponding
to the operators Rz(t)) and A(t) of the form (49) are more cumbersome.

To our operator Rz(t) we can apply the general constructions (40) – (43). So, for the
corresponding matrix Rz(t) with fixed t we have, using (106),

Rz(t) = (Rz;j;k)
∞

j,k=0 = (Rz;j,vj ;k,vk
)∞j,k=0,vj ,vk=0,1,

Rz;j,vj ;k,vk
= (Rzεk,vk

, εj,vj
)l2 = (Rzεj,vj

, εk,vk
)l2 .

(107)

In particular ∀z ∈ C \ R, t ∈ [0, T )

Rz;0,0;0,0 = m0,0(z; t), Rz;0,0;1,0 = m0,1(z; t),

Rz;1,0;0,0 = m1,0(z; t) = m0,1(z; t), Rz;1,0;1,0 = m1,1(z; t).
(108)

So, we start from the Lax equation (48) and to do calculations of the type performed
in Section 2. For the resolvent Rz(t) of the operator J(t), from the second equality in
(48), we easy get

Ṙz(t) = −Rz(t)(J(t)− z1)̇Rz(t) = −Rz(t)J̇(t)Rz(t) = [Rz(t),A(t)] or

Ṙz(t) = [Rz(t), A(t)] = Rz(t)A(t)−A(t)Rz(t), z ∈ C \ R, t ∈ [0, T ).
(109)

Calculate ṁµ,ν(z; t) for µ, ν = 0, 1. If we observe that A∗(t) = −A(t), we get

ṁ0,0(z; t) = (Ṙz(t)ε0,0, ε0,0)l2 = ((Rz(t)A(t)−A(t)Rz(t))ε0,0, ε0,0)l2

= (Rz(t)A(t)ε0,0, ε0,0)l2 + (Rz(t)ε0,0,A(t)ε0,0)l2 .
(110)

According to (49) and (43), (107),

A(t)ε0,0 =
(
0,
(1
2
α0,−

1

2
α−1

)
, 0, 0, . . .

)
=

1

2
α0ε1,0 −

1

2
α−1ε1,1;(111)

(Rz(t)f)j =

∞∑

k=0

Rz;j;k(t)fk, Rz;j,vj ;k,vk
(t) = (Rz(t)εk,vk

, εj,vj
),(112)

vj , vk = 0, 1, f ∈ l2.
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Therefore,

(Rz(t)A(t)ε0,0, ε0,0)l2 = (Rz(t)(
1

2
α0ε1,0 −

1

2
α−1ε1,1), ε0,0)l2

=
1

2
α0(Rz(t)ε1,0, ε0,0)l2 −

1

2
α−1(Rz(t)ε1,1, ε0,0)l2 ;

(Rz(t)ε0,0,A(t)ε0,0)l2 = (Rz(t)ε0,0,
1

2
α0ε1,0 −

1

2
α−1ε1,1)l2

=
1

2
α0(Rz(t)ε0,0, ε1,0)l2 −

1

2
α−1(Rz(t)ε0,0, ε1,1)l2 .

From the last two equalities, (110) and (106) we get

ṁ0,0(z; t) = α0m0,1(z; t)−
1

2
α−1(Rz(t)ε0,0, ε1,1)l2 −

1

2
α−1(Rz(t)ε1,1, ε0,0)l2

= α0m0,1(z; t)− α−1(Rz(t)ε0,0, ε1,1)l2 , z ∈ C \ R, t ∈ [0, T ).
(113)

Consider m0,1(z; t). Analogously to (110) we have from (109) that

(114) ṁ0,1(z; t) = (Ṙz(t)ε1,0, ε0,0)l2 = (Rz(t)A(t)ε1,0, ε0,0)l2 + (Rz(t)ε1,0,A(t)ε0,0)l2 .

According to (49) and (43), (107),

A(t)ε1,0 = (−
1

2
α0, (0, 0), (

1

2
α1, 0), 0, 0, . . .) = −

1

2
α0ε0,0 +

1

2
α1ε2,0;(115)

(Rz(t)A(t)ε1,0, ε0,0)l2 = (Rz(t)(−
1

2
α0ε0,0 +

1

2
α1ε2,0), ε0,0)l2(116)

= −
1

2
α0(Rz(t)ε0,0, ε0,0)l2 +

1

2
α1(Rz(t)ε2,0, ε0,0)l2 .

For last term in (114), using (112), (111), we have

(Rz(t)ε1,0,A(t)ε0,0)l2 = (Rz(t)ε1,0,
1

2
α0ε1,0 −

1

2
α−1ε1,1)l2

=
1

2
α0(Rz(t)ε1,0, ε1,0)l2 −

1

2
α−1(Rz(t)ε1,0, ε1,1)l2 .

(117)

From (114), (116), and (117), we get

ṁ0,1(z; t) = −
1

2
α0m0,0(z; t) +

1

2
α0m1,1(z; t)−

1

2
α−1(Rz(t)ε1,0, ε1,1)l2

+
1

2
α1(Rz(t)ε2,0, ε0,0)l2 , z ∈ C \ R, t ∈ [0, T ).

(118)

Consider m1,1(z; t). Analogously to (110) and (114) we have from (109)

(119) ṁ1,1(z; t) = (Ṙz(t)ε1,0, ε1,0)l2 = (Rz(t)A(t)ε1,0, ε1,0)l2 + (Rz(t)ε1,0,A(t)ε1,0)l2 .

Calculate the first term in this sum. Using the expression (115) we get

(Rz(t)A(t)ε1,0, ε1,0)l2 = (Rz(t)(−
1

2
α0ε0,0 +

1

2
α1ε2,0), ε1,0)l2

= −
1

2
α0(Rz(t)ε0,0, ε1,0)l2 +

1

2
α1(Rz(t)ε2,0, ε1,0)l2 .

(120)

For the second term we conclude from (115) that

(Rz(t)ε1,0,A(t)ε1,0)l2 = (Rz(t)ε1,0,−
1

2
α0ε0,0 +

1

2
α1ε2,0)l2

= −
1

2
α0(Rz(t)ε1,0, ε0,0)l2 +

1

2
α1(Rz(t)ε1,0, ε2,0)l2 .

(121)

From (119), (120), (121), and (106), we get

ṁ1,1(z; t) = −α0m0,1(z; t) +
1

2
α1(Rz(t)ε2,0, ε1,0)l2 +

1

2
α1(Rz(t)ε1,0, ε2,0)l2

= −α0m0,1(z; t) + α1(Rz(t)ε2,0, ε1,0)l2 , z ∈ C \ R, t ∈ [0, T ).
(122)
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As a result of these calculations we have the three expressions for ṁ0,0(z; t), ṁ0,1(z; t),
ṁ1,1(z; t), namely (113), (118), (122). To deduce a system of differential equations with
respect to the unknowns m0,0(z; t),m0,1(z; t),m1,1(z; t) and time t it is necessary to ex-
press the terms (Rz(t)ε0,0, ε1,1)l2 , (Rz(t)ε1,0, ε1,1)l2 , (Rz(t)ε2,0, ε0,0)l2 , (Rz(t)ε2,0, ε1,0)l2
in (113), (118), (122) in terms of these unknowns and elements of the matrices J(t) and
A(t).

To this end, we will use the obvious identity

(123) 1+ zRz(t) = Rz(t)J(t), z ∈ C \ R, t ∈ [0, T ).

At first, transfer the relation (113) into an equation. From (123) we have

(124) 1 + zm0,0(z; t) = ((1+ zRz(t))ε0,0, ε0,0)l2 = (Rz(t)J(t)ε0,0, ε0,0)l2 .

According to (46),

(125) J(t)ε0,0 = β0ε0,0 + α0ε1,0 + α−1ε1,1,

therefore, (124) gives

1 + zm0,0(z; t) = (Rz(t)(β0ε0,0 + α0ε1,0 + α−1ε1,1), ε0,0)l2

= β0(Rz(t)ε0,0, ε0,0)l2 + α0(Rz(t)ε1,0, ε0,0)l2 + α−1(Rz(t)ε1,1, ε0,0)l2

= β0m0,0(z; t) + α0m0,1(z; t) + α−1(Rz(t)ε1,1, ε0,0)l2 .

We conclude

α−1(Rz(t)ε1,1, ε0,0)l2 = 1 + (z − β0)m0,0(z; t)− α0m0,1(z; t).

Using (106) and substituting this expression into (113), we get

(126) ṁ0,0(z; t) = 2α0m0,1(z; t) + (β0 − z)m0,0(z; t)− 1, z ∈ C \ R, t ∈ [0, T ).

Transfer (118) into an equation. From (123) and (46) we have

zm0,1(z; t) = ((1+ zRz(t))ε1,0, ε0,0)l2 = (Rz(t)J(t)ε1,0, ε0,0)l2 ;

J(t)ε1,0 = α0ε0,0 + β1ε1,0 + α1ε2,0.
(127)

Therefore,

zm0,1(z; t) = (Rz(t)(α0ε0,0 + β1ε1,0 + α1ε2,0), ε0,0)l2

= α0(Rz(t)ε0,0, ε0,0)l2 + β1(Rz(t)ε1,0, ε0,0)l2 + α1(Rz(t)ε2,0, ε0,0)l2

= α0m0,0(z; t) + β1m0,1(z; t) + α1(Rz(t)ε2,0, ε0,0)l2 .

We conclude

(128) α1(Rz(t)ε2,0, ε0,0)l2 = (z − β1)m0,1(z; t)− α0m0,0(z; t).

So, we have found the required expression for the fourth term in (118). Consider the
third term. Rewrite expression (127) (using (125)) in following way:

zm0,1(z; t) = ((1+ zRz(t))ε0,0, ε1,0)l2 = (Rz(t)J(t)ε0,0, ε1,0)l2

= (Rz(t)(β0ε0,0 + α0ε1,0 + α−1ε1,1), ε1,0)l2

= β0(Rz(t)ε0,0, ε1,0)l2 + α0(Rz(t)ε1,0, ε1,0)l2 + α−1(Rz(t)ε1,1, ε1,0)l2

= β0m0,1(z; t) + α0m1,1(z; t) + α−1(Rz(t)ε1,1, ε1,0)l2 .

Using (106) we conclude

(129) α−1(Rz(t)ε1,0, ε1,1)l2 = α−1(Rz(t)ε1,1, ε1,0)l2 = (z− β0)m0,1(z; t)−α0m1,1(z; t).

Using (129) and (128) we can rewrite (118):

ṁ0,1(z; t) = −
1

2
α0m0,0(z; t) +

1

2
α0m1,1(z; t)−

1

2
(z − β0)m0,1(z; t) +

1

2
α0m0,0(z; t)

+
1

2
(z − β1)m0,1(z; t)−

1

2
α0m0,0(z; t)

= −α0m0,0(z; t) + α0m1,1(z; t) +
1

2
(β0 − β1)m0,1(z; t).
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As a result, we get the equation
(130)

ṁ0,1(z; t) = −α0m0,0(z; t)+α0m1,1(z; t)+
1

2
(β0−β1)m0,1(z; t), z ∈ C \R, t ∈ [0, T ).

Transfer (122) into an equation. From (123) and (127) we have using (106) that

1 + zm1,1(z; t) = ((1+ zRz(t))ε1,0, ε1,0)l2 = (Rz(t)J(t)ε1,0, ε1,0)l2

= (Rz(t)(α0ε0,0 + β1ε1,0 + α1ε2,0), ε1,0)l2

= α0(Rz(t)ε0,0, ε1,0)l2 + β1(Rz(t)ε1,0, ε1,0)l2 + α1(Rz(t)ε2,0, ε1,0)l2

= α0m0,1(z; t) + β1m1,1(z; t) + α1(Rz(t)ε2,0, ε1,0)l2 .

We conclude

α1(Rz(t)ε2,0, ε1,0)l2 = 1 + (z − β1)m1,1(z; t)− α0m0,1(z; t).

Substituting this expression into (122), we get

(131) ṁ1,1(z; t) = −2α0m0,1(z; t)− (β1 − z)m1,1(z; t) + 1, z ∈ C \ R, t ∈ [0, T ).

As a result, we got, for the unknown functions m0,0(z; t), m0,1(z; t), m1,1(z; t), three
differential equations (126), (130) and (131). So, we have proved the following result.

Theorem 9. The elements m0,0(z; t), m0,1(z; t), and m1,1(z; t) of the Weyl matrix (104)
satisfy the following system of differential equations:

ṁ0,0(z; t) = (β0(t)− z)m0,0(z; t) + 2α0(t)m0,1(z; t)− 1,

ṁ0,1(z; t) = −α0(t)m0,0(z; t) +
1

2
(β0(t)− β1(t))m0,1(z; t) + α0(t)m1,1(z; t),

ṁ1,1(z; t) = −2α0(t)m0,1(z; t)− (β1(t)− z)m1,1(z; t) + 1;

m1,0(z; t) = m0,1(z; t), z ∈ C \ R, t ∈ [0, T ).

(132)

As in Section 2, it is possible to rewrite the system (132) in the terms of the unknowns
measures (charges) dρα,β(λ; t), α, β = 0, 1, the elements of the 2 × 2−matrix spectral
measure dρ(λ; t); more exactly, we will rewrite (132) in terms of some of their derivatives.
These charges are connected with mα,β(z; t) by equality (104); for these measures we
preserve the standard notations ∀t ∈ [0, T )

(133) B(R) ∋△7→ ρα,β(△; t), ρ(△; t); α, β = 0, 1.

At first, it is easy to understand that such a measure dσ(λ), independent of t, exists
for which all the measures dρ(λ; t), t ∈ [0, T ), are absolutely continuous w.r.t. dσ(λ).
Namely, the following result takes place (compare with (29)):

Lemma 7. Consider the following mapping:

(134) B(R) ∋△7→

∫ T

0

Tr ρ(△; t)dt =: σ(△) ≥ 0.

The mapping (134) is some nonnegative finite measure on R (a joint scalar spectral
measure) and all measures (133) are absolutely continuous w.r.t. dσ(λ).

Proof. Since ∀t ∈ [0, T )

B(R) ∋△7→ Tr ρ(△; t)dt = ρ0,0(△; t) + ρ1,1(△; t) ≤ 2

is a nonnegative measure, then using the passage to the limit under integral we conclude
that (134) is a nonnegative measure.

Let, for △∈ B(R), σ(△) = 0, then from (134) we conclude that Tr ρ(△; t) = 0 for
every t ∈ [0, T ). Since the matrix ρ(△; t) is nonnegative, from the last equality it follows
that ρ(△; t) = 0, i.e., the measure ρ(△; t) = 0. �
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Denote the Radon-Nikodym derivative dρ(λ; t)/dσ(λ) by r(λ; t) = (rα,β(λ; t))
1
α,β=0.

So we have

ρ(△; t) =

∫

△

r(λ; t)dσ(λ), ρα,β(△; t) =

∫

△

rα,β(λ; t)dσ(λ);

△∈ B(R), t ∈ [0, T ), α, β = 0, 1.

(135)

We will also use the spectral functions (matrix and scalar)

ρ(λ; t) = ρ((−∞, λ); t), ρα,β(λ; t) = ρα,β((−∞, λ); t);

λ ∈ R, t ∈ [0, T ), α, β = 0, 1.
(136)

As in Section 2 it is essential to rewrite the system (132) as a system for the unknowns
rα,β(λ; t), now a similar system is also useful. The following result takes place.

Theorem 10. The system (132) is equivalent to the following system of differential
equations for the unknowns rα,β(λ; t) : for almost all λ ∈ R with respect to the measure
dσ(λ),

ṙ0,01925 = (β0(t)− λ)r0,0(λ; t) + 2α0(t)r0,1(λ; t),

ṙ0,1(λ; t) = −α0(t)r0,0(λ; t) +
1

2
(β0(t)− β1(t))r0,1(λ; t) + α0(t)r1,1(λ; t),

ṙ1,1(λ; t) = −2α0(t)r0,1(λ; t)− (β1(t)− λ)r1,1(λ; t);

r1,0(λ; t) = r0,1(λ; t), t ∈ [0, T ).

(137)

The functions rα,β(λ; t) from (137) are one time continuously differentiable in [0, T )
for dσ(λ)−almost all λ ∈ R.

Proof. It is similar to the proof of Theorem 2. Namely, let (u, v)L2 be the scalar product
in the ordinary space L2([0, T ), dt) ∋ u, v. Using the first equality in (132) and (135)
we get ∀z ∈ C \ R and for arbitrary infinite differentiable complex valued functions
u0,0(t), t ∈ [0, T ), vanishing in some neighborhoods of 0 and T , that

−

∫

R

1

λ− z
(r0,0(λ; ·), u̇0,0(·))L2dσ(λ) = −

∫

R

1

λ− z
d(ρ0,0(λ; ·), u̇0,0(·))L2

= −(m0,0(z; ·), u̇0,0(·))L2 = (ṁ0,0(z; ·), u0,0(·))L2

= ((β0(·)− z)m0,0(z; ·) + 2α0(·)m0,1(z; ·)− 1, u0,0(·))L2

=

∫

R

1

λ− z
((β0(·)− λ)dρ0,0(λ; ·) + 2α0(·)dρ0,1(λ; ·), u0,0(·))L2

=

∫

R

1

λ− z
((β0(·)− λ)r0,0(λ; ·) + 2α0(·)r0,1(λ; ·), u0,0(·))L2dσ(λ).

(138)

Here we have used he equality

(β0(t)− z)m0,0(z; t) + 2α0(t)m0,1(z; t)− 1 =

∫

R

1

λ− z
((β0(t)− λ)dρ0,0(λ; t)

+

∫

R

1

λ− z
2α0(t)dρ0,1(λ; t), z ∈ C \ R, t ∈ [0, T ).

This equality takes place since ∀t ∈ [0, T ) ρ0,0(R; t) = 1 and therefore −1 =
∫
R
(z−λ)(λ−

z)−1dρ0,0(λ; t).
Similarly, to the proof of Theorem 2, we conclude from (133) that, for dσ(λ)−almost

all λ ∈ R,

(139) −(r(λ, ·), u̇0,0(·))L2 = ((β0(·)− λ)r0,0(λ; ·) + 2α0(·)r0,1(λ; ·), u0,0(·))L2 .

Analogous equalities can be obtained using the second and the third equalities from
(132) (now it is necessary to recall that ρ1,1(R; t) = 1, t ∈ [0, t)). These equalities will be
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the following: for dσ(λ)−almost all λ ∈ R,

(−r0,1(λ; ·), u̇0,1(·))L2 = (−α0(·)r0,0(λ; ·) +
1

2
(β0(·)− β1(·))r0,1(λ; ·)

+ α0(·)r1,1(λ; ·), u0,1(·))L2 ,

(−r1,1(λ; ·), u̇1,1(·))L2 = (−2α0(·)r0,1(λ; ·)− (β1(·)− λ)r1,1(λ; ·), u1,1(·))L2 ,

(140)

where u0,1(t) and u1,1(t) are arbitrary functions of type u0,0(t).
Let us stress that the functions u0,0(t), u0,1(t) and u1,1(t) in (139), (140) are arbitrary

smooth functions which are annulated in some neighborhoods of points 0, T. Therefore
r0,0(λ; t), r0,1(λ; t) and r1,1(λ; t) (for dσ(λ)−almost all λ ∈ R) are generalized solutions
(in terms of the classical theory of generalized functions) of system (137). But for a system
of linear ordinary differential equations with smooth coefficients there is a well known, —
every generalized solution of such an equation is, in fact, a smooth solution ([16], Ch. 16,
Section 6). Therefore we can assert that the vector (r0,0(λ; t), r0,1(λ; t), r1,1(λ; t)) is one
time continuously differentiable in [0, T ) and is a solution of a Cauchy problem for (137)
with the initial data (r0,0(λ; 0), r0,1(λ; 0), r1,1(λ; 0)). �

It is useful to rewrite systems (132) and (137) using the Toda lattice (44). In these
two systems, the coefficients α0(t), β0(t), β1(t) are the same as those in (44). Therefore
we have

(141)
1

2
(β0(t)− β1(t)) = −

α̇0(t)

α0(t)
, β1(t) = β0(t) + 2

α̇0(t)

α0(t)
, t ∈ [0, T ).

Using these equalities we can rewrite, for example, the equations (137) in the following
form: for dσ(λ)−almost all λ ∈ R,

(142)

ṙ0,0(λ; t) = (β0(t)− λ)r0,0(λ; t) + 2α0(t)r0,1(λ; t),

ṙ0,1(λ; t) = −α0(t)r0,0(λ; t)−
α̇0(t)

α0(t)
r0,1(λ; t) + α0(t)r1,1(λ; t),

ṙ1,1(λ; t) = −2α0(t)r0,1(λ; t)− (β0(t)− λ+ 2
α̇0(t)

α0(t)
)r1,1(λ; t);

r1,0(λ; t) = r0,1(λ; t), t ∈ [0, T ).

If, under some additional assumptions, we can prove that α0(t) is constant, α0(t) =
α0(0), t ∈ [0, T ), then the system (142) has a more simple form,

(143)

ṙ0,0(λ; t) = (β0(t)− λ)r0,0(λ; t) + 2κ r0,1(λ; t),

ṙ0,1(λ; t) = −κ r0,0(λ; t) + κ r1,1(λ; t),

ṙ1,1(λ; t) = −2κ r0,1(λ; t)− (β0(t)− λ)r1,1(λ; t);

r1,0(λ; t) = r0,1(λ; t), t ∈ [0, T ), κ = α0(t).

Systems (132), (137), (142) and (143) are similar to equations (15), (31), but unlike
to Section 2 we cannot calculate, in a general case, solutions of the Cauchy problems for
(137), (142) and even for (143). Therefore we can only say, that if for some concrete
coefficients of systems (142), (143) we can calculate the solutions r0,0(λ; t), r0,1(λ; t),
r1,1(λ; t) of the Cauchy problem with the initial data r0,0(λ; 0), r0,1(λ; 0), r1,1(λ; 0), then
using formulas (135), (136) we can find the spectral measure dρ(λ; t) of our operators
J(t), t ∈ [0, T ).

Note also that in the last situation we can apply the representation for solution of the
Cauchy problem for (142), (143) of type (34), (35) and therefore we can avoid the use of
the measure dσ(λ). The functions α0(t), β0(t), t ∈ [0, T ), are found from the condition
that dρ(λ; t) is a matrix probability measure for every t ∈ [0, T ).
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Remark 6. It is necessary to note some useful facts concerning the matrix r(λ; t) from
(135). Namely, denote by D(λ; t) its determinant,

(144) D(λ; t) = Detr(λ; t) = r0,0(λ; t)r1,1(λ; t)− r20,1(λ; t), λ ∈ R, t ∈ [0, T ).

Then the following equality takes place: for dσ(λ)−almost all λ ∈ R,

(145) D(λ; t) =
α2
0(0)

α2
0(t)

D(λ; 0), t ∈ [0, T ).

For the proof of (145) it is necessary calculate Ḋ(λ; t). Using (144) and (142) after
simple calculation we get for dσ(λ)−almost all λ ∈ R that

(146) Ḋ(λ; t) = −2
α̇0(t)

α0(t)
D(λ; t), t ∈ [0, T ).

Integration of differential equation (146) gives (145).
If from some additional information about solutions of the Cauchy problem for (44)

we know that D(λ; t) for λ from the set of some positive measure dσ(λ) does not depend
on t, then from (145) we conclude that α0(t) = α0(0), t ∈ [0, T ), and the system (142)
has a more simple form (143).

Note also, that the operators J(t) are isospectral (see e.g. [59], Ch. 12), therefore their
spectrums are located on an fixed interval [a, b] ⊂ R.

6. The main theorem and some applications to Hamiltonian systems

In this Section we will give a procedure for finding a solution of the Cauchy problem for
a double-infinite Toda lattice, and also consider the corresponding problem for differential
equations connected with the Toda lattice. The constructions are similar to the case of
the semi-infinite Toda lattices, see Section 2 and the corresponding articles [3, 4, 6, 7].

So, consider the double-infinite Toda lattice (44),

α̇n(t) =
1

2
αn(t)(βn+1(t)− βn(t)),

β̇n(t) = α2
n(t)− α2

n−1(t), n ∈ Z, t ∈ [0, T );
(147)

here αn(t) > 0, βn(t) are real continuously differentiable functions on [0, T ). For (147)
we pose a Cauchy problem as follows: to find a solution αn(t), βn(t) from the initial data
αn(0), βn(0), n ∈ Z, t ∈ [0, T ).

Theorem 11. We will find a solution, bounded uniformly in n ∈ Z and t ∈ [0, T ), of
the posed above Cauchy problem for (147). Such a solution exists and can be found by
the following procedure:

1) Using the initial data construct the matrix of type (46),
(148)

J(0)=

β0(0) α0(0) α−1(0) 0 0 0 0 0 0 . . .
α0(0) β1(0) 0 α1(0) 0 0 0 0 0 . . .
α−1(0) 0 β−1(0) 0 α−2(0) 0 0 0 0 . . .

0 α1(0) 0 β2(0) 0 α2(0) 0 0 0 . . .
0 0 α−2(0) 0 β−2(0) 0 α−3(0) 0 0 . . .
0 0 0 α2(0) 0 β3(0) 0 α3(0) 0 . . .
0 0 0 0 α−3(0) 0 β−3(0) 0 α−4(0) . . .
...

...
...

...
...

...
...

...
...

. . .

and find its 2× 2−matrix spectral measure,

(149) dρ(λ; 0) =

[
dρ0,0(λ; 0) dρ0,1(λ; 0)
dρ0,1(λ; 0) dρ1,1(λ; 0)

]
, λ ∈ R.



LINEARIZATION OF DOUBLE-INFINITE TODA LATTICE 49

2) Consider on [0, T ) the system (142) (or (143)) of differential equations w.r.t. the
unknown continuously differentiable functions rα,β(λ; t). Here α0(t) > 0 and β0(t) ∈ R

are fixed continuously differentiable functions; λ ∈ R, t ∈ [0, T ).
The connection between rα,β(λ; t) and spectral measure dρ(λ; t) and function ρ(λ; t) is

given by formulas (135) and (136).
Find a solution of the Cauchy problem for (142), (143) with initial data (149) in

terms of rα,β(λ; 0). Using this solution ρα0,β0
(λ; t) find the functions α0(t), β0(t) from

the condition ρα0,β0
(R; t) = 1, t ∈ [0, T ). Such a solution is denoted in terms ρα,β(λ; t)

by ρ(λ; t).
3) For fixed t ∈ [0, T ), in the Hilbert space L2(C2,R, dρ(λ; t)) of type (78) of C2−vector

valued functions of λ, consider the sequence (see (85))

(150) (1, 0); ((0, 1), (λ, 0)); ((0, λ), (λ2, 0)); . . . ; ((0, λn), (λn+1, 0)); . . . .

Apply to sequence (150) the Gramm-Schmidt orthogonalization procedure. As a result,
we get a sequence of vectors from L2(C2,R, dρ(λ; t)) (see (82)),

(P0;0,0(λ; t), P0;0,1(λ; t)); (P1;0,0(λ; t), P1;0,1(λ; t)), (P1;1,0(λ; t), P1;1,1(λ; t));

(P2;0,0(λ; t), P2;0,1(λ; t)), (P2;1,0(λ; t), P2;1,1(λ; t)); . . . .
(151)

4) The sought solutions of our Cauchy problem can be found using the formulas ∀t ∈
[0, T )

[
αn(t) 0
0 α−n−1(t)

]
=

∫

R

λPn(λ; t)dρ(λ; t)P
∗

n+1(λ; t), n ∈ N,

[
α0(t) α−1(t)
0 0

]
=

∫

R

λP0(λ; t)dρ(λ; t)P
∗

1 (λ; t),

[
βn(t) 0
0 β−n(t)

]
=

∫

R

λPn(λ; t)dρ(λ; t)P
∗

n(λ; t), n ∈ N,

β0(t) =

∫

R

λdρ0,0(λ; t), where

Pn(λ; t) =

[
Pn;0,0(λ; t) Pn;0,1(λ; t)
Pn;0,1(λ; t) Pn;1,1(λ; t)

]
, n ∈ N0, λ ∈ R,

(P0;0,1(λ; t) = P0;1,1(λ; t) = 0).

Proof. It follows from the results of Sections 3–5. �

The Toda lattice represents a Hamilton system describing the dynamics of a infinite
chain of particles qn(t), n ∈ Z, on a straight line R with exponential interaction. The
corresponding Hamiltonian has the form

(152) H(p, q) =
1

2

∞∑

n=−∞

p2n +

∞∑

n=−∞

eqn−qn+1 ,

where qn = qn(t) is the coordinate of the n−th particle, and pn = pn(t) is its momen-
tum, t ∈ [0, T ). The Hamiltonian equations q̇n = ∂H/∂pn = pn, ṗn = −∂H/∂qn =
−eqn−qn+1 + eqn−1−qn , n ∈ Z, can be rewritten as the following system:

(153) ẍn(t) = exn−1(t)−xn(t) − exn(t)−xn+1(t), n ∈ Z, t ∈ [0, T ).

Here xn(t) ∈ R is the n−th coordinate of the point qn(t), ẋn(t) is its momentum pn(t).
So, we have an infinite system (153) of nonlinear second order differential equa-

tions. For this system we can pose the following Cauchy problem: for given initial
data xn(0), ẋn(0), n ∈ Z, it is necessary to find a solution xn(t), n ∈ Z, t ∈ [0, T ).

Introduce the Flashka change of variables

(154) αn(t) = e
1
2
(xn(t)−xn+1(t)), βn(t) = −ẋn(t), n ∈ Z, t ∈ [0, T ).
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Then our system (153) transfers into the double-infinite Toda lattice (147) and our
Cauchy problem into such a problem for (147). We can apply now Theorem 11 to our
case taking into account that our condition about uniform boundedness of αn(t), βn(t)
means in terms xn(t) the boundedness

(155) |xn(t)− xn+1(t)|, |ẋn(t)|, n ∈ Z, t ∈ [0, T ).

So, we can formulate the following corollary.

Corollary 1. The above stated Cauchy problem for (153) with uniform boundedness
of (155) is transformed by (154) to Theorem 11. The procedure of Theorem 11 gives a
possibility to find a solution of the Cauchy problem for (153).

Let us now pass to the Toda shock problem in the formulation of [42]. Consider the
system (153) but for n ∈ N0

(156) ẍn(t) = exn−1(t)−xn(t) − exn(t)−xn+1(t), n ∈ N0, t ∈ [0, T ).

For this system it is possible to formulate a shock problem, i.e., the following mixed
problem: it is necessary to find a solution of (156) xn, n ∈ N0, t ∈ [0, T ), if we know the
initial data xn(0), ẋn(0), n ∈ N0, and the boundary data x−1(t) = f(t), t ∈ [0, T ), where
f(t) is a given real continuous function.

Below we will consider some version of this problem (“ a generalized shock problem”):
it is necessary to find a bounded solution of (156) if we know xn(0), ẋn(0), n ∈ N0, and
x−1(t)−x0(t) = f(t), t ∈ [0, T ) (instead of x−1(t)). If, above, x−1(t) = 0, t ∈ [0, T ), then
we have a problem similar to [42] but moved one step to the right.

Using now the Flashka variables (154), but for n ∈ N0, we get from (154), (153):
∀t ∈ [0, T ) that

α̇n(t) =
1

2
αn(t)(βn+1(t)− βn(t)), n ∈ N0;

β̇n(t) = −ẍn(t) = α2
n(t)− α2

n−1(t), n ∈ N;

β̇0(t) = −ẍ0(t) = α2
0(t)− ex−1(t)−x0(t) = α2

0(t) + ϕ(t), ϕ(t) := −ef(t).

(157)

Rewrite the equality (157) in the form of a Lax equation type with an ordinary Jacobi
matrix (8) and the matrix (9). Consider the matrix J(t) (8) the elements of which are
solutions of system (157). Using the construction of Section 2 it is easy to understand that
the system (157) is equivalent to the following nonhomogeneous Lax equation: ∀t ∈ [0, T )

J̇(t) = J(t)A(t)−A(t)J(t) + ϕ(t)B,

B = (bα,β)
∞

α,β=0, b0,0 = 1, bα,β = 0 if α+ β > 0.
(158)

Let J(t) be the bounded selfadjoint operator in ℓ2 generated by J(t) and Rz(t) its
resolvent; A(t),B = B2 be operators generated by A(t) and B. Then according to (16),
(158), and (18) we have

Ṙz(t) = ((J(t)− z1)−1)̇ = −Rz(t)(J(t)− z1)̇Rz(t)

= −Rz(t)J̇(t)Rz(t) = −Rz(t)([J(t),A(t)] + ϕ(t)B)Rz(t)

= −Rz(t)[J(t)− z1,A(t)]Rz(t)− ϕ(t)Rz(t)BRz(t)

= [Rz(t),A(t)]− ϕ(t)Rz(t)BRz(t), z ∈ C \ R, t ∈ [0, T ).

(159)

Using (159) instead of (18) we deduce an analog of equation (15) for m(z; t) (14) in
our case. Let ε0 = (1, 0, 0, . . .), then from (159) we conclude ∀z ∈ C \ R, t ∈ [0, T )

(160) ṁ(z; t) = (Ṙz(t)ε0, ε0)ℓ2 = ([Rz(t),A(t)]ε0, ε0)ℓ2 − ϕ(t)(Rz(t)BRz(t)ε0, ε0)ℓ2 .

For the first summand in the right-hand side of (160) we can repeat the calculation
(19)–(22) and get (z − β0(t))m(z; t) + 1.
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For the second summand we have

(Rz(t)BRz(t)ε0, ε0)ℓ2 = (BRz(t)ε0,R
∗

z(t)ε0)ℓ2 = (BRz(t)ε0,BR∗

z(t)ε0)ℓ2

= (Rz(t)ε0, ε0)ℓ2(R
∗

z(t)ε0, ε0)ℓ2 = (Rz(t)ε0, ε0)
2
ℓ2 = m2(z; t).

Therefore (160) gives the following equation of Riccati type for m(z; t) :

(161) ṁ(z; t) = (z − β0(t))m(z; t) + 1− ϕ(t)m2(z; t), z ∈ C \ R, t ∈ [0, T ).

It is possible to give some procedure of integration of equation (161). For this we note
that, according to (14) and (27), we have

(162) m(z; t) =

∫

R

1

λ− z
dρ(λ; t), z ∈ Z \ R, t ∈ [0, T ),

where dρ(λ; t) is a spectral measure of the operator J(t). Since the norms of these oper-
ators are bounded uniformly in t, the support of dρ(λ; t) for every t ∈ [0, T ) belongs to
some ball {λ ∈ R||λ| ≤ R}. Therefore for |z| > R, t ∈ [0, T ), we can write

m(z; t) =

∫

R

1

λ− z
dρ(λ; t) = −

1

z

∫

R

1

1− λ/z
dρ(λ; t)

= −
1

z

∫

R

( ∞∑

n=0

(λ
z

)n)
dρ(λ; t) = −

∞∑

n=0

sn(t)

zn+1
, sn(t) =

∫

R

λndρ(λ; t).

(163)

Using the approach of Section 2 it is possible to prove that the moments sn(t), n ∈ N0,
are continuously differentiable and ∀t ∈ [0, T )

ṡn(t) =

∫

R

λndρ̇(λ; t), n ∈ N0;

ṁ(z; t) = −

∞∑

n=0

ṡn(t)

zn+1
, |z| > R.

(164)

According to (163), (164) we can rewrite (161) in the form of an equation for the moments.
Namely, at first we note that equation (161) is equivalent to the following: ∀z ∈

C \ R, t ∈ [0, T )

(165) ṁ(z; t) =

∫

R

λ− β0(t)

λ− z
dρ(λ; t)− ϕ(t)m2(z; t).

Using (162)–(164) we have, instead of (165), that

(166)
∞∑

n=0

ṡn(t)

zn+1
=

∞∑

n=0

1

zn+1
(sn+1(t)− β0(t)sn(t)) + ϕ(t)

∞∑

j,k=0

sj(t)sk(t)

zj+k+2
, |z| > R.

We will compare the coefficients in (166) at the powers 1
zn+1 for n = 0, 1, . . . . As a result,

using the equality ρ(R; t) = 1, t ∈ [0, T ), we get

s1(t) = β0(t), ṡ1(t) = s2(t)− β0(t)s1(t) + ϕ(t),

ṡ2(t) = s3(t)− β0(t)s2(t) + 2ϕ(t)s1(t), . . . ,

ṡn(t) = sn+1(t)− β0(t)sn(t) + ϕ(t)
∞∑

j,k=0;j+k=n−1

sj(t)sk(t), n ∈ N, t ∈ [0, T ).

(167)

As a result, formulas (167) give a procedure for calculating the moments sn(t) of the
spectral measure dρ(λ; t) of the Jacobi operator J(t). Therefore, by means of classical
formulas for the expression of elements of the Jacobi matrix J(t) in terms of the moments
of its spectral measure, we can get formulas for solution of our generalized shock problem.
We can formulate the following result.

Theorem 12. Consider the generalized Toda shock problem, where it is necessary to
find a solution of system (156) if we know xn(0), ẋn(0), n ∈ N0, and x−1(t) − x0(t) =
f(t), t ∈ [0, T ). For its solution it is necessary to pass to the Flashka variables αn(t) =
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e
1
2
(xn(t)−xn+1(t)), n ∈ N0, βn(t) = −ẋn(t), n ∈ N, β0(t) = α2

0(t) − ef(t); t ∈ [0, T ). After
this it is necessary to calculate ∀t ∈ [0, T ) the moments sn(t), n ∈ N, of the spectral
measure dρ(λ; t) of the Jacobi matrix J(t)(s0(t) = 1) using the formulas (167) where
ϕ(t) = e−f(t). Then the solution of our problem in the Flashka variables, αn(t), βn(t), n ∈
N0, are given by the classical formulas used in the calculation of elements of the Jacobi
matrix from its moments.

Remark 7. Using Theorem 12 it is possible to find a solution of the Cauchy problem for
a semi-infinite Toda lattice by means of a way other than that in Section 2 (see Remark 2).
In this case, the function appearing above, ϕ(t), is equal to 0, i.e., f(t) = −∞.

Remark 8. It is possible for our main problem, the Cauchy problem for the double-
infinite Toda lattice, to apply the type of path of Remark 7. To do this, it is necessary
to develop at first a moment theory of the “classical type” but connected with Jacobi
matrices from Section 4.

Acknowledgments. The author is very grateful to I. E. Egorova for essential remarks.
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