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RECOVERING ARBITRARY ORDER DIFFERENTIAL OPERATORS

ON NONCOMPACT STAR-TYPE GRAPHS

V. YURKO

To the memory of A.G. Kostjuchenko.

Abstract. We study an inverse spectral problem for arbitrary order ordinary dif-
ferential equations on noncompact star-type graphs. As the main spectral charac-
teristics we introduce and study the so-called Weyl-type matrices which are a genera-

lization of the Weyl function for the classical Sturm-Liouville operator. We provide a
procedure for constructing the solution of the inverse problem and prove its unique-
ness.

1. Introduction

We study arbitrary order ordinary differential operators on noncompact star-type
graphs with boundary conditions in boundary vertices and with matching conditions
in the internal vertex. Boundary value problems on graphs (networks, trees) often ap-
pear in natural sciences and engineering (see [1]–[6]). Most of the works in the spectral
theory on graphs are devoted to the so-called direct problems of studying properties of
the spectrum and the root functions. Inverse spectral problems (which consist in reco-
vering operators from their spectral characteristics) because of their nonlinearity, are
more difficult for investigating. For Sturm-Liouville operators on compact graphs inverse
problems of recovering potentials from various spectral characteristics were studied in
[7]–[13] and other works. The noncompact case for Sturm-Liouville operators was con-
sidered in [14]–[16]. Inverse problems for higher-order differential operators on compact
graphs were investigated in [17]–[18]. Inverse problems for higher-order differential ope-
rators on noncompact graphs have not been studied yet. We note that inverse spectral
problems for second-order and for higher-order ordinary differential operators on an in-
terval have been studied fairly completely by many authors (see the monographs [19]–[24]
and the references therein). Inverse problems for the matrix Sturm-Liouville equation
were investigated in [25]–[28].

In this paper we study the inverse spectral problem for arbitrary order differential
operators on noncompact star-type graphs. As the main spectral characteristics we in-
troduce and study the so-called Weyl-type matrices which are a generalization of the
Weyl function (m-function) for the classical Sturm-Liouville operator (see [29]) and a
generalization of the Weyl matrix for higher-order differential operators on the half-line
introduced in [23]–[24]. Properties of the Weyl-type matrices for noncompact graphs
are different from the compact case. In the compact case, the spectrum is discrete, and
the Weyl-type matrices are meromorphic with respect to the spectral parameter. In the
noncompact case, the spectrum consists of unbounded continuous and bounded discrete
parts, and the Weyl-type matrices have cuts, poles and spectral singularities in the com-
plex plane of the spectral parameter. We study analytical and asymptotical properties
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of the Weyl-type matrices for noncompact graphs.We show that the specification of the
Weyl-type matrices uniquely determines the coefficients of the differential equation on
the graph, and we provide a constructive procedure for the solution of the inverse prob-
lem from the given Weyl-type matrices. For studying this inverse problem we develope
the ideas of the method of spectral mappings [23]–[24]. The obtained results are natural
generalizations of the well-known results on inverse problems for the differential opera-
tors on the half-line. We note that the results and the methods of the theory of inverse
spectral problems can be useful for investigating inverse problems for partial differential
equations. Inverse problems for partial differential equations are reflected in [30–35] and
others works.

Consider a noncompact star-type graph T in RN with the set of vertices
V = {v1, . . . , vp}, and the set of edges E = {e1, . . . , ep}, where ej = [vj , vp], j = 1, p− 1,
are finite segments, and ep = [vp, v0) is an infinite ray, v0 := ∞ (see fig. 1). The vertices
v1, . . . , vp−1 are the boundary vertices, vp is the internal vertex, and

p
⋂

j=1

ej = {vp}.

Let lj be the length of the edge ej , j = 1, p− 1. Each edge ej , j = 1, p− 1, is parame-
terized by the parameter xj ∈ [0, lj ] such that the initial point vj corresponds to xj = 0,
and the terminal point vp corresponds to xj = lj . The ray ep = [vp,∞) is parameterized
by the parameter xp ∈ [0,∞) such that xp = 0 corresponds to the internal vertex vp.
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ep

A function Y on T may be represented as Y = {yj}j=1,p, where the function yj(xj),
is defined on the edge ej .

Fix n ≥ 2. Let qν = {qνj}j=1,p, ν = 0, n− 2 be integrable complex-valued functions
on T. Consider the following n-th order differential equation on T :

(1) y
(n)
j (xj) +

n−2
∑

ν=0

qνj(xj)y
(ν)
j (xj) = λyj(xj), j = 1, p,

where λ is the spectral parameter, qνj(xj) are complex-valued integrable functions, and

y
(ν)
j (xj) ∈ AC[0, lj ], j = 1, p, ν = 0, n− 1, for all lp > 0. Denote by q = {qν}ν=0,n−2 the

set of the coefficients of equation (1); q is called the potential.

Consider the linear forms

Ujν(yj) =

ν
∑

µ=0

γjνµy
(µ)
j (lj), j = 1, p− 1, ν = 0, n− 1,
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where γjνµ are complex numbers, and γjν := γjνν 6= 0. The linear forms Ujν will be used
in matching conditions in the internal vertex vp for special solutions of equation (1).

Let λ = ρn. The ρ - plane is partitioned into sectors S of angle π
n

(

arg ρ ∈
(

νπ
n
, (ν+1)π

n

)

,

ν = 0, 2n− 1
)

in which the roots R1, R2, . . . , Rn of the equation Rn−1 = 0 can be num-

bered in such a way that

(2) Re(ρR1) < Re(ρR2) < · · · < Re(ρRn), ρ ∈ S.

Let ρ∗ := 2nmax
ν,j

‖qνj‖L(ej). It is known [36, Ch. 1] that for each fixed j = 1, p, on the

edge ej there exists a fundamental system of solutions of equation (1) {Ekj(xj , ρ)}k=1,n

having the properties:

1) for each sector S with the property (2), the functions E
(ν−1)
kj (xj , ρ), k, ν = 1, n are

holomorphic in ρ ∈ S, |ρ| > ρ∗, and are continuous for ρ ∈ S, |ρ| ≥ ρ∗;
2) as |ρ| → ∞, ρ ∈ S,

(3) E
(ν−1)
kj (xj , ρ) = (ρRk)

ν−1 exp(ρRkxj)[1],

where k, ν = 1, n, j = 1, p, [1] = 1 +O(ρ−1).

Let Ψsk = {ψskj}j=1,p, s = 1, p− 1, k = 1, n, be solutions of equation (1) satisfying
the matching conditions

(4)

ψ
(ν)
skp(0, λ) + Ujν(ψskj(xj , λ)) = 0, j = 1, p− 1, ν = 0, k − 1,

ψ
(ν)
skp(0, λ) +

p−1
∑

j=1

Ujν(ψskj(xj , λ)) = 0, ν = k, n− 1



















and the boundary conditions

(5)

ψ
(ν−1)
sks (0, λ) = δkν , ν = 1, k,

ψ
(ξ−1)
skj (0, λ) = 0, ξ = 1, n− k, j = 1, p− 1 \ s,

ψskp(xp, λ) = O(exp(ρRkxp)), ρ ∈ S, xp → ∞



















for each sector S with property (2). Here and below, δkν is the Kronecker symbol. The
function Ψsk is called the Weyl-type solution of order k with respect to the boundary
vertex vs. We introduce the matrices

Ms(λ) = [Mskν(λ)]k,ν=1,n, s = 1, p− 1,

where Mskν(λ) := ψ
(ν−1)
sks (0, λ). It follows from the definition of ψskj that Mskν(λ) = δkν

for k ≥ ν, and detMs(λ) ≡ 1. The matrix Ms(λ) is called the Weyl-type matrix with
respect to the boundary vertex vs. Denote byM = {Ms}s=1,p−1 the set of the Weyl-type
matrices. The inverse problem is formulated as follows.

Inverse Problem 1. Given M, construct q on T.

We note that the notion of the Weyl-type matrices M is a generalization of the notion
of the Weyl function (m-function) for the classical Sturm-Liouville operator ([21], [29])
and is a generalization of the notion of Weyl matrix introduced in [23]–[24] for higher-
order differential operators on the half-line. Thus, Inverse Problem 1 is a generalization
of the classical inverse problems for differential operators on the half-line.

In section 2 asymptotical and analytical properties of the Weyl-type solutions and
Weyl-type matrices are studied. Section 3 is devoted to the solution of auxiliary inverse
problems of recovering the potential on a fixed edge. In section 4 we study Inverse
problem 1. For this inverse problem we provide a constructive procedure for the solution
and prove its uniqueness.



DIFFERENTIAL OPERATORS ON GRAPHS 93

2. Auxiliary propositions

For the existence and a ”regular behavior” of the Weyl-type solutions and the Weyl-
type matrices, one needs certain restrictions on the coefficients γjν from the matching
conditions (see [17] for more details). In order to formulate regularity conditions for
matching we introduce the numbers ∆0

sk, s = 1, p− 1, k = 1, n− 1, as follows:

∆0
1k := det[dkjν ]j,ν=1,p, k = 1, n− 1,

where dkjν = [dµξkjν ] are matrices of the form

dk11 = [dµξk11]µ=1,k, ξ=1,n−k, dµξk11 = γ1,µ−1R
µ−1
k+ξ ,

dkjp = [dµξkjp]µ,ξ=1,k, dµξkjp = Rµ−1
ξ , j = 1, p− 1,

dk1ν = [dµξk1ν ]µ,ξ=1,k, dµξk1ν = 0, ν = 2, p− 1,

dkj1 = [dµξkj1]µ=1,k, ξ=1,n−k, dµξkj1 = 0, j = 2, p− 1,

dkjν = [dµξkjν ]µ,ξ=1,k, dµξkjν = δjνγj,µ−1R
µ−1
n−k+ξ, j, ν = 2, p− 1,

dkp1 = [dµξkp1]µ,ξ=1,n−k, dµξkp1 = γ1,k+µ−1R
k+µ−1
k+ξ ,

dkpp = [dµξkpp]µ=1,n−k, ξ=1,k, dµξkpp = Rk+µ−1
ξ ,

dkpν = [dµξkpν ]µ=1,n−k, ξ=1,k, dµξkpν = γν,k+µ−1R
k+µ−1
n−k+ξ, ν = 2, p− 1.

The numbers ∆0
sk, s = 2, p− 1, k = 1, n− 1, are obtained from ∆0

1k by interchanging
places of γsν and γ1ν .

We assume that

(6) ∆0
sk 6= 0, s = 1, p− 1, k = 1, n− 1.

Condition (6) is called the regularity condition for matching. Differential operators on
T which do not satisfy the regularity condition for matching (6), possess qualitatively
different properties for the formulation and the investigation of inverse problems, and are
not considered in this paper; they require a separate investigation. We note that (6) is
a generalization of the regularity condition for Sturm-Liouville operators on graphs (see
[37]). In particular, for the so-called standard matching conditions [8], (6) is satisfied
obviously. We also note that the regularity condition (6) play a similar role in inverse
problems as the Birkhoff regularity conditions [36] in direct problems.

Now we are going to study the asymptotic behavior of the Weyl-type solutions. Denote

ωk :=
Ωk−1

Ωk

, k = 1, n, Ωk := det[Rν−1
ξ ]ξ,ν=1,k, Ω0 := 1.

Lemma 1. Fix j = 1, p− 1 and a sector S with property (2).
1) Let k = 1, n− 1, and let yj(xj , ρ) be a solution of equation (1) on the edge ej under

the conditions

(7) yj(0, ρ) = · · · = y
(k−1)
j (0, ρ) = 0.

Then for xj ∈ (0, lj ], ν = 0, n− 1, ρ ∈ S, |ρ| → ∞,

(8) y
(ν)
j (xj , ρ) =

n
∑

µ=k+1

Aµj(ρ)(ρRµ)
ν exp(ρRµxj)[1],

where the coefficients Aµj(ρ) do not depend on xj. Here and below we assume that
arg ρ = const, when |ρ| → ∞.
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2) Let k = 1, n, and let yj(xj , ρ) be a solution of equation (1) on the edge ej under
the conditions

yj(0, ρ) = · · · = y
(k−2)
j (0, ρ) = 0, y

(k−1)
j (0, ρ) = 1.

Then for xj ∈ (0, lj ], ν = 0, n− 1, ρ ∈ S, |ρ| → ∞,

(9) y
(ν)
j (x, ρ) =

ωk

ρk−1
(ρRk)

ν exp(ρRkxj)[1] +

n
∑

µ=k+1

Bµj(ρ)(ρRµ)
ν exp(ρRµxj)[1],

where the coefficients Bµj(ρ) do not depend on xj.

Proof. Using the fundamental system of solutions {Eµj(xj , ρ)}µ=1,n, one can write

(10) yj(xj , ρ) =

n
∑

µ=1

Aµj(ρ)Eµj(xj , ρ).

Substituting (10) into (7) we obtain a linear algebraic system with respect to
A1j(ρ), . . . , Akj(ρ). The determinant A(ρ) of this system has the asymptotics A(ρ) =
Ωk + O(ρ−1) as |ρ| → ∞. Solving the system by Cramer’s rule and taking (3) into
account we get

(11) Aξj(ρ) =

n
∑

µ=k+1

(cξµj +O(ρ−1))Aµj(ρ), ξ = 1, k,

where cξµj are constants. Substituting (11) into (10) and using (3) we arrive at (8).
Relations (9) are proved analogously. �

Lemma 2. Fix a sector S with property (2). For ν = 0, n− 1, s = 1, p− 1, k =
1, n, xs ∈ (0, ls), the following asymptotical formula holds:

(12) ψ
(ν)
sks(xs, λ) =

ωk

ρk−1
(ρRk)

ν exp(ρRkxs)[1], ρ ∈ S, |ρ| → ∞.

Proof. For k = n, the assertion of the lemma follows from Lemma 1. Fix k = 1, n− 1,
s = 1, p− 1. By virtue of (5) and Lemma 1, one gets for xj ∈ (0, lj), ν = 0, n− 1,
ρ ∈ S, |ρ| → ∞,

(13)

ψ
(ν)
sks(xs, λ)=

ωk

ρk−1
(ρRk)

ν exp(ρRkxs)[1]+
n
∑

µ=k+1

Ask
µs(ρ)(ρRµ)

ν exp(ρRµxs)[1],

ψ
(ν)
skj(xj , λ) =

n
∑

µ=n−k+1

Ask
µj(ρ)(ρRµ)

ν exp(ρRµxj)[1], j = 1, p− 1 \ s,

ψ
(ν)
skp(xp, λ) =

k
∑

µ=1

Ask
µp(ρ)(ρRµ)

ν exp(ρRµxp)[1],















































where the coefficients Ask
µj(ρ) do not depend on xj and ν. Substituting (13) into (4) we

obtain a linear algebraic system σsk with respect to Ask
µj . The determinant ∆sk(ρ) of this

system has the asymptotics

∆sk(ρ) = ∆0
sk exp

(

ρ
(

n
∑

µ=k+1

Rµ

)

ls + ρ
(

n
∑

µ=n−k+1

Rµ

)(

p−1
∑

ξ=1

lξ − ls

))

[1],

ρ ∈ S, |ρ| → ∞.
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Solving the system σsk by Cramer’s rule we get

(14)

Ask
µs(ρ) =

1

ρk−1

(

askµs +O
(1

ρ

))

exp(ρ(Rk −Rµ)ls), µ = k + 1, n,

Ask
µp(ρ) =

1

ρk−1

(

askµp +O
(1

ρ

))

exp(ρRkls), µ = 1, k,

Ask
µj(ρ) =

1

ρk−1

(

askµj +O
(1

ρ

))

exp(ρRkls) exp(−ρRµlj),

j = 1, p− 1 \ s, µ = n− k + 1, n,















































where askµj are constants. Substituting (14) into (13) we arrive at (12). �

It follows from the proof of Lemma 2 that one can also get the asymptotics for

ψ
(ν)
skj(xj , λ), j 6= s; but for our purposes only (12) is needed. Denote Π± := {λ : ±Imλ >

0}. Using the standard technique (see [23–24]) one gets that the following assertion holds.

Lemma 3. The Weyl-type functions Mskν(λ), ν > k, are holomorphic in Π+ and Π−

with the exception of at most countable bounded sets of poles Λ+
skν and Λ−

skν , respectively,

and Mskν(λ) are continuous in Π+ and Π− with the exception of the bounded sets Λ̂+
skν

and Λ̂−
skν , respectively. In other words, for real λ (with the exception of the bounded sets

Λ̂+
skν and Λ̂−

skν) there exist the finite limits

M±
skν(λ) = lim

z→0, Re z>0
Mskν(λ± iz).

3. Auxiliary inverse problems

In this section we study auxiliary inverse problems of recovering the potential on each
fixed edge. Fix s = 1, p− 1, and consider the following inverse problem on the edge
es which is called IP(s): Given the Weyl-type matrix Ms, construct the functions qνs,
ν = 0, n− 2 on the edge es.

In the inverse problem IP(s) we construct the potential only on the edge es, but the
Weyl-type matrix Ms brings a global information from the whole graph. In other words,
IP(s) is not a local inverse problem related to the edge es.

Let us prove the uniqueness theorem for the solution of IP(s). For this purpose
together with q we consider a potential q̃. Everywhere below if a symbol α denotes an
object related to q, then α̃ will denote the analogous object related to q̃.

Theorem 1. Fix s = 1, p− 1. If Ms = M̃s, then qνs = q̃νs, ν = 0, n− 2. Thus, the
specification of the Weyl-type matrixMs uniquely determines the potential on the edge es.

Proof. Let {Ckj(xj , λ)}k=1,n, j = 1, p be the fundamental system of solutions of equation

(1) on the edge ej under the initial conditions C
(ν−1)
kj (0, λ) = δkν , k, ν = 1, n. For each

fixed xj ∈ [0, lj ], the functions C
(ν−1)
kj (xj , λ), k, ν = 1, n, j = 1, p, are entire in λ of order

1/n. Moreover,

(15) det[C
(ν−1)
kj (xj , λ)]k,ν=1,n ≡ 1.

Using the fundamental system of solutions {Ckj(xj , λ)}k=1,n, one can write

(16) ψskj(xj , λ) =

n
∑

µ=1

Mskjµ(λ)Cµj(xj , λ), j = 1, p, s = 1, p− 1, k = 1, n,
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where the coefficientsMskjµ(λ) do not depend on xj . In particular,Msksµ(λ) =Mskµ(λ),
and

(17) ψsks(xs, λ) = Cks(xs, λ) +

n
∑

µ=k+1

Mskµ(λ)Cµs(xs, λ).

It follows from (15) and (17) that

(18) det[ψ
(ν−1)
sks (xs, λ)]k,ν=1,n ≡ 1.

Denote ψs(xs, λ) := [ψ
(ν−1)
sks (xs, λ)]ν,k=1,n , Cs(xs, λ) := [C

(ν−1)
ks (xs, λ)]ν,k=1,n . Then re-

lation (17) can be written in the form

(19) ψs(xs, λ) = Cs(xs, λ)M
T
s (λ),

where T is the sign for the transposition. According to (15) and (18),

(20) detψs(xs, λ) = detCs(xs, λ) ≡ 1.

We define the matrix Ps(xs, λ) = [Psjk(xs, λ)]j,k=1,n by the formula

Ps(xs, λ) = ψs(xs, λ)(ψ̃s(xs, λ))
−1.

Taking (20) into account we calculate

Psjk(xs, λ) = det[ψ̃(n−1)
sνs (xs, λ), . . . , ψ̃

(k)
sνs(xs, λ), ψ

(j−1)
sνs (xs, λ),

ψ̃(k−2)
sνs (xs, λ), . . . , ψ̃sνs(xs, λ)]ν=1,n =

n
∑

ν=1

(−1)ν+k−n−1ψ(j−1)
sνs (xs, λ)(21)

× det
[

ψ̃(ξ)
sns(xs, λ), . . . , ψ̃

(ξ)
s,ν+1,s(xs, λ),

ψ̃
(ξ)
s,ν−1,s(xs, λ), . . . , ψ̃

(ξ)
s1s(xs, λ)

]

ξ=0,n−1\k−1
.

It follows from (21) and Lemma 2 that for xs ∈ (0, ls), k = 1, n, |λ| → ∞, arg λ =θ 6= 0, π,
one has

(22) Ps1k(xs, λ)− δ1k = O(ρ−1).

We transform the matrix Ps(xs, λ). For this purpose we use (19)

Ps(xs, λ) = ψs(xs, λ)(ψ̃s(xs, λ))
−1

= Cs(xs, λ)M
T
s (λ)(M̃T

s (λ))−1(C̃s(xs, λ))
−1 = Cs(xs, λ)(C̃s(xs, λ))

−1.

In view of (20) we conclude that for each fixed xs, the matrix-valued function Ps(xs, λ)
is an entire function in λ of order 1/n. Together with (22) this yields Ps11(xs, λ) ≡ 1,
Ps1k(xs, λ) ≡ 0, k = 2, n. Since

Ps(xs, λ)ψ̃s(xs, λ) = ψs(xs, λ),

it follows that ψsks(xs, λ) ≡ ψ̃sks(xs, λ) for all xs, λ, k, and hence qνs = q̃νs, ν = 0, n− 2.
Theorem 1 is proved. �

Using the method of spectral mappings one can get a constructive procedure for the
solution of the inverse problem IP(s). It can be obtained by the same arguments as for
n-th order differential operators on the half-line (see [24, Ch. 2] for detais).

Now we define an auxiliary Weyl-type matrix with respect to the internal vertex vp.
Let ψpk(xp, λ), k = 1, n, be solutions of equation (1) on the edge ep under the conditions

(23)
ψ
(ν−1)
pk (0, λ) = δkν , ν = 1, k,

ψpk(xp, λ) = O(exp(ρRkxp)), xp → ∞, ρ ∈ S
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in each sector S with property (2). We introduce the matrix Mp(λ) = [Mpkν(λ)]k,ν=1,n,

where Mpkν(λ) := ψ
(ν−1)
pk (0, λ). Clearly, Mpkν(λ) = δkν for k ≥ ν, and detMp(λ) ≡ 1.

The matrix Mp(λ) is called the Weyl-type matrix with respect to the internal vertex vp.
Consider the following inverse problem on the edge ep which is called IP(p): Given the
Weyl-type matrix Mp, construct the functions qνp, ν = 0, n− 2 on the edge ep.

This inverse problem is the classical one, since it is the inverse problem of recovering
n-th order differential equation on the half-line from its Weyl-type matrix. This inverse
problem has been solved in [24]. In particular, the following uniqueness theorem has
been proved in [24].

Theorem 2. If Mp = M̃p, then qνp = q̃νp, ν = 0, n− 2. Thus, the specification of the
Weyl-type matrix Mp uniquely determines the potential on the edge ep.

Moreover, in [24] an algorithm for the solution of the inverse problem IP(p) is given,
and necessary and sufficient conditions for the solvability of this inverse problem are
provided.

4. Solution of inverse problem 1

In this section we obtain a constructive procedure for the solution of Inverse Problem 1
and prove its uniqueness. Our plan is the following.

Step 1. Solving the inverse problem IP(s) for each fixed s = 1, p− 1, we find the
functions qνs, ν = 0, n− 2, s = 1, p− 1, i.e. we find the potential q on the edges
e1, . . . , ep−1.

Step 2. Using the knowledge of the potential on the edges e1, . . . , ep−1, we construct
the Weyl-type matrix Mp.

Step 3. Solving the inverse problem IP(p) we find the functions qνp, ν = 0, n− 2, i.e.
we find the potential on the edge ep.

Steps 1 and 3 have been already studied in Section 3. It remains to fulfil Step 2.
Suppose that Step 1 was already made, and we found the functions qνs, ν = 0, n− 2,

s = 1, p− 1, i.e. we found the potential q on the edges e1, . . . , ep−1. Fix s = 1, p− 1. All
calculations below will be made for this fixed s. Using the knowledge of the potential on
the edge es, we calculate the functions Cks(xs, λ), k = 1, n, and the functions ψsks(xs, λ),
k = 1, n, by (17). Now we are going to construct the Weyl-type matrix Mp using
ψsks(xs, λ), k = 1, n. First we prove an auxiliary assertion.

Lemma 4. Fix s = 1, p− 1. Then the following relations hold:

(24) Mp1ν(λ) =
ψ
(ν−1)
s1p (0, λ)

ψs1p(0, λ)
, ν = 2, n,

Mpkν(λ) =
det[ψsµp(0, λ), . . . , ψ

(k−2)
sµp (0, λ), ψ

(ν−1)
sµp (0, λ)]µ=1,k

det[ψ
(ξ−1)
sµp (0, λ)]ξ,µ=1,k

,(25)

k = 2, n− 1, ν = k + 1, n.

Proof. Denote zp1(xp, λ) := ψs1p(xp, λ)(ψs1p(0, λ))
−1. The function zp1(xp, λ) is a solu-

tion of equation (1) on the edge ep, and zp1(0, λ) = 1. Taking (5) and (23) into account
we conclude that the solutions zp1(xp, λ) and ψp1(xp, λ) satisfy the same boundary con-
ditions, and consequently, zp1(xp, λ) ≡ ψp1(xp, λ). Thus,

(26) ψp1(xp, λ) =
ψs1p(xp, λ)

ψs1p(0, λ)
.
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Similarly, we calculate

(27) ψpk(xp, λ) =
det[ψsµp(0, λ), . . . , ψ

(k−2)
sµp (0, λ), ψsµp(xp, λ)]µ=1,k

det[ψ
(ξ−1)
sµp (0, λ)]ξ,µ=1,k

, k = 2, n− 1.

Since Mpkν(λ) = ψ
(ν−1)
pk (0, λ), it follows from (26)–(27) that (24)–(25) hold. �

Using the matching conditions (4) we get

(28) Ujν(ψskj) = Usν(ψsks), 0 ≤ ν < k ≤ n− 1.

Since the functions ψsks were already calculated, the right-hand sides in (28) are known.
For each fixed k = 1, n− 1, we successively use (28) for ν = 0, 1, . . . , k− 1, and calculate
reccurently the functions

(29) ψ
(ν)
skj(lj , λ), k = 1, n− 1, ν = 0, k − 1, j = 1, p− 1 \ s.

Furthermore, it follows from (16) and (5) that Mskjµ(λ) = 0 for µ = 1, n− k, j =
1, p− 1 \ s, and consequently,

ψskj(xj , λ) =

n
∑

µ=n−k+1

Mskjµ(λ)Cµj(xj , λ), k = 1, n− 1, j = 1, p− 1 \ s.

This yields

ψ
(ν)
skj(lj , λ) =

n
∑

µ=n−k+1

Mskjµ(λ)C
(ν)
µj (lj , λ),(30)

ν = 0, n− 1, k = 1, n− 1, j = 1, p− 1 \ s.

Fix k = 1, n− 1, j = 1, p− 1 \ s, and consider a part of relations (30), namely, for ν =
0, k − 1. They form a linear algebraic system with respect to the functionsMskjµ(λ), µ =

n− k + 1, n. Solving this system by Cramer’s rule we find these functions. Substituting
them into (30) for ν ≥ k, we calculate the functions

(31) ψ
(ν)
skj(lj , λ), k = 1, n− 1, ν = k, n− 1, j = 1, p− 1 \ s.

Substituting now the functions (29) and (31) into (4) we find

(32) ψ
(ν)
skp(0, λ), k = 1, n− 1, ν = 0, n− 1.

Since the functions (32) are known, one can calculate the Weyl-type matrix Mp via
(24)–(25).

Thus, we have obtained the solution of Inverse Problem 1 and proved its uniqueness,
i.e. the following assertion holds.

Theorem 3. The specification of the Weyl-type matrices M = {Ms}s=1,p−1 uniquely
determines the potential q on T. The solution of Inverse Problem 1 can be obtained by
the following algorithm.

Algorithm 1. Given the Weyl-type matrices M = {Ms}s=1,p−1.

1) Find the functions qνs, ν = 0, n− 2, s = 1, p− 1, by solving the inverse problem
IP(s) for each s = 1, p− 1.

2) Fix s = 1, p− 1, and calculate C
(ν)
ks (lj , λ) for k = 1, n, ν = 0, n− 1.

3) Construct the functions ψ
(ν)
sks(ls, λ), k = 1, n− 1, ν = 0, n− 1 by the formula

ψ
(ν)
sks(ls, λ) = C

(ν)
ks (ls, λ) +

n
∑

µ=k+1

Mskµ(λ)C
(ν)
µs (ls, λ).
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4) Find the functions ψ
(ν)
skj(lj , λ), k = 1, n− 1, ν = 0, k − 1, j = 1, p− 1 \ s, by using

the recurrent formulae (28).
5) Calculate Mskjµ(λ), k = 1, n− 1, µ = n− k + 1, n, j = 1, p− 1 \ s, by solving the

linear algebraic systems
n
∑

µ=n−k+1

Mskjµ(λ)C
(ν)
µj (lj , λ) = ψ

(ν)
skj(lj , λ), ν = 0, k − 1,

for each fixed k = 1, n− 1, j = 1, p− 1 \ s.

6) Construct the functions ψ
(ν)
skj(lj , λ), k = 1, n− 1, ν = k, n− 1, j = 1, p− 1 \ s, by

the formula

ψ
(ν)
skj(lj , λ) =

n
∑

µ=n−k+1

Mskjµ(λ)C
(ν)
µj (lj , λ), ν ≥ k.

7) Find the functions ψ
(ν)
skp(0, λ), k = 1, n− 1, ν = 0, n− 1, by (4).

8) Calculate the Weyl-type matrix Mp via (24)–(25).
9) Construct the functions qνp, ν = 0, n− 2, by solving the inverse problem IP(p).
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