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OPERATOR-NORM APPROXIMATIONS OF HOLOMORPHIC

ONE-PARAMETER SEMIGROUPS OF CONTRACTIONS IN

HILBERT SPACES
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Dedicated to the memory of Professor A. G. Kostyuchenko

Abstract. We establish the operator-norm convergence of the Iosida and Dunford-
Segal approximation formulas for one-parameter semigroups of the class C0, gene-
rated by maximal sectorial generators in separable Hilbert spaces. Our approach is

essentially based on the Crouzeix-Delyon theorem [8] related to the generalization of
the von Neumann inequality.

1. Introduction

In this section we briefly describe notations, the basic objects, and the main goal of
this paper.

1.1. Notations. In what follows L(H) denotes the Banach algebra of bounded linear
operators on a complex separable Hilbert space H with identity operator I. We also
denote by domT , ranT , and kerT , respectively the domain, the range, and the null-
space of the linear operator T , ρ(T ) is the set of all regular points of T .

1.2. One-parameter semigroups and their generators. Let H be a complex sepa-
rable Hilbert space and let {T (t)}t≥0 be a C0 one-parameter semigroup of contractions
in H (||T (t)|| ≤ 1, t ∈ R+). Then its generator

(1.1)

domA =

{

u ∈ H : lim
t→+0

(I − T (t))u

t
exists

}

,

Au := lim
t→+0

(I − T (t))u

t
, u ∈ domA

is maximal accretive (shortlym-accretive) operator in H. This means that Re (Au, u) ≥ 0
for all u ∈ domA and ρ(A) ⊇ {z ∈ C : Re z < 0}. Moreover, if a linear operator A is
m-accretive operator, then there is a unique C0-semigroup {T (t)}t≥0 with generator A
[13]. By means of the generator the semigroup can be recovered as the limit in the strong
operator topology. We consider the following approximations

(1.2) T (t) = s− lim
n→∞

(

I +
t

n
A

)−n

, t ≥ 0 (the Euler approximation),

(1.3) T (t) = s− lim
λ→+∞

exp

(

− tA

(

I +
A

λ

)−1)

, t ≥ 0 (the Iosida approximation).
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One more approximation formula for {T (t)} is obtained by Dunford and Segal in [10]
(see also [12]) and takes the form

(1.4) T (t) = s− lim
η→+0

exp

(

−t I − T (η)

η

)

, t ≥ 0 (the Dunford-Segal approximation).

Here in (1.3) and in (1.4) the exponent of a bounded operator B is defined as follows

exp(B) =

∞
∑

n=1

Bn

n!
.

We note that due to the estimate

||(A− zI)−1|| ≤ 1

|Re z| , Re z < 0

the operators
{

A

(

I +
A

λ

)−1}

λ>0

are bounded and m-accretive. Moreover, for an arbitrary m-accretive operator A one
has

Au = lim
λ→+∞

A

(

I +
A

λ

)−1

u, u ∈ domA.

Since ||T (η)|| ≤ 1, η ≥ 0 the operators
{

η−1(I − T (η)
}

η>0
are bounded and accretive as

well and
Au = lim

η↓0
η−1(I − T (η))u, u ∈ domA.

So, the generators of the semigroups in the right hand sides of (1.3) and (1.4) approximate
generator A on domA and, therefore, formulas (1.2), (1.3), and (1.4) justify that a C0-
semigroup T (t) can be written as the operator exponent: T (t) = exp(−tA), t ≥ 0. We
note that according to the functional calculus for contractions in Hilbert spaces [16] if
T is a contraction in H, ker(I + T ) = {0}, and A := (I − T )(I + T )−1, then for C0-
semigroup of contractions T (t) with generator A, the equality T (t) = ft(T ) holds with
ft(z) := exp(−t(1− z)(1 + z)−1), t ≥ 0 (see [16, Theorem III.8.1]).

1.3. Holomorphic contractive semigroups and m-sectorial operators.

Definition 1.1. [13]. Let α ∈ [0, π/2) and let

S(α) := {z ∈ C : | arg z| ≤ α}
be a sector in the complex plane C with the vertex at the origin and the semi-angle α.
Then a linear operator A in a Hilbert space H is called sectorial with vertex at z = 0
and the semi-angle α, if its numerical range

W (A) := {(Au, u) ∈ C : u ∈ domA, ||u|| = 1}
is contained in S(α), i.e.,

|Im (Au, u)| ≤ tanαRe (Au, u), u ∈ domA.

An m-accretive sectorial operator with vertex at z = 0 and with semi-angle α we call
for short m-α-sectorial. The resolvent set of m-α-sectorial operator A contains the set
C \ S(α) and

||(A− zI)−1|| ≤
1

dist (z,S(α)) , z ∈ C \ S(α).

Theorem 1.2. [13]. A C0-semigroup of contractions in the Hilbert space admits a holo-

morphic contractive continuation inside the sector S(φ), φ ∈ (0, π/2] if and only if its

generator is m− (π/2− φ)-sectorial.
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Let α ∈ (0, π/2). We say that T ∈ L(H) belongs to the class CH(α) [1] if

(1.5) ||T sinα± iI cosα|| ≤ 1.

By virtue of (1.5) one immediately gets that

T ∈ CH(α) ⇐⇒ −T ∈ CH(α) ⇐⇒ T ∗ ∈ CH(α),

and that condition (1.5) is equivalent to the inequalities

(||f ||2 − ||Tf ||2) tanα ≥ 2|Im (Tf, f)|, f ∈ H.

This inequality implies that operator T is a contraction. In addition if A is m-α-sectorial
operator, then

T = (I −A)(I +A)−1

belongs to the class CH(α). Conversely, if T ∈ CH(α), and ker(I + T ) = {0}, then
A = (I − T )(I + T )−1 is m-α-sectorial operator. Properties of operators from the class
CH(α) were studied in [1] and [2]. In particular the next theorem gives a connection
between the class CH(α), m − α-sectorial operators and corresponding one-parameter
semigroups.

Theorem 1.3. [1]. If A is m-α-sectorial operator in a Hilbert space H, then T (t) =
exp(−tA) ∈ CH(α) for all t ≥ 0. Conversely, let T (t) = exp(−tA) for t ≥ 0 be a C0-

semigroup on a Hilbert space H. If T (t) ∈ CH(α) for non-negative t in a neighborhood of

t = 0, then the generator A is an m-α-sectorial operator.

Notice that the proof Theorem 1.3 in [1] is based on the Euler approximation formula
(1.2). We mention that the following statement is true [14]: if φ is analytic in the unit

disk D = {z ∈ C : |z| < 1}, φ(z) = φ(z̄) and |φ(z)| < 1 for z ∈ D, then

T ∈ CH(α) ⇒ φ(T ) ∈ CH(α).

1.4. Sectorial forms. Recall some definitions and results from [13]. Let τ [·, ·] be a
sesquilinear form in a Hilbert space H defined on a linear manifold dom τ . The form
τ is called symmetric if τ [u, v] = τ [v, u] for all u, v ∈ dom τ and nonnegative if τ [u] :=

τ [u, u] ≥ 0 for all u ∈ dom τ . The form τ∗[u, v] := τ [v, u] is called the adjoint to τ , and
the forms

τR[u, v] :=
1

2
(τ [u, v] + τ∗[u, v]) , τI[u, v] :=

1

2i
(τ [u, v]− τ∗[u, v]) , u, v ∈ dom τ

are called the real and the imaginary parts of τ , respectively.
The form τ is called sectorial with the vertex at the origin and a semi-angle α ∈ [0, π/2)

(α-sectorial) if its numerical range

W (τ) = {τ [u] : u ∈ dom τ, ||u|| = 1}
is contained in the sector S(α), i.e.,

|Im τ [u]| ≤ tanαRe τ [u], u ∈ dom τ.

A sequence {un} is called τ -convergent to the vector u ∈ H if

lim
n→∞

un = u and lim
n,m→∞

τ [un − um] = 0.

The form τ is called closed if for every sequence {un} τ - convergent to a vector u it
follows that u ∈ dom τ and lim

n→∞
τ [u − un] = 0. A sectorial form τ with vertex at the

origin is closed if and only if the linear manifold dom τ is a Hilbert space with the inner
product (u, v)τ = τR[u, v] + (u, v) [13]. The form τ is called closable if it has a closed
extension; in this case the closure of τ is the smallest closed extension of τ . If τ is a
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closed, densely defined sectorial form, then according to First Representation Theorem
[13] there exists a unique m-sectorial operator A in H, associated with τ , i.e.,

(Au, v) = τ [u, v] for all u ∈ domA and for all v ∈ dom τ.

In this case the operator A∗ is associated with the adjoint form τ∗[u, v]. The nonnegative
self-adjoint operator, denoted by AR, associated with the real part τR[u, v] of the form
τ , is called the ”real part” of A. According to Second Representation Theorem [13] the
identities hold

dom τ = domA
1/2
R .

A closed α-sectorial form τ has the representation

(1.6) τ [u, v] =
(

(I + iM)A
1

2

Ru,A
1

2

Rv
)

, u, v ∈ dom τ,

where M is a bounded selfadjoint operator in the subspace ranAR and ||M || ≤ tanα.
For A one obtains

(1.7) domA =
{

u ∈ dom τ : (I + iM)A
1/2
R u ∈ dom τ

}

, Au = A
1/2
R (I + iM)A

1/2
R u.

If A is a sectorial operator, then the form τ [u, v] = (Au, v), u, v ∈ domA is closable. The
domain of its closure A[·, ·] we denote by D[A]. The next theorem provides connections
between m-sectorial operator A, its closed associated form A[·, ·] and one parameter
semigroup T (t) = exp(−tA), t ≥ 0.

Theorem 1.4. [3]. Let A be m-sectorial operator in H and let T (t), t ≥ 0 be C0

semigroup with generator −A. Then the following conditions are equivalent:

(i) u ∈ D[A],
(ii) sup

t>0

{

t−1|((I − T (t))u, u)|
}

<∞,

(iii) the derivative
d

dt
(T (t)u, u)

∣

∣

∣

t=+0

exists.

If u, v ∈ D[A], then

d

dt
(T (t)u, v)

∣

∣

∣

t=+0
= lim

t→+0

((T (t)− I)u, v)

t
= −A[u, v].

1.5. Crouzeix-Delyon theorem. In the sequel we will essentially rely on the result
established by M. Crouzeix and B. Delyon and related to the generalization of the von
Neumann inequality.

Theorem 1.5. [8], [11]. Let Sα be a convex open sector of the complex plane with angle

2α, where 0 ≤ α ≤ π/2. Then for any bounded operator B ∈ L(H) with numerical range

W (B) ⊆ Sα there is a best α-dependent constant Kα > 0 such that the inequality

(1.8) ||R(B)|| ≤ Kα sup
z∈Sα

|R(z)|

holds for all rational functions R : C → C bounded in Sα. Furthermore, Kα is a conti-

nuous and decreasing function of α ∈ [0, π/2] satisfying the estimates

(1.9)
π sinα

2α
≤ Kα ≤ min

(

π − α

α
,K0

)

and
π

2
≤ K0 ≤ 2 +

2√
3
.

The inequality (1.8) is still valid if R is a holomorphic function in Sα, which is continuous

and bounded in Sα.

Using Theorem 1.5, in [4] the following statement concerning operator-norm conver-
gence in the Euler approximation has been obtained.
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Theorem 1.6. [4]. Let A be an m-α-sectorial operator in a Hilbert space H. Then

(1.10)
∥

∥

∥
(I + tA/n)

−n − exp(−tA)
∥

∥

∥
≤ Kα

cos2 α

1

n
, t ≥ 0 , n ∈ N.

The norm convergence rate O(1/n) in the Euler formula firstly is established in [9]
and holds for every generator of a semigroup holomorphic in a sector in arbitrary Banach
spaces, i.e., also form-α-sectorial operator in a Hilbert space H. In [6] the authors proved
the O(lnn/n) rate using is results about quasi-sectorial contractions, established in [7].
Later the estimate O(1/n) is obtained in [15] (see also [5]) by improving the probability
theory methods originally developed in [6].

1.6. The goal of this paper. In this paper using the Crouzeix-Delyon theorem we
show the operator-norm convergence of the rate O(1/λ), λ → +∞ in the Iosida and of
the rate O(η), η → +0 in Dunford-Segal approximations for holomorphic contractive
semigroup at each point t > 0 (see Theorem 3.1 and Theorem 3.4).

According to Theorem 1.3 the operators T (η) = exp(−Aη), η ≥ 0 belong to the class
CH(α), when A is m − α-sectorial. Therefore the operators η−1(I − T (η)) are bounded
m− α-sectorial. Theorem 1.4 means that the forms

ωη[u, v] = (η−1(I − T (η))u, v), u, v ∈ D[A],

associated with generators in Dunford-Segal formula, approximate the form A[u, v] when
η → +0. In Theorem 2.1 of this paper we establish the convergence of sesquilinear forms

τλ[u, v] =

(

A

(

I +
A

λ

)−1

u, v

)

, u, v ∈ D[A],

associated with generators in the Iosida formula, to A[u, v] when λ→ +∞.

2. Convergence of closed sectorial forms

In this section we show that the sesquilinear forms associated with generators in Iosida
formula converge to the closed form associated with the generator A (A is m−α-sectorial
operator) when λ→ +∞.

Theorem 2.1. Let A be m-sectorial operator in H. Then u ∈ D[A] if and only if the

function

τλ[u] :=
(

λA(A+ λI)−1u, u
)

is bounded in λ on the interval (0,+∞). Moreover,

(2.1) lim
λ→+∞

(λA(A+ λI)−1u, v) = A[u, v], u, v ∈ D[A].

Proof. Assume that A is m− α-sectorial. Then the operator

Sλ := λA(A+ λI)−1

is bounded and m− α sectorial for each λ > 0. Indeed for u ∈ H one has

(Sλu, u) =
1

λ
(Aψλ, (A+ λI)ψλ) =

1

λ
||Aψλ||2 + (Aψλ, ψλ) ∈ S(α),

where ψλ = λ(A+ λI)−1u ∈ domA.
Suppose that for some u ∈ H

|τλ[u]| ≤ C for all λ > 0

with some positive constant C. Then from τλ[u] = (Sλu, u) and Re (Aψλ, ψλ) ≥ 0 we get
that Re (Aψλ, ψλ) ≤ C for all λ > 0. The inequality |Im (Aψλ, ψλ)| ≤ tanαRe (Aψλ, ψλ)
yields

|(Aψλ, ψλ)| ≤
1

cosα
Re (Aψλ, ψλ).
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Hence

|(Aψλ, ψλ)| ≤
C

cosα
.

Because s − lim
λ→+∞

λ(A + λIH)
−1 = IH, we have lim

λ→+∞
ψλ = u. Applying [13, Theo-

rem VI.1.16], we obtain u ∈ D[A].
Let us prove (2.1). For A[u, v] and A we will use the representations (1.6) and (1.7)

A[u, v] =
(

(I + iM)A
1/2
R u,A

1/2
R v

)

, u, v ∈ D[A] = domA
1/2
R ,

A = A
1/2
R (I + iM)A

1/2
R .

For λ > 0 put

Mλ =
(

AR(AR + λI)−1
)1/2

M
(

AR(AR + λI)−1
)1/2

.

Then

(A+ λI)f = (AR + λI)1/2(I + iMλ)(AR + λI)1/2f, f ∈ domA,

(A+ λI)−1 = (AR + λI)−1/2(I + iMλ)
−1(AR + λI)−1/2.

Let u, v ∈ D[A]. Then

A[u, v]− (λA(A+ λI)−1u, v) = ((I + iM)A
1/2
R u,A

1/2
R v)

− λ((I + iM)A
1/2
R (AR + λI)−1/2(I + iMλ)

−1(AR + λI)−1/2u,A
1/2
R v)

=
(

(I + iM)A
1/2
R

(

I − λ(AR + λI)−1/2(I + iMλ)
−1(AR + λI)−1/2

)

u,A
1/2
R v

)

.

Next we use that if −1 ∈ ρ(CD), then −1 ∈ ρ(DC) and

(2.2) C(I +DC)−1 = (I + CD)−1C,

(2.3) (CD + I)−1 + C(DC + I)−1D = I

for bounded operators C and D in H. By virtue of (2.2) for

C = A
1/2
R (AR + λI)−1/2, D = iA

1/2
R (AR + λI)−1/2M

we get

A
1/2
R (AR + λI)−1/2(I + iMλ)

−1

=
(

AR(AR + λI)−1
)1/2

(

I + i
(

AR(AR + λI)−1
)1/2

M
(

AR(AR + λI)−1
)1/2

)−1

=
(

I + i (AR(AR + λI)
−1
M
)−1

(

AR(AR + λI)−1
)1/2

.

Hence

A
1/2
R (AR + λI)−1/2(I + iMλ)

−1(AR + λI)−1/2u

=
(

I + i (AR(AR + λI)
−1
M
)−1

(AR + λI)−1A
1/2
R u, u ∈ D[A].

Therefore

(2.4)

A[u, v]− (λA(A+ λI)−1u, v)

=

(

(I + iM)

(

A
1/2
R −

(

I + i (AR(AR + λI)
−1
M
)−1

×
(

λ(AR + λI)−1
)

A
1/2
R u

)

, A
1/2
R v

)

.
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We have

||(AR + λI)−1|| ≤ 1

λ
, ||AR(AR + λI)−1|| ≤ 1,

s− lim
λ→+∞

AR(AR + λI)−1 = 0,

s− lim
λ→+∞

λ(AR + λI)−1 = IH.

Since DC =Mλ, is a self-adjoint operator, from (2.3) we get
∥

∥

∥

(

I + i (AR(AR + λI)
−1
M
)−1 ∥

∥

∥
≤ 1 + ||M || ≤ 1 + tanα.

It follows that

lim
λ→+∞

(

I + i (AR(AR + λI)
−1
M
)−1

(

λ(AR + λI)−1f − f − iAR(AR + λI)−1Mf
)

= 0.

Therefore, from (2.4) we get (2.1). Since

s− lim
λ→+0

λA(A+ λI)−1 = 0,

the function τλ[u] = (Sλu, u) is bounded on (0,+∞) for all u ∈ D[A]. �

3. Operator-norm convergence

In this section we established the convergence in the operator-norm topology in the
Iosida and Dunford-Segal approximation formulas for m− α-sectorial generators.

3.1. The Iosida approximation.

Theorem 3.1. Let A be m−α-sectorial operator in the Hilbert space H and let {T (t) =
exp(−tA)}t≥0 be the semigroup with generator A. Then

(3.1)
∥

∥T (t)− exp
(

−tλA(A+ λI)−1
)∥

∥ ≤ 2e−1Kα

cos2 α

1

tλ
for all t > 0, λ > 0,

where Kα satisfies (1.9).

Proof. We will use Theorem 1.5. We need to estimate

sup
z∈S(α)

∣

∣exp(−tz)− exp(−tzλ(λ+ z)−1)
∣

∣ = sup
z∈∂S(α)

∣

∣exp(−tz)− exp(−tzλ(λ+ z)−1)
∣

∣

for t > 0 and λ > 0. Let x > 0 and let z = xeiα ∈ ∂S(α). Then
exp(−txeiα)− exp(−txeiαλ(λ+ xeiα)−1)

= −
x
∫

0

d

ds

(

exp(−tseiαλ(λ+ seiα)−1) exp(−t(x− s)eiα)
)

ds.

Calculating the derivative one obtains

d

ds

(

exp(−tseiαλ(λ+ seiα)−1) exp(−t(x− s)eiα)
)

= tei2α
s(seiα + 2λ)

(λ+ seiα)2
exp(−tseiαλ(λ+ seiα)−1) exp(−t(x− s)eiα).

Then
∣

∣

∣

d

ds

(

exp(−tseiαλ(λ+ seiα)−1) exp(−t(x− s)eiα)
)

∣

∣

∣

= t exp

(

−tλ
s(s+ λ cosα)

s2 + λ2 + 2sλ cosα

)

exp(−t(x− s) cosα)
s
√
s2 + 4λ2 + 4sλ cosα

s2 + λ2 + 2sλ cosα
.

�



108 YURY ARLINSKĬI

Since

max
y≥0

{y exp(−ay)} =
1

a
e−1, a > 0,

and √
s2 + 4λ2 + 4sλ cosα

s+ λ cosα
≤ 2

cosα
we get

exp
(

− tλ
s(s+ λ cosα)

s2 + λ2 + 2sλ cosα

) s
√
s2 + 4λ2 + 4sλ cosα

s2 + λ2 + 2sλ cosα

=
( s(s+ λ cosα)

s2 + λ2 + 2sλ cosα
exp

(

− tλ
s(s+ λ cosα)

s2 + λ2 + 2sλ cosα

))

√
s2 + 4λ2 + 4sλ cosα

s+ λ cosα

≤ e−1

tλ

2

cosα
.

Hence,
∣

∣exp(−txeiα)− exp(−txeiαλ(λ+ xeiα)−1)
∣

∣

≤
x
∫

0

∣

∣

∣

d

ds

(

exp(−tseiαλ(λ+ seiα)−1) exp(−t(x− s)eiα)
)

∣

∣

∣
ds

≤ t
e−1

tλ

2

cosα

x
∫

0

exp(−t(x− s) cosα)ds =
1

tλ

2e−1

cos2 α
(1− exp(−tx cosα))

≤ 1

tλ

2e−1

cos2 α
.

Clearly, on the ray z = xe−iα, x > 0 the same estimate is valid. Thus

sup
z∈∂S(α)

∣

∣exp(−tz)− exp(−tzλ(λ+ z)−1)
∣

∣ ≤
1

tλ

2e−1

cos2 α
.

Now, applying Theorem 1.5, we arrive at (3.1).

Corollary 3.2. For t > 0

lim
λ→+∞

∥

∥exp
(

−tλA(A+ λI)−1
)

− exp(−tA)
∥

∥ = 0.

Theorem 3.1 allows to prove analyticity of the function exp(−zA) for m-sectorial
generator A without using the Cauchy integral formula [13].

Corollary 3.3. Let A be m − α-sectorial operator. Then the C0-semigroup {T (t) =
exp(−tA)}t≥0 admits holomorphic contractive continuation inside the sector S(π/2−α).

Proof. Let z = xeiϕ, x > 0, |ϕ| < π/2−α. Then the operator zA ism−(α+|ϕ|)-sectorial.
By Theorem 3.1

∥

∥exp(−zA)− exp
(

−λzA(zA+ λI)−1
)∥

∥ ≤ 2e−1Kα+|ϕ|

cos2(α+ |ϕ|)
1

λ
for all λ > 0,

It follows that the family {exp
(

−λzA(zA+ λI)−1
)

} convergence to exp(−zA) in the
operator-norm topology, when λ → +∞, uniformly with respect to z ∈ M for any com-
pact set M ⊂ IntS(π/2− α). Therefore, by the Weierstrass theorem, T (z) = exp−(zA)
is holomorphic inside S(π/2 − α), and ||T (z)|| ≤ 1. Besides, T (z1 + z2) = T (z1)T (z2),
z1, z2 ∈ S(α). �
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3.2. The Dunford-Segal approximation.

Theorem 3.4. Let {T (t)}t≥0 be a contractive semigroup with m−α-sectorial generator
in the Hilbert space H. Then

(3.2)
∥

∥

∥
T (t)− exp

(

− t
I − T (η)

η

)∥

∥

∥
≤ e−1Kα

cos2 α

η

t
for all t > 0, η > 0,

where Kα satisfies (1.9).

Proof. Let z = xeiα, x > 0. Then

exp(−txeiα)− exp
(

tη−1(e−ηxeiα − 1)
)

= −
x
∫

0

d

ds

(

exp(−t(x− s)eiα) exp
(

tη−1(e−ηseiα − 1)
))

ds

= −t
x
∫

0

(

eiα exp(−t(x− s)eiα) exp
(

tη−1(e−ηseiα − 1
)

(

1− exp(−ηseiα)
)

)

ds.

Further we shall estimate from above the absolute value
∣

∣

∣
exp

(

tη−1(e−ηseiα − 1
)

(

1− exp(−ηseiα)
)

∣

∣

∣

= exp
(

tη−1
(

e−ηs cosα cos(ηs sinα)− 1
))

×
√

1 + e−2ηs cosα − 2e−ηs cosα cos(ηs sinα).

Using the inequality exp(−y) ≤ e−1y−1 for y > 0, we have

exp
(

−tη−1
(

1− e−ηs cosα cos(ηs sinα)
))

≤ η

t

e−1

1− e−ηs cosα cos(ηs sinα)
,

√

1 + e−2ηs cosα − 2e−ηs cosα cos(ηs sinα)

(1− e−ηs cosα cos(ηs sinα))2

=

√

e2ηs cosα − 2eηs cosα cos(ηs sinα) + 1

(eηs cosα − cos(ηs sinα))2
=

√

1 +
sin2(ηs sinα)

(eηs cosα − cos(ηs sinα))2

≤

√

1 +
sin2(ηs sinα)

(ηs)2 cos2 α
=

√

1 +
sin2(ηs sinα)

(ηs)2 sin2 α
tan2 α ≤

√

1 + tan2 α =
1

cosα
.

Here we have used the inequalities

eηs cosα − cos(ηs sinα) ≥ eηs cosα − 1 ≥ ηs cosα.

Hence, we have
∣

∣

∣
exp

(

tη−1(e−ηseiα − 1
)

(

1− exp(−ηseiα)
)

∣

∣

∣
≤ η

t

e−1

cosα
.

Finally,
∣

∣

∣
exp(−txeiα)− exp

(

tη−1(e−ηxeiα − 1)
)
∣

∣

∣

≤ η

cosα

x
∫

0

exp(−t(x− s) cosα)ds ≤ η

t

e−1

cos2 α
.

Similarly
∣

∣

∣
exp(−txe−iα)− exp

(

tη−1(e−ηxe−iα − 1)
)
∣

∣

∣
≤
η

t

e−1

cos2 α
.
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Therefore

sup
z∈S(α)

∣

∣exp(−tz)− exp
(

tη−1(e−ηz − 1)
)∣

∣

= sup
z∈∂S(α)

∣

∣exp(−tz)− exp
(

tη−1(e−ηz − 1)
)∣

∣ ≤ η

t

e−1

cos2 α
, t > 0, η > 0.

To complete the proof we use Theorem 1.5. �

Corollary 3.5.

lim
η→+0

∥

∥

∥

∥

exp

(

− t
I − T (η)

η

)

− T (t)

∥

∥

∥

∥

= 0

for all t > 0.
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